1
|
Guan H, Zhao S, Li J, Wang Y, Niu P, Zhang Y, Zhang Y, Fang X, Miao R, Tian J. Exploring the design of clinical research studies on the efficacy mechanisms in type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2024; 15:1363877. [PMID: 39371930 PMCID: PMC11449758 DOI: 10.3389/fendo.2024.1363877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/23/2024] [Indexed: 10/08/2024] Open
Abstract
This review examines the complexities of Type 2 Diabetes Mellitus (T2DM), focusing on the critical role of integrating omics technologies with traditional experimental methods. It underscores the advancements in understanding the genetic diversity of T2DM and emphasizes the evolution towards personalized treatment modalities. The paper analyzes a variety of omics approaches, including genomics, methylation, transcriptomics, proteomics, metabolomics, and intestinal microbiomics, delineating their substantial contributions to deciphering the multifaceted mechanisms underlying T2DM. Furthermore, the review highlights the indispensable role of non-omics experimental techniques in comprehending and managing T2DM, advocating for their integration in the development of tailored medicine and precision treatment strategies. By identifying existing research gaps and suggesting future research trajectories, the review underscores the necessity for a comprehensive, multidisciplinary approach. This approach synergistically combines clinical insights with cutting-edge biotechnologies, aiming to refine the management and therapeutic interventions of T2DM, and ultimately enhancing patient outcomes. This synthesis of knowledge and methodologies paves the way for innovative advancements in T2DM research, fostering a deeper understanding and more effective treatment of this complex condition.
Collapse
Affiliation(s)
- Huifang Guan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Shuang Zhao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jiarui Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Ying Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Ping Niu
- Department of Encephalopathy, The Affiliated Hospital of Changchun university of Chinese Medicine, Jilin, China
| | - Yuxin Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanjiao Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinyi Fang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Das SK, Comeau ME, Langefeld CD. Metaboepigenetic regulation of gene expression in obesity and insulin resistance. Metabolomics 2024; 20:91. [PMID: 39096438 DOI: 10.1007/s11306-024-02159-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Abstract
INTRODUCTION Variation in DNA methylation (DNAm) in adipose tissue is associated with the pathogenesis of obesity and insulin resistance. The activity of enzymes involved in altering DNAm levels is dependent on several metabolite cofactors. OBJECTIVES To understand the role of metabolites as mechanistic regulators of epigenetic marks, we tested the association between selected plasma metabolites and DNAm levels in the adipose tissue of African Americans. METHODS In the AAGMEx cohort (N = 256), plasma levels of metabolites were measured by untargeted liquid chromatography-mass spectrometry; adipose tissue DNAm and transcript levels were measured by reduced representation bisulfite sequencing, and expression microarray, respectively. RESULTS Among the 21 one-carbon metabolism pathway metabolites evaluated, six were associated with gluco-metabolic traits (PFDR < 0.05, for BMI, SI, or Matsuda index) in AAGMEx. Methylation levels of 196, 116, and 180 CpG-sites were associated (P < 0.0001) with S-adenosylhomocysteine (SAH), cystine, and hypotaurine, respectively. Cis-expression quantitative trait methylation (cis eQTM) analyses suggested the role of metabolite-level-associated CpG sites in regulating the expression of adipose tissue transcripts, including genes in G-protein coupled receptor signaling pathway. Plasma SAH level-associated CpG sites chr19:3403712 and chr19:3403735 were also associated with the expression of G-protein subunit alpha 15 (GNA15) in adipose. The expression of GNA15 was significantly correlated with BMI (β = 1.87, P = 1.9 × 10-16) and SI (β = -1.61, P = 2.49 × 10-5). CONCLUSION Our study suggests that a subset of metabolites modulates the methylation levels of CpG sites in specific loci and, in turn, regulates the expression of transcripts involved in obesity and insulin resistance.
