1
|
Mohammed M, Dziedziech A, Macedo D, Huppertz F, Veith Y, Postel Z, Christ E, Scheytt R, Slotte T, Henriksson J, Ankarklev J. Single-cell transcriptomics reveal transcriptional programs underlying male and female cell fate during Plasmodium falciparum gametocytogenesis. Nat Commun 2024; 15:7177. [PMID: 39187486 PMCID: PMC11347709 DOI: 10.1038/s41467-024-51201-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/01/2024] [Indexed: 08/28/2024] Open
Abstract
The Plasmodium falciparum life cycle includes obligate transition between a human and mosquito host. Gametocytes are responsible for transmission from the human to the mosquito vector where gamete fusion followed by meiosis occurs. To elucidate how male and female gametocytes differentiate in the absence of sex chromosomes, we perform FACS-based cell enrichment of a P. falciparum gametocyte reporter line followed by single-cell RNA-seq. In our analyses we define the transcriptional programs and predict candidate driver genes underlying male and female development, including genes from the ApiAP2 family of transcription factors. A motif-driven, gene regulatory network analysis indicates that AP2-G5 specifically modulates male development. Additionally, genes linked to the inner membrane complex, involved in morphological changes, are uniquely expressed in the female lineage. The transcriptional programs of male and female development detailed herein allow for further exploration of the evolution of sex in eukaryotes and provide targets for future development of transmission blocking therapies.
Collapse
Affiliation(s)
- Mubasher Mohammed
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| | - Alexis Dziedziech
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Department of Global Health, Institut Pasteur, 25-28 Rue du Docteur Roux, Paris, France
| | - Diego Macedo
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Frederik Huppertz
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Ylva Veith
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Zoé Postel
- Department of Ecology, Environment and Plant Science, Stockholm University, Stockholm, Sweden
| | - Elena Christ
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Richard Scheytt
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Tanja Slotte
- Department of Ecology, Environment and Plant Science, Stockholm University, Stockholm, Sweden
| | - Johan Henriksson
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå Centre for Microbial Research (UCMR), Integrated Science Lab, Umeå University, Umeå, Sweden
| | - Johan Ankarklev
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
- Microbial Single Cell Genomics Facility, SciLifeLab, Biomedical Center (BMC) Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Lappalainen R, Kumar M, Duraisingh MT. Hungry for control: metabolite signaling to chromatin in Plasmodium falciparum. Curr Opin Microbiol 2024; 78:102430. [PMID: 38306915 PMCID: PMC11157454 DOI: 10.1016/j.mib.2024.102430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 02/04/2024]
Abstract
The human malaria parasite Plasmodium falciparum undergoes a complex life cycle in two hosts, mammalian and mosquito, where it is constantly subjected to environmental changes in nutrients. Epigenetic mechanisms govern transcriptional switches and are essential for parasite persistence and proliferation. Parasites infecting red blood cells are auxotrophic for several nutrients, and mounting evidence suggests that various metabolites act as direct substrates for epigenetic modifications, with their abundance directly relating to changes in parasite gene expression. Here, we review the latest understanding of metabolic changes that alter the histone code resulting in changes to transcriptional programmes in malaria parasites.
Collapse
Affiliation(s)
- Ruth Lappalainen
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston 02115, USA
| | - Manish Kumar
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston 02115, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston 02115, USA.
| |
Collapse
|
3
|
Abstract
Plasmodium falciparum, the human malaria parasite, infects two hosts and various cell types, inducing distinct morphological and physiological changes in the parasite in response to different environmental conditions. These variations required the parasite to adapt and develop elaborate molecular mechanisms to ensure its spread and transmission. Recent findings have significantly improved our understanding of the regulation of gene expression in P. falciparum. Here, we provide an up-to-date overview of technologies used to highlight the transcriptomic adjustments occurring in the parasite throughout its life cycle. We also emphasize the complementary and complex epigenetic mechanisms regulating gene expression in malaria parasites. This review concludes with an outlook on the chromatin architecture, the remodeling systems, and how this 3D genome organization is critical in various biological processes.
