1
|
Rados M, Landegger A, Schmutzler L, Rabidou K, Taschner-Mandl S, Fetahu IS. Natural killer cells in neuroblastoma: immunological insights and therapeutic perspectives. Cancer Metastasis Rev 2024; 43:1401-1417. [PMID: 39294470 PMCID: PMC11554946 DOI: 10.1007/s10555-024-10212-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
Natural killer (NK) cells have multifaceted roles within the complex tumor milieu. They are pivotal components of innate immunity and shape the dynamic landscape of tumor-immune cell interactions, and thus can be leveraged for use in therapeutic interventions. NK-based immunotherapies have had remarkable success in hematological malignancies, but these therapies are met with many challenges in solid tumors, including neuroblastoma (NB), a childhood tumor arising from the sympathetic nervous system. With a focus on NB, this review outlines the mechanisms employed by NK cells to recognize and eliminate malignant cells, delving into the dynamic relationship between ligand-receptor interactions, cytokines, and other molecules that facilitate the cross talk between NK and NB cells. We discuss the immunomodulatory functions of NK cells and the mechanisms that contribute to loss of this immunosurveillance in NB, with a focus on how this dynamic has been utilized in recent immunotherapy advancements for NB.
Collapse
Affiliation(s)
- Magdalena Rados
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | | | - Lukas Schmutzler
- Department of Otorhinolaryngology - Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Kimberlie Rabidou
- Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, USA
| | | | - Irfete S Fetahu
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria.
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Krishna S, Prajapati B, Seth P, Sinha S. Dickopff 1 inhibits cancer stem cell properties and promotes neuronal differentiation of human neuroblastoma cell line SH-SY5Y. IBRO Neurosci Rep 2024; 17:73-82. [PMID: 39021664 PMCID: PMC11253693 DOI: 10.1016/j.ibneur.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/24/2024] [Indexed: 07/20/2024] Open
Abstract
Neuroblastomas are pediatric tumors arising from undifferentiated cells of neural crest origin with stem cell-like characteristics. Dysregulation of Wnt/β-catenin signaling has been shown to be linked to the development of various tumors. Activated Wnt signaling results in β-catenin accumulation in the nucleus to support pro-neoplastic traits. DKK1, a secreted glycoprotein, is an inhibitor of Wnt signaling, and the addition of DKKI to the culture medium has been used to suppress the Wnt pathway. This study aimed to analyze the role of Dickopff-1 as a potential differentiating agent for the neuroblastoma cell line SH-SY5Y and neurospheres derived from it. The treatment of SH-5Y5Y derived neurospheres by DKK1 resulted in their disintegration and reduced proliferation markers like Ki67, PCNA. DKK1 treatment to the neurospheres also resulted in the loss of cancer stem cell markers like CD133, KIT and pluripotency markers like SOX2, OCT4, NANOG. DKK1 treatment caused reduction in mRNA expression of β-catenin and TCF genes like TCF4, TCF12. When the SH-SY5Y cancer cells were grown under differentiating conditions, DKKI caused neuronal differentiation by itself, and in synergy with retinoic acid. This was verified by the expression of markers like MAPT, DCX, GAP43, ENO2 and also with changes in neurite length. We concluded that Wnt inhibition, as exemplified by DKK1 treatment, is therefore a possible differentiating condition and also suppresses the proliferative and cancer stemness related properties of SH-SY5Y neuroblastoma cells.
Collapse
Affiliation(s)
| | - Bharat Prajapati
- National Brain Research Centre, Manesar, Gurugram, India
- Department of Medical Biochemistry and Cell Biology, The Sahlgrenska Academy, Institute of Biomedicine, Gothenburg, Sweden
| | - Pankaj Seth
- National Brain Research Centre, Manesar, Gurugram, India
| | - Subrata Sinha
- National Brain Research Centre, Manesar, Gurugram, India
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
3
|
Louault K, Blavier L, Lee MH, Kennedy RJ, Fernandez GE, Pawel BR, Asgharzadeh S, DeClerck YA. Nuclear factor-κB activation by transforming growth factor-β1 drives tumour microenvironment-mediated drug resistance in neuroblastoma. Br J Cancer 2024; 131:90-100. [PMID: 38806726 PMCID: PMC11231159 DOI: 10.1038/s41416-024-02686-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/26/2024] [Accepted: 04/08/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Intrinsic and extrinsic factors in the tumour microenvironment (TME) contribute to therapeutic resistance. Here we demonstrate that transforming growth factor (TGF)-β1 produced in the TME increased drug resistance of neuroblastoma (NB) cells. METHODS Human NB cell lines were tested in vitro for their sensitivity to Doxorubicin (DOX) and Etoposide (ETOP) in the presence of tumour-associated macrophages (TAM) and mesenchymal stromal cells/cancer-associated fibroblasts (MSC/CAF). These experiments were validated in xenotransplanted and primary tumour samples. RESULTS Drug resistance was associated with an increased expression of efflux transporter and anti-apoptotic proteins. Upregulation was dependent on activation of nuclear factor (NF)-κB by TGF-β-activated kinase (TAK1) and SMAD2. Resistance was reversed upon pharmacologic and genetic inhibitions of NF-κB, and TAK1/SMAD2. Interleukin-6, leukaemia inhibitory factor and oncostatin M were upregulated by this TGF-β/TAK1/NF-κB/SMAD2 signalling pathway contributing to drug resistance via an autocrine loop activating STAT3. An analysis of xenotransplanted NB tumours revealed an increased presence of phospho (p)-NF-κB in tumours co-injected with MSC/CAF and TAM, and these tumours failed to respond to Etoposide but responded if treated with a TGF-βR1/ALK5 inhibitor. Nuclear p-NF-κB was increased in patient-derived tumours rich in TME cells. CONCLUSIONS The data provides a novel insight into a targetable mechanism of environment-mediated drug resistance.
Collapse
Affiliation(s)
- Kévin Louault
- Cancer and Blood Diseases Institute, Department of Pediatrics, Children's Hospital Los Angeles and the University of Southern California, Los Angeles, CA, 90027, USA
| | - Laurence Blavier
- Cancer and Blood Diseases Institute, Department of Pediatrics, Children's Hospital Los Angeles and the University of Southern California, Los Angeles, CA, 90027, USA
| | - Men-Hua Lee
- Cancer and Blood Diseases Institute, Department of Pediatrics, Children's Hospital Los Angeles and the University of Southern California, Los Angeles, CA, 90027, USA
| | - Rebekah J Kennedy
- Cancer and Blood Diseases Institute, Department of Pediatrics, Children's Hospital Los Angeles and the University of Southern California, Los Angeles, CA, 90027, USA
| | - G Esteban Fernandez
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
| | - Bruce R Pawel
- Department of Pathology, and Laboratory Medicine, Children's Hospital Los Angeles and Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Shahab Asgharzadeh
- Cancer and Blood Diseases Institute, Department of Pediatrics, Children's Hospital Los Angeles and the University of Southern California, Los Angeles, CA, 90027, USA
- Department of Pathology, and Laboratory Medicine, Children's Hospital Los Angeles and Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Yves A DeClerck
- Cancer and Blood Diseases Institute, Department of Pediatrics, Children's Hospital Los Angeles and the University of Southern California, Los Angeles, CA, 90027, USA.
- Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
4
|
Chaudhry KA, Jacobi JJ, Gillard BM, Karasik E, Martin JC, da Silva Fernandes T, Hurley E, Feltri ML, Attwood KM, Twist CJ, Smiraglia DJ, Long MD, Bianchi-Smiraglia A. Aryl hydrocarbon receptor is a tumor promoter in MYCN-amplified neuroblastoma cells through suppression of differentiation. iScience 2023; 26:108303. [PMID: 38026169 PMCID: PMC10654598 DOI: 10.1016/j.isci.2023.108303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/25/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor in children. MYCN amplification is detected in almost half of high-risk cases and is associated with poorly differentiated tumors, poor patient prognosis and poor response to therapy, including retinoids. We identify the aryl hydrocarbon receptor (AhR) as a transcription factor promoting the growth and suppressing the differentiation of MYCN-amplified neuroblastoma. A neuroblastoma specific AhR transcriptional signature reveals an inverse correlation of AhR activity with patients' outcome, suggesting AhR activity is critical for disease progression. AhR modulates chromatin structures, reducing accessibility to regions responsive to retinoic acid. Genetic and pharmacological inhibition of AhR results in induction of differentiation. Importantly, AhR antagonism with clofazimine synergizes with retinoic acid in inducing differentiation both in vitro and in vivo. Thus, we propose AhR as a target for MYCN-amplified neuroblastoma and that its antagonism, combined with current standard-of-care, may result in a more durable response in patients.
Collapse
Affiliation(s)
- Kanita A. Chaudhry
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Justine J. Jacobi
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Bryan M. Gillard
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Ellen Karasik
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jeffrey C. Martin
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | | | - Edward Hurley
- Department of Biochemistry and Neurology, Institute for Myelin and Glia Exploration, State University of New York at Buffalo, Buffalo, NY, USA
| | - Maria Laura Feltri
- Department of Biochemistry and Neurology, Institute for Myelin and Glia Exploration, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Foundation I.R.C.C.S. Carlo Besta Neurological Institute Milan, Italy
| | - Kristopher M. Attwood
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Clare J. Twist
- Department of Pediatric Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Dominic J. Smiraglia
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Mark D. Long
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Anna Bianchi-Smiraglia
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
5
|
Roa Fuentes LA, Bloemen M, Carels CE, Wagener FA, Von den Hoff JW. Retinoic acid effects on in vitro palatal fusion and WNT signaling. Eur J Oral Sci 2022; 130:e12899. [PMID: 36303276 PMCID: PMC10092745 DOI: 10.1111/eos.12899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/06/2022] [Indexed: 12/13/2022]
Abstract
Retinoic acid is the main active vitamin A derivate and a key regulator of embryonic development. Excess of retinoic acid can disturb palate development in mice leading to cleft palate. WNT signaling is one of the main pathways in palate development. We evaluated the effects of retinoic acid on palate fusion and WNT signaling in in vitro explant cultures. Unfused palates from E13.5 mouse embryos were cultured for 4 days with 0.5 μM, 2 μM or without retinoic acid. Apoptosis, proliferation, WNT signaling and bone formation were analyzed by histology and quantitative PCR. Retinoic acid treatment with 0.5 and 2.0 μM reduced palate fusion from 84% (SD 6.8%) in the controls to 56% (SD 26%) and 16% (SD 19%), respectively. Additionally, 2 μM retinoic acid treatment increased Axin2 expression. Retinoic acid also increased the proliferation marker Pcna as well as the number of Ki-67-positive cells in the palate epithelium. At the same time, the WNT inhibitors Dkk1, Dkk3, Wif1 and Sfrp1 were downregulated at least two-fold. Retinoic acid also down-regulated Alpl and Col1a2 gene expression. Alkaline phosphatase (ALP) activity was notably reduced in the osteogenic areas of the retinoic acid- treated palates. Our data suggest that retinoic acid impairs palate fusion and bone formation by upregulation of WNT signaling.
Collapse
Affiliation(s)
- Laury Amelia Roa Fuentes
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands.,MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterial Engineering (IBE), Maastricht University, Maastricht, The Netherlands
| | - Marjon Bloemen
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Carine El Carels
- Department of Human Genetics, KU University Leuven, Leuven, Belgium
| | - Frank Adtg Wagener
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Johannes W Von den Hoff
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Hiyama Y, Yamaoka E, Fukazawa T, Kojima M, Sotomaru Y, Hiyama E. In Vitro Transfection of Up-Regulated Genes Identified in Favorable-Outcome Neuroblastoma into Cell Lines. Cells 2022; 11:cells11193171. [PMID: 36231133 PMCID: PMC9564278 DOI: 10.3390/cells11193171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 11/20/2022] Open
Abstract
We previously used microarrays to show that high expression of DHRS3, NROB1, and CYP26A1 predicts favorable NB outcomes. Here, we investigated whether expression of these genes was associated with suppression of NB cell (SK-N-SH, NB12, and TGW) growth. We assessed morphology and performed growth, colony-formation, and migration assays, as well as RNA sequencing. The effects of the transient expression of these genes were also assessed with a tetracycline-controlled expression (Tet-On) system. Gene overexpression reduced cell growth and induced morphological senescence. Gene-expression analysis identified pathways involving cellular senescence and cell adhesion. In these cells, transduced gene dropout occurred during passage, making long-term stable gene transfer difficult. Tet-On-induced gene expression caused more pronounced cell-morphology changes. Specifically, DHRS3 and NROB1 led to rapid inhibition and arrest of cell growth, though CYP26A1 did not affect cell-growth rate or cell cycle. DHRS3 arrested the cell cycle by interacting with the all-trans-retinol pathway and drove differentiation and senescence in tumors. Overexpression of these genes reduced the malignant grade of these cells. A new therapeutic strategy might be the induction of these genes, as they suppress the growth of high-risk neuroblastoma and lead to differentiation and senescence.
Collapse
Affiliation(s)
- Yoko Hiyama
- Biomedical Science Division, Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Emi Yamaoka
- Biomedical Science Division, Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Takahiro Fukazawa
- Biomedical Science Division, Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Masato Kojima
- Biomedical Science Division, Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8551, Japan
- Department of Pediatric Surgery, Hiroshima University Hospital, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Yusuke Sotomaru
- Biomedical Science Division, Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Eiso Hiyama
- Biomedical Science Division, Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8551, Japan
- Department of Pediatric Surgery, Hiroshima University Hospital, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8551, Japan
- Correspondence:
| |
Collapse
|
7
|
Arnaud-Sampaio VF, Bento CA, Glaser T, Adinolfi E, Ulrich H, Lameu C. P2X7 receptor isoform B is a key drug resistance mediator for neuroblastoma. Front Oncol 2022; 12:966404. [PMID: 36091161 PMCID: PMC9458077 DOI: 10.3389/fonc.2022.966404] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Drug resistance is a major challenge for all oncological treatments that involve the use of cytotoxic agents. Recent therapeutic alternatives cannot circumvent the ability of cancer cells to adapt or alter the natural selection of resistant cells, so the problem persists. In neuroblastoma, recurrence can occur in up to 50% of high-risk patients. Therefore, the identification of novel therapeutic targets capable of modulating survival or death following classical antitumor interventions is crucial to address this problem. In this study, we investigated the role of the P2X7 receptor in chemoresistance. Here, we elucidated the contributions of P2X7 receptor A and B isoforms to neuroblastoma chemoresistance, demonstrating that the B isoform favors resistance through a combination of mechanisms involving drug efflux via MRP-type transporters, resistance to retinoids, retaining cells in a stem-like phenotype, suppression of autophagy, and EMT induction, while the A isoform has opposite and complementary roles.