Collapse
Affiliation(s)
- Swapan K Das
- Department of Internal Medicine, Section of Endocrinology and Metabolism, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
| | - Mary E Comeau
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Carl D Langefeld
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
3
|
Domínguez-Barragán J, Fernández-Sanlés A, Hernáez Á, Llauradó-Pont J, Marrugat J, Robinson O, Tzoulaki I, Elosua R, Lassale C. Blood DNA methylation signature of diet quality and association with cardiometabolic traits. Eur J Prev Cardiol 2024; 31:191-202. [PMID: 37793095 PMCID: PMC10809172 DOI: 10.1093/eurjpc/zwad317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/06/2023]
Abstract
AIMS Diet quality might influence cardiometabolic health through epigenetic changes, but this has been little investigated in adults. Our aims were to identify cytosine-phosphate-guanine (CpG) dinucleotides associated with diet quality by conducting an epigenome-wide association study (EWAS) based on blood DNA methylation (DNAm) and to assess how diet-related CpGs associate with inherited susceptibility to cardiometabolic traits: body mass index (BMI), systolic blood pressure (SBP), triglycerides, type 2 diabetes (T2D), and coronary heart disease (CHD). METHODS AND RESULTS Meta-EWAS including 5274 participants in four cohorts from Spain, the USA, and the UK. We derived three dietary scores (exposures) to measure adherence to a Mediterranean diet, to a healthy plant-based diet, and to the Dietary Approaches to Stop Hypertension. Blood DNAm (outcome) was assessed with the Infinium arrays Human Methylation 450K BeadChip and MethylationEPIC BeadChip. For each diet score, we performed linear EWAS adjusted for age, sex, blood cells, smoking and technical variables, and BMI in a second set of models. We also conducted Mendelian randomization analyses to assess the potential causal relationship between diet-related CpGs and cardiometabolic traits. We found 18 differentially methylated CpGs associated with dietary scores (P < 1.08 × 10-7; Bonferroni correction), of which 12 were previously associated with cardiometabolic traits. Enrichment analysis revealed overrepresentation of diet-associated genes in pathways involved in inflammation and cardiovascular disease. Mendelian randomization analyses suggested that genetically determined methylation levels corresponding to lower diet quality at cg02079413 (SNORA54), cg02107842 (MAST4), and cg23761815 (SLC29A3) were causally associated with higher BMI and at cg05399785 (WDR8) with greater SBP, and methylation levels associated with higher diet quality at cg00711496 (PRMT1) with lower BMI, T2D risk, and CHD risk and at cg0557921 (AHRR) with lower CHD risk. CONCLUSION Diet quality in adults was related to differential methylation in blood at 18 CpGs, some of which related to cardiometabolic health.
Collapse
Affiliation(s)
- Jorge Domínguez-Barragán
- Hospital del Mar Research Institute (IMIM), Programme of Epidemiology and Public Health, Dr Aiguader, 88, 08003 Barcelona, Spain
| | - Alba Fernández-Sanlés
- MRC Unit for Lifelong Health and Ageing, University College London, London WC1E 7HB, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Álvaro Hernáez
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo 0463, Norway
- Blanquerna School of Health Sciences, Universitat Ramon Llull, 08025 Barcelona, Spain
- Consortium for Biomedical Research—Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Monforte de Lemos 3-5, 08029 Madrid, Spain
| | - Joana Llauradó-Pont
- Barcelona Institute of Global Health (ISGlobal), Dr Aiguader 88, 08003, Barcelona, Spain
| | - Jaume Marrugat
- Hospital del Mar Research Institute (IMIM), Programme of Epidemiology and Public Health, Dr Aiguader, 88, 08003 Barcelona, Spain
- Consortium for Biomedical Research—Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Oliver Robinson
- μedical Research Council Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Ioanna Tzoulaki
- Centre for Systems Biology, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Roberto Elosua
- Hospital del Mar Research Institute (IMIM), Programme of Epidemiology and Public Health, Dr Aiguader, 88, 08003 Barcelona, Spain
- Consortium for Biomedical Research—Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Medicine, University of Vic—Central University of Catalunya, Ctra. de Roda, 70, 08500 Vic, Spain
| | - Camille Lassale
- Hospital del Mar Research Institute (IMIM), Programme of Epidemiology and Public Health, Dr Aiguader, 88, 08003 Barcelona, Spain
- Consortium for Biomedical Research—Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Monforte de Lemos 3-5, 08029 Madrid, Spain
- Barcelona Institute of Global Health (ISGlobal), Dr Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003, Barcelona, Spain
| |
Collapse
|
4
|