Collapse
Affiliation(s)
- Thomas Hollin
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, USA;
| | - Zeinab Chahine
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, USA;
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, USA;
| |
Collapse
|
4
|
Jeninga MD, Tang J, Selvarajah SA, Maier AG, Duffy MF, Petter M. Plasmodium falciparum gametocytes display global chromatin remodelling during sexual differentiation. BMC Biol 2023; 21:65. [PMID: 37013531 PMCID: PMC10071754 DOI: 10.1186/s12915-023-01568-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND The protozoan malaria parasite Plasmodium falciparum has a complex life cycle during which it needs to differentiate into multiple morphologically distinct life forms. A key process for transmission of the disease is the development of male and female gametocytes in the human blood, yet the mechanisms determining sexual dimorphism in these haploid, genetically identical sexual precursor cells remain largely unknown. To understand the epigenetic program underlying the differentiation of male and female gametocytes, we separated the two sexual forms by flow cytometry and performed RNAseq as well as comprehensive ChIPseq profiling of several histone variants and modifications. RESULTS We show that in female gametocytes the chromatin landscape is globally remodelled with respect to genome-wide patterns and combinatorial usage of histone variants and histone modifications. We identified sex specific differences in heterochromatin distribution, implicating exported proteins and ncRNAs in sex determination. Specifically in female gametocytes, the histone variants H2A.Z/H2B.Z were highly enriched in H3K9me3-associated heterochromatin. H3K27ac occupancy correlated with stage-specific gene expression, but in contrast to asexual parasites this was unlinked to H3K4me3 co-occupancy at promoters in female gametocytes. CONCLUSIONS Collectively, we defined novel combinatorial chromatin states differentially organising the genome in gametocytes and asexual parasites and unravelled fundamental, sex-specific differences in the epigenetic code. Our chromatin maps represent an important resource for future understanding of the mechanisms driving sexual differentiation in P. falciparum.
Collapse
Affiliation(s)
- Myriam D Jeninga
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Jingyi Tang
- Department of Medicine, University of Melbourne, Bio21 Institute, 30 Flemington Road, Parkville, VIC, 3052, Australia
| | - Shamista A Selvarajah
- Department of Medicine, University of Melbourne, Bio21 Institute, 30 Flemington Road, Parkville, VIC, 3052, Australia
| | - Alexander G Maier
- The Australian National University, Research School of Biology, 134 Linnaeus Way, Canberra, ACT, 2601, Australia
| | - Michael F Duffy
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute, 792 Elizabeth Street, Melbourne, VIC, 3000, Australia
- Bio21 Institute, 30 Flemington Road, Parkville, VIC, 3052, Australia
| | - Michaela Petter
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.
- Department of Medicine, University of Melbourne, Bio21 Institute, 30 Flemington Road, Parkville, VIC, 3052, Australia.
| |
Collapse
|
5
|
Shrestha S, Lucky AB, Brashear AM, Li X, Cui L, Miao J. Distinct Histone Post-translational Modifications during Plasmodium falciparum Gametocyte Development. J Proteome Res 2022; 21:1857-1867. [PMID: 35772009 PMCID: PMC9738646 DOI: 10.1021/acs.jproteome.2c00108] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Histones are the building units of nucleosomes, which constitute chromatin. Histone post-translational modifications (PTMs) play an essential role in epigenetic gene regulation. The Plasmodium falciparum genome encodes canonical and variant histones and a collection of conserved enzymes for histone PTMs and chromatin remodeling. Herein, we profiled the P. falciparum histone PTMs during the development of gametocytes, the obligatory stage for parasite transmission. Mass spectrometric analysis of histones extracted from the early, middle, and late stages of gametocytes identified 457 unique histone peptides with 90 PTMs, of which 50% were novel. The gametocyte histone PTMs display distinct patterns from asexual stages, with many new methylation sites in histones H3 and H3.3 (e.g., K14, K18, and K37). Quantitative analyses revealed a high abundance of acetylation in H3 and H4, mono-methylation of H3/H3.3 K37, and ubiquitination of H3BK112, suggesting that these PTMs play critical roles in gametocytes. Gametocyte histones also showed extensive and unique combinations of PTMs. These data indicate that the parasite harbors distinct transcription regulation mechanisms during gametocyte development and lay the foundation for further characterization of epigenetic regulation in the life cycle of the malaria parasite.