Collapse
Affiliation(s)
| | - Carolina Adriane Bento
- Biochemistry Department, Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Talita Glaser
- Biochemistry Department, Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Elena Adinolfi
- Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Henning Ulrich
- Biochemistry Department, Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Claudiana Lameu
- Biochemistry Department, Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP, Brazil
- *Correspondence: Claudiana Lameu,
| |
Collapse
|
8
|
Bar-Hai N, Ishay-Ronen D. Engaging plasticity: Differentiation therapy in solid tumors. Front Pharmacol 2022; 13:944773. [PMID: 36034865 PMCID: PMC9410762 DOI: 10.3389/fphar.2022.944773] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer is a systemic heterogeneous disease that can undergo several rounds of latency and activation. Tumor progression evolves by increasing diversity, adaptation to signals from the microenvironment and escape mechanisms from therapy. These dynamic processes indicate necessity for cell plasticity. Epithelial-mesenchymal transition (EMT) plays a major role in facilitating cell plasticity in solid tumors by inducing dedifferentiation and cell type transitions. These two practices, plasticity and dedifferentiation enhance tumor heterogeneity creating a key challenge in cancer treatment. In this review we will explore cancer cell plasticity and elaborate treatment modalities that aspire to overcome such dynamic processes in solid tumors. We will further discuss the therapeutic potential of utilizing enhanced cell plasticity for differentiation therapy.
Collapse
Affiliation(s)
- Neta Bar-Hai
- Cancer Research Center, Oncology Institute, Chaim Sheba Medical Center, Tel-Hashomer, Israel
- Affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dana Ishay-Ronen
- Cancer Research Center, Oncology Institute, Chaim Sheba Medical Center, Tel-Hashomer, Israel
- Affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Dana Ishay-Ronen,
| |
Collapse
|
9
|
Perri P, Ponzoni M, Corrias MV, Ceccherini I, Candiani S, Bachetti T. A Focus on Regulatory Networks Linking MicroRNAs, Transcription Factors and Target Genes in Neuroblastoma. Cancers (Basel) 2021; 13:5528. [PMID: 34771690 PMCID: PMC8582685 DOI: 10.3390/cancers13215528] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/17/2022] Open
Abstract
Neuroblastoma (NB) is a tumor of the peripheral sympathetic nervous system that substantially contributes to childhood cancer mortality. NB originates from neural crest cells (NCCs) undergoing a defective sympathetic neuronal differentiation and although the starting events leading to the development of NB remain to be fully elucidated, the master role of genetic alterations in key oncogenes has been ascertained: (1) amplification and/or over-expression of MYCN, which is strongly associated with tumor progression and invasion; (2) activating mutations, amplification and/or over-expression of ALK, which is involved in tumor initiation, angiogenesis and invasion; (3) amplification and/or over-expression of LIN28B, promoting proliferation and suppression of neuroblast differentiation; (4) mutations and/or over-expression of PHOX2B, which is involved in the regulation of NB differentiation, stemness maintenance, migration and metastasis. Moreover, altered microRNA (miRNA) expression takes part in generating pathogenetic networks, in which the regulatory loops among transcription factors, miRNAs and target genes lead to complex and aberrant oncogene expression that underlies the development of a tumor. In this review, we have focused on the circuitry linking the oncogenic transcription factors MYCN and PHOX2B with their transcriptional targets ALK and LIN28B and the tumor suppressor microRNAs let-7, miR-34 and miR-204, which should act as down-regulators of their expression. We have also looked at the physiologic role of these genetic and epigenetic determinants in NC development, as well as in terminal differentiation, with their pathogenic dysregulation leading to NB oncogenesis.
Collapse
Affiliation(s)
- Patrizia Perri
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.P.); (M.V.C.)
| | - Mirco Ponzoni
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.P.); (M.V.C.)
| | - Maria Valeria Corrias
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.P.); (M.V.C.)
| | - Isabella Ceccherini
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Simona Candiani
- Department of Earth, Environment and Life Sciences, University of Genoa, 16132 Genoa, Italy;
| | - Tiziana Bachetti
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
- Department of Earth, Environment and Life Sciences, University of Genoa, 16132 Genoa, Italy;
| |
Collapse
|
10
|
Farina AR, Cappabianca LA, Zelli V, Sebastiano M, Mackay AR. Mechanisms involved in selecting and maintaining neuroblastoma cancer stem cell populations, and perspectives for therapeutic targeting. World J Stem Cells 2021; 13:685-736. [PMID: 34367474 PMCID: PMC8316860 DOI: 10.4252/wjsc.v13.i7.685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/09/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Pediatric neuroblastomas (NBs) are heterogeneous, aggressive, therapy-resistant embryonal tumours that originate from cells of neural crest (NC) origin and in particular neuroblasts committed to the sympathoadrenal progenitor cell lineage. Therapeutic resistance, post-therapeutic relapse and subsequent metastatic NB progression are driven primarily by cancer stem cell (CSC)-like subpopulations, which through their self-renewing capacity, intermittent and slow cell cycles, drug-resistant and reversibly adaptive plastic phenotypes, represent the most important obstacle to improving therapeutic outcomes in unfavourable NBs. In this review, dedicated to NB CSCs and the prospects for their therapeutic eradication, we initiate with brief descriptions of the unique transient vertebrate embryonic NC structure and salient molecular protagonists involved NC induction, specification, epithelial to mesenchymal transition and migratory behaviour, in order to familiarise the reader with the embryonic cellular and molecular origins and background to NB. We follow this by introducing NB and the potential NC-derived stem/progenitor cell origins of NBs, before providing a comprehensive review of the salient molecules, signalling pathways, mechanisms, tumour microenvironmental and therapeutic conditions involved in promoting, selecting and maintaining NB CSC subpopulations, and that underpin their therapy-resistant, self-renewing metastatic behaviour. Finally, we review potential therapeutic strategies and future prospects for targeting and eradication of these bastions of NB therapeutic resistance, post-therapeutic relapse and metastatic progression.
Collapse
Affiliation(s)
- Antonietta Rosella Farina
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Lucia Annamaria Cappabianca
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Veronica Zelli
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Michela Sebastiano
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Andrew Reay Mackay
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy.
| |
Collapse
|
11
|
Krstic A, Konietzny A, Halasz M, Cain P, Oppermann U, Kolch W, Duffy DJ. A Chemo-Genomic Approach Identifies Diverse Epigenetic Therapeutic Vulnerabilities in MYCN-Amplified Neuroblastoma. Front Cell Dev Biol 2021; 9:612518. [PMID: 33968920 PMCID: PMC8097097 DOI: 10.3389/fcell.2021.612518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
Although a rare disease, neuroblastoma accounts for the highest proportion of childhood cancer deaths. There is a lack of recurrent somatic mutations in neuroblastoma embryonal tumours, suggesting a possible role for epigenetic alterations in driving this cancer. While an increasing number of reports suggest an association of MYCN with epigenetic machinery, the mechanisms of these interactions are poorly understood in the neuroblastoma setting. Utilising chemo-genomic approaches we revealed global MYCN-epigenetic interactions and identified numerous epigenetic proteins as MYCN targets. The epigenetic regulators HDAC2, CBX8 and CBP (CREBBP) were all MYCN target genes and also putative MYCN interactors. MYCN-related epigenetic genes included SMARCs, HDACs, SMYDs, BRDs and CREBBP. Expression levels of the majority of MYCN-related epigenetic genes showed predictive ability for neuroblastoma patient outcome. Furthermore, a compound library screen targeting epigenetic proteins revealed broad susceptibility of neuroblastoma cells to all classes of epigenetic regulators, belonging to families of bromodomains, HDACs, HATs, histone methyltransferases, DNA methyltransferases and lysin demethylases. Ninety-six percent of the compounds reduced MYCN-amplified neuroblastoma cell viability. We show that the C646 (CBP-bromodomain targeting compound) exhibits switch-like temporal and dose response behaviour and is effective at reducing neuroblastoma viability. Responsiveness correlates with MYCN expression, with MYCN-amplified cells being more susceptible to C646 treatment. Thus, exploiting the broad vulnerability of neuroblastoma cells to epigenetic targeting compounds represents an exciting strategy in neuroblastoma treatment, particularly for high-risk MYCN-amplified tumours.
Collapse
Affiliation(s)
- Aleksandar Krstic
- Systems Biology Ireland and Precision Oncology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | - Anja Konietzny
- Systems Biology Ireland and Precision Oncology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.,Centre for Molecular Neurobiology Hamburg (ZMNH), Emmy-Noether Group "Neuronal Protein Transport", University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Melinda Halasz
- Systems Biology Ireland and Precision Oncology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | - Peter Cain
- Botnar Research Centre, NIHR Oxford Biomedical Research Unit, Institute of Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.,Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom
| | - Udo Oppermann
- Botnar Research Centre, NIHR Oxford Biomedical Research Unit, Institute of Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.,Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom
| | - Walter Kolch
- Systems Biology Ireland and Precision Oncology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.,Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - David J Duffy
- Systems Biology Ireland and Precision Oncology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.,The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, United States.,Department of Biology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
12
|
Differentiating Neuroblastoma: A Systematic Review of the Retinoic Acid, Its Derivatives, and Synergistic Interactions. J Pers Med 2021; 11:jpm11030211. [PMID: 33809565 PMCID: PMC7999600 DOI: 10.3390/jpm11030211] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022] Open
Abstract
A neuroblastoma (NB) is a solid paediatric tumour arising from undifferentiated neuronal cells. Despite the recent advances in disease management and treatment, it remains one of the leading causes of childhood cancer deaths, thereby necessitating the development of new therapeutic agents and regimens. Retinoic acid (RA), a vitamin A derivative, is a promising agent that can induce differentiation in NB cells. Its isoform, 13-cis RA or isotretinoin, is used in NB therapy; however, its effectiveness is limited to treating a minimal residual disease as maintenance therapy. As such, research focuses on RA derivatives that might increase the anti-NB action or explores the potential synergy between RA and other classes of drugs, such as cellular processes mediators, epigenetic modifiers, and immune modulators. This review summarises the in vitro, in vivo, and clinical data of RA, its derivatives, and synergising compounds, thereby establishing the most promising RA derivatives and combinations of RA for further investigation.
Collapse
|
13
|
Multi-species transcriptome meta-analysis of the response to retinoic acid in vertebrates and comparative analysis of the effects of retinol and retinoic acid on gene expression in LMH cells. BMC Genomics 2021; 22:146. [PMID: 33653267 PMCID: PMC7923837 DOI: 10.1186/s12864-021-07451-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/18/2021] [Indexed: 12/21/2022] Open
Abstract
Background Retinol (RO) and its active metabolite retinoic acid (RA) are major regulators of gene expression in vertebrates and influence various processes like organ development, cell differentiation, and immune response. To characterize a general transcriptomic response to RA-exposure in vertebrates, independent of species- and tissue-specific effects, four publicly available RNA-Seq datasets from Homo sapiens, Mus musculus, and Xenopus laevis were analyzed. To increase species and cell-type diversity we generated RNA-seq data with chicken hepatocellular carcinoma (LMH) cells. Additionally, we compared the response of LMH cells to RA and RO at different time points. Results By conducting a transcriptome meta-analysis, we identified three retinoic acid response core clusters (RARCCs) consisting of 27 interacting proteins, seven of which have not been associated with retinoids yet. Comparison of the transcriptional response of LMH cells to RO and RA exposure at different time points led to the identification of non-coding RNAs (ncRNAs) that are only differentially expressed (DE) during the early response. Conclusions We propose that these RARCCs stand on top of a common regulatory RA hierarchy among vertebrates. Based on the protein sets included in these clusters we were able to identify an RA-response cluster, a control center type cluster, and a cluster that directs cell proliferation. Concerning the comparison of the cellular response to RA and RO we conclude that ncRNAs play an underestimated role in retinoid-mediated gene regulation. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07451-2.
Collapse
|
14
|
Yetsko K, Farrell JA, Blackburn NB, Whitmore L, Stammnitz MR, Whilde J, Eastman CB, Ramia DR, Thomas R, Krstic A, Linser P, Creer S, Carvalho G, Devlin MA, Nahvi N, Leandro AC, deMaar TW, Burkhalter B, Murchison EP, Schnitzler C, Duffy DJ. Molecular characterization of a marine turtle tumor epizootic, profiling external, internal and postsurgical regrowth tumors. Commun Biol 2021; 4:152. [PMID: 33526843 PMCID: PMC7851172 DOI: 10.1038/s42003-021-01656-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/31/2020] [Indexed: 01/30/2023] Open
Abstract
Sea turtle populations are under threat from an epizootic tumor disease (animal epidemic) known as fibropapillomatosis. Fibropapillomatosis continues to spread geographically, with prevalence of the disease also growing at many longer-affected sites globally. However, we do not yet understand the precise environmental, mutational and viral events driving fibropapillomatosis tumor formation and progression.Here we perform transcriptomic and immunohistochemical profiling of five fibropapillomatosis tumor types: external new, established and postsurgical regrowth tumors, and internal lung and kidney tumors. We reveal that internal tumors are molecularly distinct from the more common external tumors. However, they have a small number of conserved potentially therapeutically targetable molecular vulnerabilities in common, such as the MAPK, Wnt, TGFβ and TNF oncogenic signaling pathways. These conserved oncogenic drivers recapitulate remarkably well the core pan-cancer drivers responsible for human cancers. Fibropapillomatosis has been considered benign, but metastatic-related transcriptional signatures are strongly activated in kidney and established external tumors. Tumors in turtles with poor outcomes (died/euthanized) have genes associated with apoptosis and immune function suppressed, with these genes providing putative predictive biomarkers.Together, these results offer an improved understanding of fibropapillomatosis tumorigenesis and provide insights into the origins, inter-tumor relationships, and therapeutic treatment for this wildlife epizootic.