Collapse
Affiliation(s)
- Sony Shrestha
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Amuza Byaruhanga Lucky
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Awtum Marie Brashear
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Xiaolian Li
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States; Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida 33612, United States
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States; Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida 33612, United States
| |
Collapse
|
6
|
ApiAP2 Gene-Network Regulates Gametocytogenesis in Plasmodium Parasites. Cell Microbiol 2022. [DOI: 10.1155/2022/5796578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Malaria is a mosquito-borne infectious disease, caused by unicellular Apicomplexan protozoa of the genus Plasmodium. The sexual stage of Plasmodium is one of the most fascinating aspects of the Plasmodium life cycle, yet relatively less explored until now. The production of sexually fit gametocytes through gametocytogenesis is essential to the transmission of the Plasmodium parasite into an anopheline mosquito vector. Understanding how gametocytogenesis is regulated promotes the identification of novel drug targets and also the development of transmission-blocking vaccines that would help reduce the disease burden in endemic areas. Transcriptional regulation in Plasmodium parasites is primarily controlled by a family of twenty-seven Apicomplexan Apetela 2 (ApiAP2) genes which act in a cascade to enable the parasite to progress through its asexual replication as well as gametocytogenesis. Here, we review the latest progress made on members of the ApiAP2 family characterized as key players of the transcriptional machinery of gametocytes. Further, we will highlight the transcriptional regulation network of ApiAP2 genes at each stage of gametocytogenesis.
Collapse
|
7
|
van der Watt ME, Reader J, Birkholtz LM. Adapt or Die: Targeting Unique Transmission-Stage Biology for Malaria Elimination. Front Cell Infect Microbiol 2022; 12:901971. [PMID: 35755845 PMCID: PMC9218253 DOI: 10.3389/fcimb.2022.901971] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/06/2022] [Indexed: 12/25/2022] Open
Abstract
Plasmodium parasites have a complex life cycle that includes development in the human host as well as the Anopheles vector. Successful transmission of the parasite between its host and vector therefore requires the parasite to balance its investments in asexual replication and sexual reproduction, varying the frequency of sexual commitment to persist within the human host and generate future opportunities for transmission. The transmission window is extended further by the ability of stage V gametocytes to circulate in peripheral blood for weeks, whereas immature stage I to IV gametocytes sequester in the bone marrow and spleen until final maturation. Due to the low gametocyte numbers in blood circulation and with the ease of targeting such life cycle bottlenecks, transmission represents an efficient target for therapeutic intervention. The biological process of Plasmodium transmission is a multistage, multifaceted process and the past decade has seen a much deeper understanding of the molecular mechanisms and regulators involved. Clearly, specific and divergent processes are used during transmission compared to asexual proliferation, which both poses challenges but also opportunities for discovery of transmission-blocking antimalarials. This review therefore presents an update of our molecular understanding of gametocyte and gamete biology as well as the status of transmission-blocking activities of current antimalarials and lead development compounds. By defining the biological components associated with transmission, considerations for the development of new transmission-blocking drugs to target such untapped but unique biology is suggested as an important, main driver for transmission-blocking drug discovery.