Collapse
Affiliation(s)
- Kelsey Yetsko
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Jessica A Farrell
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Nicholas B Blackburn
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
- South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Liam Whitmore
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
- Department of Biological Sciences, School of Natural Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Maximilian R Stammnitz
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Jenny Whilde
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Catherine B Eastman
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Devon Rollinson Ramia
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Rachel Thomas
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Aleksandar Krstic
- Systems Biology Ireland & Precision Oncology Ireland, School of Medicine, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Paul Linser
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Simon Creer
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Gary Carvalho
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | | | - Nina Nahvi
- Sea Turtle Inc., South Padre Island, TX, USA
| | - Ana Cristina Leandro
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
- South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | | | - Brooke Burkhalter
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Elizabeth P Murchison
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Christine Schnitzler
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - David J Duffy
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA.
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA.
- Department of Biological Sciences, School of Natural Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland.
- Systems Biology Ireland & Precision Oncology Ireland, School of Medicine, University College Dublin, Belfield, Dublin, 4, Ireland.
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK.
| |
Collapse
|
15
|
Xue VW, Chung JYF, Córdoba CAG, Cheung AHK, Kang W, Lam EWF, Leung KT, To KF, Lan HY, Tang PMK. Transforming Growth Factor-β: A Multifunctional Regulator of Cancer Immunity. Cancers (Basel) 2020. [PMID: 33114183 DOI: 10.3390/cancers12113099.pmid:33114183;pmcid:pmc7690808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Transforming growth factor-β (TGF-β) was originally identified as an anti-tumour cytokine. However, there is increasing evidence that it has important roles in the tumour microenvironment (TME) in facilitating cancer progression. TGF-β actively shapes the TME via modulating the host immunity. These actions are highly cell-type specific and complicated, involving both canonical and non-canonical pathways. In this review, we systemically update how TGF-β signalling acts as a checkpoint regulator for cancer immunomodulation. A better appreciation of the underlying pathogenic mechanisms at the molecular level can lead to the discovery of novel and more effective therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Vivian Weiwen Xue
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Jeff Yat-Fai Chung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Cristina Alexandra García Córdoba
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Alvin Ho-Kwan Cheung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Kam-Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
16
|
Transforming Growth Factor-β: A Multifunctional Regulator of Cancer Immunity. Cancers (Basel) 2020; 12:cancers12113099. [PMID: 33114183 PMCID: PMC7690808 DOI: 10.3390/cancers12113099] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Transforming growth factor beta (TGF-β) is a multifunctional cytokine that can restrict cancer onset but also promote cancer progression at late stages of cancer. The ability of TGF-β in producing diverse and sometimes opposing effects relies on its potential to control different cellular signalling and gene expression in distinct cell types, and environmental settings. The tumour promoting role of TGF-β is primarily mediated through its effects on the local tumour microenvironment (TME) of the cancer cells. In this review, we discuss the most recent research on the role and regulation of TGF-β, with a specific focus on its functions on promoting cancer progression through targeting different immune cells in the TME as well as its therapeutic perspectives. Abstract Transforming growth factor-β (TGF-β) was originally identified as an anti-tumour cytokine. However, there is increasing evidence that it has important roles in the tumour microenvironment (TME) in facilitating cancer progression. TGF-β actively shapes the TME via modulating the host immunity. These actions are highly cell-type specific and complicated, involving both canonical and non-canonical pathways. In this review, we systemically update how TGF-β signalling acts as a checkpoint regulator for cancer immunomodulation. A better appreciation of the underlying pathogenic mechanisms at the molecular level can lead to the discovery of novel and more effective therapeutic strategies for cancer.
Collapse
|
17
|
Phimmachanh M, Han JZR, O'Donnell YEI, Latham SL, Croucher DR. Histone Deacetylases and Histone Deacetylase Inhibitors in Neuroblastoma. Front Cell Dev Biol 2020; 8:578770. [PMID: 33117806 PMCID: PMC7575710 DOI: 10.3389/fcell.2020.578770] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022] Open
Abstract
Histone deacetylases (HDACs) are enzymes that play a key role in regulating gene expression by remodeling chromatin structure. An imbalance of histone acetylation caused by deregulated HDAC expression and activity is known to promote tumor progression in a number of tumor types, including neuroblastoma, the most common solid tumor in children. Consequently, the inhibition of HDACs has emerged as a potential strategy to reverse these aberrant epigenetic changes, and several classes of HDAC inhibitors (HDACi) have been shown to inhibit tumor proliferation, or induce differentiation, apoptosis and cell cycle arrest in neuroblastoma. Further, the combined use of HDACi with other chemotherapy agents, or radiotherapy, has shown promising pre-clinical results and various HDACi have progressed to different stages in clinical trials. Despite this, the effects of HDACi are multifaceted and more work needs to be done to unravel their specific mechanisms of actions. In this review, we discuss the functional role of HDACs in neuroblastoma and the potential of HDACi to be optimized for development and use in the clinic for treatment of patients with neuroblastoma.
Collapse
Affiliation(s)
- Monica Phimmachanh
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Jeremy Z R Han
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Yolande E I O'Donnell
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Sharissa L Latham
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW, Australia.,St Vincent's Hospital Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - David R Croucher
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW, Australia.,St Vincent's Hospital Clinical School, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
18
|
Maeshima R, Moulding D, Stoker AW, Hart SL. MYCN Silencing by RNAi Induces Neurogenesis and Suppresses Proliferation in Models of Neuroblastoma with Resistance to Retinoic Acid. Nucleic Acid Ther 2020; 30:237-248. [PMID: 32240058 PMCID: PMC7415885 DOI: 10.1089/nat.2019.0831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/02/2020] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma (NB) is the most common solid tumor in childhood. Twenty percent of patients display MYCN amplification, which indicates a very poor prognosis. MYCN is a highly specific target for an NB tumor therapy as MYCN expression is absent or very low in most normal cells, while, as a transcription factor, it regulates many essential cell activities in tumor cells. We aim to develop a therapy for NB based on MYCN silencing by short interfering RNA (siRNA) molecules, which can silence target genes by RNA interference (RNAi), a naturally occurring method of gene silencing. It has been shown previously that MYCN silencing can induce apoptosis and differentiation in MYCN amplified NB. In this article, we have demonstrated that siRNA-mediated silencing of MYCN in MYCN-amplified NB cells induced neurogenesis in NB cells, whereas retinoic acid (RA) treatment did not. RA can differentiate NB cells and is used for treatment of residual disease after surgery or chemotherapy, but resistance can develop. In addition, MYCN siRNA treatment suppressed growth in a MYCN-amplified NB cell line more than that by RA. Our result suggests that gene therapy using RNAi targeting MYCN can be a novel therapy toward MYCN-amplified NB that have complete or partial resistance toward RA.
Collapse
Affiliation(s)
- Ruhina Maeshima
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Dale Moulding
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Andrew W. Stoker
- Developmental Biology & Cancer Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Stephen L. Hart
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
19
|
Rotherham M, Nahar T, Goodman T, Telling N, Gates M, El Haj A. Magnetic Mechanoactivation of Wnt Signaling Augments Dopaminergic Differentiation of Neuronal Cells. ACTA ACUST UNITED AC 2020; 3:e1900091. [PMID: 32648650 DOI: 10.1002/adbi.201900091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/07/2019] [Indexed: 01/09/2023]
Abstract
Wnt signaling is a key developmental pathway that regulates dopaminergic progenitor cell proliferation and differentiation during neuronal development. This makes Wnt signaling an important therapeutic target for neurodegenerative conditions such as Parkinson's disease. Wnt signaling can be modulated using peptides such as UM206, which bind to the Wnt receptor Frizzled. Previous work has demonstrated remote activation of the Wnt pathway through Frizzled using peptide-functionalized magnetic nanoparticles (MNPs) with magnetic field stimulation. Using this technology, Wnt signaling is remotely activated in the neuronal cell line SH-SY5Y, and the phenotypic response to stimulation is assessed. Results indicate β-catenin translocalization and activation of TCF/LEF responsive transcription in response to MNP and magnetic fields, which result in dopaminergic marker expression when synergistically combined with differentiation factors retinoic acid and the phorbol ester phorbol 12-myristate 13-acetate. This approach is translated into ex vivo postnatal rat brain slices modeling the developing nigrostriatal pathway. Dopaminergic marker expression is maintained in MNP-labeled SH-SY5Y cells after injection and magnetic stimulation. These results demonstrate the translational value of remote control of signal transduction for controlling neuronal precursor cell behavior and highlight the potential applications for controlled cell differentiation as part of cell therapies for neurodegenerative disease.
Collapse
Affiliation(s)
- Michael Rotherham
- Institute for Science and Technology in Medicine, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent, ST4 7QB, UK
| | - Tasmin Nahar
- Institute for Science and Technology in Medicine, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent, ST4 7QB, UK
| | - Timothy Goodman
- Institute for Science and Technology in Medicine, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent, ST4 7QB, UK
| | - Neil Telling
- Institute for Science and Technology in Medicine, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent, ST4 7QB, UK
| | - Monte Gates
- Institute for Science and Technology in Medicine, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent, ST4 7QB, UK
| | - Alicia El Haj
- Institute for Science and Technology in Medicine, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent, ST4 7QB, UK.,Institute of Translational Medicine, University of Birmingham, Heritage Building, Mindelsohn Way, Edgbaston, Birmingham, B15 2TH, UK
| |
Collapse
|
20
|
Marayati R, Williams AP, Bownes LV, Quinn CH, Stewart JE, Mroczek-Musulman E, Atigadda VR, Beierle EA. Novel retinoic acid derivative induces differentiation and growth arrest in neuroblastoma. J Pediatr Surg 2020; 55:1072-1080. [PMID: 32164984 PMCID: PMC7299742 DOI: 10.1016/j.jpedsurg.2020.02.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Retinoic acid (RA) is a differentiating agent utilized as maintenance therapy for high-risk neuroblastoma (NB), but associated toxicities limit its use. We have previously shown that a non-toxic, novel rexinoid, 9-cis-UAB30 (UAB30), decreased NB cell proliferation and in vivo tumor growth. A second generation, mono-methylated compound, 6-Methyl-UAB30 (6-Me), has been recently designed having greater potency compared with UAB30. In the current study, we hypothesized that 6-Me would inhibit NB cell proliferation and survival and induce differentiation and cell-cycle arrest. METHODS Proliferation and viability were measured in four human NB cell lines following treatment with UAB30 or 6-Me. Cell-cycle was analyzed and tumor cell stemness was evaluated with extreme limiting dilution assays and immunoblotting for expression of stem cell markers. A xenograft murine model was utilized to study the effects of 6-Me in vivo. RESULTS Treatment with 6-Me led to decreased proliferation and viability, induced cell cycle arrest, and increased neurite outgrowth, indicating differentiation of surviving cells. Furthermore, treatment with 6-Me decreased tumorsphere formation and expression of stem cell markers. Finally, inhibition of tumor growth and increased animal survival was observed in vivo following treatment with 6-Me. CONCLUSION These results indicate a potential therapeutic role for this novel rexinoid in neuroblastoma treatment.
Collapse
Affiliation(s)
- Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Adele P. Williams
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Laura V. Bownes
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Colin H. Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jerry E. Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Venkatram R. Atigadda
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Elizabeth A. Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
21
|
Horvat L, Madunić J, Grubar M, Antica M, Matulić M. Induction of Urokinase Activity by Retinoic Acid in Two Cell Lines of Neuronal Origin. Biomedicines 2019; 7:biomedicines7030070. [PMID: 31547462 PMCID: PMC6784121 DOI: 10.3390/biomedicines7030070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 11/16/2022] Open
Abstract
Retinoic acid is one of the most well-known agents able to induce differentiation in several types of tumours. Unfortunately, most of the tumours are refractive to the differentiation cues. The aim of this investigation was to analyse the effects of prolonged treatment with retinoic acid on two cell lines of neural origin refractive to differentiation. Cells were also treated with retinoic acid in combination with a poly(ADP-ribosyl) polymerase (PARP) inhibitor because PARP1 is a known chromatin modulator and can influence the process of differentiation. The main methods comprised tumour cell line culturing and treatment; analysis of RNA and protein expression after cell treatment; as well as analysis of urokinase activity, migration, and proliferation. Both cell lines continued to proliferate under the prolonged treatment and showed increase in urokinase plasminogen activator activity. Analysis of gene expression and cell phenotype revealed different mechanisms, which only in neuroblastoma H4 cells could indicate the process of epithelial-mesenchymal transition. The data collected indicate that the activity of the urokinase plasminogen activator, although belonging to an extracellular protease, does not necessary lead to epithelial-mesenchymal reprogramming and increase in cell migration but can have different outcomes depending on the intracellular milieu.
Collapse
Affiliation(s)
- Luka Horvat
- Department of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102A, 10000 Zagreb, Croatia; (L.H.); (J.M.)
| | - Josip Madunić
- Department of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102A, 10000 Zagreb, Croatia; (L.H.); (J.M.)
| | - Martina Grubar
- Department of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102A, 10000 Zagreb, Croatia; (L.H.); (J.M.)
| | - Mariastefania Antica
- Division of Molecular Biology, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia;
| | - Maja Matulić
- Department of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102A, 10000 Zagreb, Croatia; (L.H.); (J.M.)
- Correspondence:
| |
Collapse
|
22
|
Bahmad HF, Chamaa F, Assi S, Chalhoub RM, Abou-Antoun T, Abou-Kheir W. Cancer Stem Cells in Neuroblastoma: Expanding the Therapeutic Frontier. Front Mol Neurosci 2019; 12:131. [PMID: 31191243 PMCID: PMC6546065 DOI: 10.3389/fnmol.2019.00131] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor often diagnosed in childhood. Despite intense efforts to develop a successful treatment, current available therapies are still challenged by high rates of resistance, recurrence and progression, most notably in advanced cases and highly malignant tumors. Emerging evidence proposes that this might be due to a subpopulation of cancer stem cells (CSCs) or tumor-initiating cells (TICs) found in the bulk of the tumor. Therefore, the development of more targeted therapy is highly dependent on the identification of the molecular signatures and genetic aberrations characteristic to this subpopulation of cells. This review aims at providing an overview of the key molecular players involved in NB CSCs and focuses on the experimental evidence from NB cell lines, patient-derived xenografts and primary tumors. It also provides some novel approaches of targeting multiple drivers governing the stemness of CSCs to achieve better anti-tumor effects than the currently used therapeutic agents.