Collapse
Affiliation(s)
- Mariëtte E van der Watt
- Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Janette Reader
- Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Lyn-Marié Birkholtz
- Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
8
|
Connacher J, von Grüning H, Birkholtz L. Histone Modification Landscapes as a Roadmap for Malaria Parasite Development. Front Cell Dev Biol 2022; 10:848797. [PMID: 35433676 PMCID: PMC9010790 DOI: 10.3389/fcell.2022.848797] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/04/2022] [Indexed: 12/26/2022] Open
Abstract
Plasmodium falciparum remains the deadliest parasite species in the world, responsible for 229 million cases of human malaria in 2019. The ability of the P. falciparum parasite to progress through multiple life cycle stages and thrive in diverse host and vector species hinges on sophisticated mechanisms of epigenetic regulation of gene expression. Emerging evidence indicates such epigenetic control exists in concentric layers, revolving around core histone post-translational modification (PTM) landscapes. Here, we provide a necessary update of recent epigenome research in malaria parasites, focusing specifically on the ability of dynamic histone PTM landscapes to orchestrate the divergent development and differentiation pathways in P. falciparum parasites. In addition to individual histone PTMs, we discuss recent findings that imply functional importance for combinatorial PTMs in P. falciparum parasites, representing an operational histone code. Finally, this review highlights the remaining gaps and provides strategies to address these to obtain a more thorough understanding of the histone modification landscapes that are at the center of epigenetic regulation in human malaria parasites.
Collapse
|
9
|
Jeanrenaud ACSN, Brooke BD, Oliver SV. Characterisation of the epigenetic architecture of the major malaria vector Anopheles arabiensis (Diptera: Culicidae) after treatment with epigenetic modulators and heavy metals. Acta Trop 2022; 226:106259. [PMID: 34843689 DOI: 10.1016/j.actatropica.2021.106259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022]
Abstract
Anopheles arabiensis (a member of the An. gambiae species complex) is a major vector of malaria in sub-Saharan Africa. Despite its disease vector status, there is currently a paucity of epigenetic information for this species. The aim this study was therefore to analyse global epigenetic markers and their response to metal exposure in insecticide susceptible and resistant laboratory strains of An. arabiensis. This was done using commercially available epigenetic marker quantification kits. In order to validate the efficacy of the kits, several kits were assessed to determine whether changes induced by known epigenetic modulators were detectable using these platforms. The efficacy of the dosages used were determined by examining the effect of the dosages used on insecticide resistant phenotypes. Upon confirmation that the dosages used were sufficient to induce a phenotypic change, the effect on epigenetic markers was assessed. Commercial kits were used to quantify 5-methylcysteine (5-mC) and 5-hydroxymethylcysteine (5-hmC) methylation in DNA, m6A methylation in mRNA as well as Histone Acetyl Transferase (HAT) activity. There was a marked difference in the phenotypic response in adult mosquitoes of the insecticide susceptible strain compared to that of its' resistant counterpart. For males and females of the resistant strain, exposure to nucleic acid modifying drugs typically increased their tolerance to insecticides. The patterns of changes in 5-mC methylation by epigenetic modulators was congruent with previous studies which quantified by mass spectrometry. The two strains differed in methylation patterns under control conditions and responded differentially to larval metal exposure. In the resistant strain, which previously was demonstrated to show increased detoxification enzyme activity and insecticide tolerance after the same treatment, the potential increase in transcriptional activity appeared to be modulated by reduced methylation and increased HAT activity. This study suggests that the commercial epigenetic quantification kits can be used to characterise phenotypic changes in An. arabiensis, and also shows that epigenetic regulation of the response to metal exposure is regulated at the DNA as opposed to the RNA level.