Collapse
Affiliation(s)
- Hisham F Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Farah Chamaa
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Sahar Assi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Reda M Chalhoub
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Tamara Abou-Antoun
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
23
|
Duffy DJ, Martindale MQ. Perspectives on the expansion of human precision oncology and genomic approaches to sea turtle fibropapillomatosis. Commun Biol 2019; 2:54. [PMID: 30775456 PMCID: PMC6367449 DOI: 10.1038/s42003-019-0301-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 02/07/2023] Open
Abstract
Our recent Communications Biology research article revealed the genomic drivers and therapeutic vulnerabilities of sea turtle fibropapillomatosis tumors. Fibropapillomatosis is a debilitating tumorous disease afflicting populations of green sea turtles globally. While a virus is involved in the development of this disease, it is increasingly understood that the key trigger is linked to anthropogenic disturbances of the environment. The specific environmental co-trigger(s) has yet to be functionally confirmed. Here we outline the next steps required to advance our understanding of this enigmatic disease, to enable us to more effectively clinically combat it and to ultimately tackle its environmental co-trigger to halt and hopefully reverse the spread of fibropapillomatosis.
Collapse
Affiliation(s)
- David J. Duffy
- Department of Biological Sciences, School of Natural Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, V94 T9PX Ireland
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL 32080 USA
| | - Mark Q. Martindale
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL 32080 USA
| |
Collapse
|
24
|
Zhang Q, Zhang Q, Jiang X, Ye Y, Liao H, Zhu F, Yan J, Luo L, Tian L, Jiang C, Chen Y, Liang X, Sun Y. Collaborative ISL1/GATA3 interaction in controlling neuroblastoma oncogenic pathways overlapping with but distinct from MYCN. Theranostics 2019; 9:986-1000. [PMID: 30867811 PMCID: PMC6401405 DOI: 10.7150/thno.30199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/14/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Transcription factor ISL1 plays a critical role in sympathetic neurogenesis. Expression of ISL1 has been associated with neuroblastoma, a pediatric tumor derived from sympatho-adrenal progenitors, however the role of ISL1 in neuroblastoma remains unexplored. Method: Here, we knocked down ISL1 (KD) in SH-SY5Y neuroblastoma cells and performed RNA-seq and ISL1 ChIP-seq analyses. Results: Analyses of these data revealed that ISL1 acts upstream of multiple oncogenic genes and pathways essential for neuroblastoma proliferation and differentiation, including LMO1 and LIN28B. ISL1 promotes expression of a number of cell cycle associated genes, but represses differentiation associated genes including RA receptors and the downstream target genes EPAS1 and CDKN1A. Consequently, Knockdown of ISL1 inhibits neuroblastoma cell proliferation and migration in vitro and impedes tumor growth in vivo, and enhances neuronal differentiation by RA treatment. Furthermore, genome-wide mapping revealed a substantial co-occupancy of binding regions by ISL1 and GATA3, and ISL1 physically interacts with GATA3, and together they synergistically regulate the aforementioned oncogenic pathways. In addition, analyses of the roles of ISL1 and MYCN in MYCN-amplified and MYCN non-amplified neuroblastoma cells revealed an epistatic relationship between ISL1 and MYCN. ISL1 and MYCN function in parallel to regulate common yet distinct oncogenic pathways in neuroblastoma. Conclusion: Our study has demonstrated that ISL1 plays an essential role in neuroblastoma regulatory networks and may serve as a potential therapeutic target in neuroblastoma.
Collapse
|
25
|
Duffy DJ, Konietzny A, Krstic A, Mehta JP, Halasz M, Kolch W. Identification of a MYCN and Wnt-related VANGL2-ITLN1 fusion gene in neuroblastoma. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
26
|
Epigallocatechin-3-gallate and 6-OH-11-O-Hydroxyphenanthrene Limit BE(2)-C Neuroblastoma Cell Growth and Neurosphere Formation In Vitro. Nutrients 2018; 10:nu10091141. [PMID: 30135355 PMCID: PMC6164794 DOI: 10.3390/nu10091141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/09/2018] [Accepted: 08/20/2018] [Indexed: 12/25/2022] Open
Abstract
We conducted an in vitro study combining a rexinoid, 6-OH-11-O-hydroxyphenanthrene (IIF), and epigallocatechin-3-gallate (EGCG), which is the main catechin of green tea, on BE(2)-C, a neuroblastoma cell line representative of the high-risk group of patients. Neuroblastoma is the most common malignancy of childhood: high-risk patients, having N-MYC over-expression, undergo aggressive therapy and show high mortality or an increased risk of secondary malignancies. Retinoids are used in neuroblastoma therapy with incomplete success: the association of a second molecule might improve the efficacy. BE(2)-C cells were treated by EGCG and IIF, individually or in combination: cell viability, as evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, was reduced, EGCG+IIF being the most effective treatment. Apoptosis occurred and the EGCG+IIF treatment decreased N-MYC protein expression and molecular markers of invasion (MMP-2, MMP-9 and COX-2). Zymography demonstrated nearly 50% inhibition of MMP activity. When BE(2)-C cells were grown in non-adherent conditions to enrich the tumor-initiating cell population, BE(2)-C-spheres were obtained. After 48 h and 72 h treatment, EGCG+IIF limited BE(2)-C-sphere formation and elicited cell death with a reduction of N-MYC expression. We concluded that the association of EGCG to IIF might be applied without toxic effects to overcome the incomplete success of retinoid treatments in neuroblastoma patients.
Collapse
|
27
|
Duffy DJ, Schnitzler C, Karpinski L, Thomas R, Whilde J, Eastman C, Yang C, Krstic A, Rollinson D, Zirkelbach B, Yetsko K, Burkhalter B, Martindale MQ. Sea turtle fibropapilloma tumors share genomic drivers and therapeutic vulnerabilities with human cancers. Commun Biol 2018; 1:63. [PMID: 30271945 PMCID: PMC6123702 DOI: 10.1038/s42003-018-0059-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/26/2018] [Indexed: 12/31/2022] Open
Abstract
Wildlife populations are under intense anthropogenic pressures, with the geographic range of many species shrinking, dramatic reductions in population numbers and undisturbed habitats, and biodiversity loss. It is postulated that we are in the midst of a sixth (Anthropocene) mass extinction event, the first to be induced by human activity. Further, threatening vulnerable species is the increased rate of emerging diseases, another consequence of anthropogenic activities. Innovative approaches are required to help maintain healthy populations until the chronic underlying causes of these issues can be addressed. Fibropapillomatosis in sea turtles is one such wildlife disease. Here, we applied precision-medicine-based approaches to profile fibropapillomatosis tumors to better understand their biology, identify novel therapeutics, and gain insights into viral and environmental triggers for fibropapillomatosis. We show that fibropapillomatosis tumors share genetic vulnerabilities with human cancer types, revealing that they are amenable to treatment with human anti-cancer therapeutics. David Duffy et al. use a precision-medicine-based approach to study fibropapillomatosis tumors in sea turtles to identify environmental triggers and potential therapeutics. They show that these tumors share genetic similarities with human cancer types, and may be treatable using human anti-cancer therapies.
Collapse
Affiliation(s)
- David J Duffy
- The Whitney Laboratory for Marine Bioscience, Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA. .,Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK. .,Department of Biological Sciences, School of Natural Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland.
| | - Christine Schnitzler
- The Whitney Laboratory for Marine Bioscience, Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA.,Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Lorraine Karpinski
- The Turtle Hospital, 2396 Overseas Highway, Marathon, FL, 33050, USA.,Pinecrest Veterinary Hospital, 12125 South Dixie Highway, Pinecrest, FL, 33156, USA
| | - Rachel Thomas
- The Whitney Laboratory for Marine Bioscience, Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Jenny Whilde
- The Whitney Laboratory for Marine Bioscience, Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Catherine Eastman
- The Whitney Laboratory for Marine Bioscience, Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Calvin Yang
- The Whitney Laboratory for Marine Bioscience, Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Aleksandar Krstic
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Devon Rollinson
- The Whitney Laboratory for Marine Bioscience, Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Bette Zirkelbach
- The Turtle Hospital, 2396 Overseas Highway, Marathon, FL, 33050, USA
| | - Kelsey Yetsko
- The Whitney Laboratory for Marine Bioscience, Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Brooke Burkhalter
- The Whitney Laboratory for Marine Bioscience, Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Mark Q Martindale
- The Whitney Laboratory for Marine Bioscience, Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA.,Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
28
|
Lochmann TL, Powell KM, Ham J, Floros KV, Heisey DAR, Kurupi RIJ, Calbert ML, Ghotra MS, Greninger P, Dozmorov M, Gowda M, Souers AJ, Reynolds CP, Benes CH, Faber AC. Targeted inhibition of histone H3K27 demethylation is effective in high-risk neuroblastoma. Sci Transl Med 2018; 10:eaao4680. [PMID: 29769286 PMCID: PMC6200133 DOI: 10.1126/scitranslmed.aao4680] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/18/2018] [Accepted: 04/20/2018] [Indexed: 12/17/2022]
Abstract
High-risk neuroblastoma is often distinguished by amplification of MYCN and loss of differentiation potential. We performed high-throughput drug screening of epigenetic-targeted therapies across a large and diverse tumor cell line panel and uncovered the hypersensitivity of neuroblastoma cells to GSK-J4, a small-molecule dual inhibitor of lysine 27 of histone 3 (H3K27) demethylases ubiquitously transcribed tetratricopeptide repeat, X chromosome (UTX), and histone demethylase Jumonji D3 (JMJD3). Mechanistically, GSK-J4 induced neuroblastoma differentiation and endoplasmic reticulum (ER) stress, with accompanying up-regulation of p53 up-regulated modulator of apoptosis (PUMA) and induction of cell death. Retinoic acid (RA)-resistant neuroblastoma cells were sensitive to GSK-J4. In addition, GSK-J4 was effective at blocking the growth of chemorefractory and patient-derived xenograft models of high-risk neuroblastoma in vivo. Furthermore, GSK-J4 and RA combination increased differentiation and ER stress over GSK-J4 effects and limited the growth of neuroblastomas resistant to either drug alone. In MYCN-amplified neuroblastoma, PUMA induction by GSK-J4 sensitized tumors to the B cell lymphoma 2 (BCL-2) inhibitor venetoclax, demonstrating that epigenetic-targeted therapies and BCL-2 homology domain 3 mimetics can be rationally combined to treat this high-risk subset of neuroblastoma. Therefore, H3K27 demethylation inhibition is a promising therapeutic target to treat high-risk neuroblastoma, and H3K27 demethylation can be part of rational combination therapies to induce robust antineuroblastoma activity.
Collapse
Affiliation(s)
- Timothy L Lochmann
- Virginia Commonwealth University Philips Institute, School of Dentistry and Massey Cancer Center, Richmond, VA 23298, USA
| | - Krista M Powell
- Virginia Commonwealth University Philips Institute, School of Dentistry and Massey Cancer Center, Richmond, VA 23298, USA
| | - Jungoh Ham
- Virginia Commonwealth University Philips Institute, School of Dentistry and Massey Cancer Center, Richmond, VA 23298, USA
| | - Konstantinos V Floros
- Virginia Commonwealth University Philips Institute, School of Dentistry and Massey Cancer Center, Richmond, VA 23298, USA
| | - Daniel A R Heisey
- Virginia Commonwealth University Philips Institute, School of Dentistry and Massey Cancer Center, Richmond, VA 23298, USA
| | - Richard I J Kurupi
- Virginia Commonwealth University Philips Institute, School of Dentistry and Massey Cancer Center, Richmond, VA 23298, USA
| | - Marissa L Calbert
- Virginia Commonwealth University Philips Institute, School of Dentistry and Massey Cancer Center, Richmond, VA 23298, USA
| | - Maninderjit S Ghotra
- Virginia Commonwealth University Philips Institute, School of Dentistry and Massey Cancer Center, Richmond, VA 23298, USA
| | - Patricia Greninger
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Mikhail Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Madhu Gowda
- Division of Pediatric Hematology, Oncology, and Stem Cell Transplantation, Children's Hospital of Richmond at Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | - C Patrick Reynolds
- Cancer Center, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX 79430, USA
| | - Cyril H Benes
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| | - Anthony C Faber
- Virginia Commonwealth University Philips Institute, School of Dentistry and Massey Cancer Center, Richmond, VA 23298, USA.
| |
Collapse
|
29
|
Becker J, Wilting J. WNT signaling, the development of the sympathoadrenal-paraganglionic system and neuroblastoma. Cell Mol Life Sci 2018; 75:1057-1070. [PMID: 29058015 PMCID: PMC5814469 DOI: 10.1007/s00018-017-2685-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/22/2017] [Accepted: 10/11/2017] [Indexed: 12/04/2022]
Abstract
Neuroblastoma (NB) is a tumor of the sympathoadrenal system arising in children under 15 years of age. In Germany, NB accounts for 7% of childhood cancer cases, but 11% of cancer deaths. It originates from highly migratory progenitor cells that leave the dorsal neural tube and contribute neurons and glial cells to sympathetic ganglia, and chromaffin and supportive cells to the adrenal medulla and paraganglia. Clinically, histologically and molecularly, NBs present as extremely heterogeneous, ranging from very good to very poor prognosis. The etiology of NB still remains unclear and needs to be elucidated, however, aberrant auto- and paracrine embryonic cell communications seem to be likely candidates to initiate or facilitate the emergence, progression and regression of NB. The wingless-type MMTV integration site (WNT) family of proteins represents an evolutionary highly conserved signaling system that orchestrates embryogenesis. At least 19 ligands in the human, numerous receptors and co-receptors are known, which control not only proliferation, but also cell polarity, migration and differentiation. Here we seek to interconnect aspects of WNT signaling with sympathoadrenal and paraganglionic development to define new WNT signaling cues in the etiology and progression of NB.
Collapse
Affiliation(s)
- Jürgen Becker
- Institute of Anatomy and Cell Biology, University Medical School Göttingen, 37075, Göttingen, Germany.
| | - Jörg Wilting
- Institute of Anatomy and Cell Biology, University Medical School Göttingen, 37075, Göttingen, Germany
| |
Collapse
|