Collapse
Affiliation(s)
- Alexander C S N Jeanrenaud
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa; Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Basil D Brooke
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa; Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shüné V Oliver
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa; Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
10
|
von Grüning H, Coradin M, Mendoza MR, Reader J, Sidoli S, Garcia BA, Birkholtz LM. A dynamic and combinatorial histone code drives malaria parasite asexual and sexual development. Mol Cell Proteomics 2022; 21:100199. [PMID: 35051657 PMCID: PMC8941266 DOI: 10.1016/j.mcpro.2022.100199] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Histone posttranslational modifications (PTMs) frequently co-occur on the same chromatin domains or even in the same molecule. It is now established that these “histone codes” are the result of cross talk between enzymes that catalyze multiple PTMs with univocal readout as compared with these PTMs in isolation. Here, we performed a comprehensive identification and quantification of histone codes of the malaria parasite, Plasmodium falciparum. We used advanced quantitative middle-down proteomics to identify combinations of PTMs in both the proliferative, asexual stages and transmissible, sexual gametocyte stages of P. falciparum. We provide an updated, high-resolution compendium of 77 PTMs on H3 and H3.3, of which 34 are newly identified in P. falciparum. Coexisting PTMs with unique stage distinctions were identified, indicating that many of these combinatorial PTMs are associated with specific stages of the parasite life cycle. We focused on the code H3R17me2K18acK23ac for its unique presence in mature gametocytes; chromatin proteomics identified a gametocyte-specific SAGA-like effector complex including the transcription factor AP2-G2, which we tied to this specific histone code, as involved in regulating gene expression in mature gametocytes. Ultimately, this study unveils previously undiscovered histone PTMs and their functional relationship with coexisting partners. These results highlight that investigating chromatin regulation in the parasite using single histone PTM assays might overlook higher-order gene regulation for distinct proliferation and differentiation processes. First middle-down chromatin proteomics compendium of the malaria parasite, Plasmodium falciparum. Novel histone PTMs (including arginine methylation) in both asexual parasites and transmissible gametocytes. Histone PTM cross talk is dynamic life cycle stage stratified. Gametocytes rely on histone PTM connectivity to allow onward transmission. AP2-G2 is an important effector of H3K18acK23ac in mature gametocytes.
Collapse
Affiliation(s)
- Hilde von Grüning
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private bag X20, Hatfield, Pretoria, South Africa; Institute for Sustainable Malaria Control, University of Pretoria, Private bag X20, Hatfield, Pretoria, South Africa
| | - Mariel Coradin
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mariel R Mendoza
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private bag X20, Hatfield, Pretoria, South Africa
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Benjamin A Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private bag X20, Hatfield, Pretoria, South Africa; Institute for Sustainable Malaria Control, University of Pretoria, Private bag X20, Hatfield, Pretoria, South Africa.
| |
Collapse
|
11
|
Farhat DC, Hakimi MA. The developmental trajectories of Toxoplasma stem from an elaborate epigenetic rewiring. Trends Parasitol 2021; 38:37-53. [PMID: 34456144 DOI: 10.1016/j.pt.2021.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022]
Abstract
Toxoplasma gondii is considered to be one of the most successful parasitic pathogens. It owes this success to its flexibility in responding to signals emanating from the different environments it encounters during its multihost life cycle. The adaptability of this unicellular organism relies on highly coordinated and evolutionarily optimized developmental abilities that allow it to adopt the forms best suited to the requirements of each environment. Here we discuss recent outstanding studies that have uncovered how master regulators epigenetically regulate the cryptic process of sexual development and the transition to chronicity. We also highlight the molecular and technical advances that allow the field to embark on a new journey of epigenetic reprogramming of T. gondii development.
Collapse
Affiliation(s)
- Dayana C Farhat
- IAB, Team Host-Pathogen Interactions & Immunity to Infection, INSERM U1209, CNRS UMR5309, Grenoble Alpes University, 38700 Grenoble, France.
| | - Mohamed-Ali Hakimi
- IAB, Team Host-Pathogen Interactions & Immunity to Infection, INSERM U1209, CNRS UMR5309, Grenoble Alpes University, 38700 Grenoble, France.
| |
Collapse
|