Costeira R, Evangelista L, Wilson R, Yan X, Hellbach F, Sinke L, Christiansen C, Villicaña S, Masachs OM, Tsai PC, Mangino M, Menni C, Berry SE, Beekman M, van Heemst D, Slagboom PE, Heijmans BT, Suhre K, Kastenmüller G, Gieger C, Peters A, Small KS, Linseisen J, Waldenberger M, Bell JT. Metabolomic biomarkers of habitual B vitamin intakes unveil novel differentially methylated positions in the human epigenome. Clin Epigenetics 2023; 15:166. [PMID: 37858220 PMCID: PMC10588110 DOI: 10.1186/s13148-023-01578-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND B vitamins such as folate (B9), B6, and B12 are key in one carbon metabolism, which generates methyl donors for DNA methylation. Several studies have linked differential methylation to self-reported intakes of folate and B12, but these estimates can be imprecise, while metabolomic biomarkers can offer an objective assessment of dietary intakes. We explored blood metabolomic biomarkers of folate and vitamins B6 and B12, to carry out epigenome-wide analyses across up to three European cohorts. Associations between self-reported habitual daily B vitamin intakes and 756 metabolites (Metabolon Inc.) were assessed in serum samples from 1064 UK participants from the TwinsUK cohort. The identified B vitamin metabolomic biomarkers were then used in epigenome-wide association tests with fasting blood DNA methylation levels at 430,768 sites from the Infinium HumanMethylation450 BeadChip in blood samples from 2182 European participants from the TwinsUK and KORA cohorts. Candidate signals were explored for metabolite associations with gene expression levels in a subset of the TwinsUK sample (n = 297). Metabolomic biomarker epigenetic associations were also compared with epigenetic associations of self-reported habitual B vitamin intakes in samples from 2294 European participants. RESULTS Eighteen metabolites were associated with B vitamin intakes after correction for multiple testing (Bonferroni-adj. p < 0.05), of which 7 metabolites were available in both cohorts and tested for epigenome-wide association. Three metabolites - pipecolate (metabolomic biomarker of B6 and folate intakes), pyridoxate (marker of B6 and folate) and docosahexaenoate (DHA, marker of B6) - were associated with 10, 3 and 1 differentially methylated positions (DMPs), respectively. The strongest association was observed between DHA and DMP cg03440556 in the SCD gene (effect = 0.093 ± 0.016, p = 4.07E-09). Pyridoxate, a catabolic product of vitamin B6, was inversely associated with CpG methylation near the SLC1A5 gene promoter region (cg02711608 and cg22304262) and with SLC7A11 (cg06690548), but not with corresponding changes in gene expression levels. The self-reported intake of folate and vitamin B6 had consistent but non-significant associations with the epigenetic signals. CONCLUSION Metabolomic biomarkers are a valuable approach to investigate the effects of dietary B vitamin intake on the human epigenome.
Collapse
Affiliation(s)
- Ricardo Costeira
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK.
| | - Laila Evangelista
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - Rory Wilson
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Xinyu Yan
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - Fabian Hellbach
- Epidemiology, Medical Faculty, University Augsburg, University Hospital Augsburg, 86156, Augsburg, Germany
| | - Lucy Sinke
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Colette Christiansen
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - Sergio Villicaña
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - Olatz M Masachs
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - Pei-Chien Tsai
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK
- Department of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - Sarah E Berry
- Department of Nutritional Sciences, King's College London, London, SE1 9NH, UK
| | - Marian Beekman
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Diana van Heemst
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - P Eline Slagboom
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Bastiaan T Heijmans
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Karsten Suhre
- Department of Biophysics and Physiology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Christian Gieger
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
- German Research Center for Cardiovascular Disease (DZHK), Partner Site Munich Heart Alliance, 80802, Munich, Germany
| | - Annette Peters
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
- German Research Center for Cardiovascular Disease (DZHK), Partner Site Munich Heart Alliance, 80802, Munich, Germany
- Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Ludwig-Maximilians-Universität München, 81377, Munich, Germany
| | - Kerrin S Small
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - Jakob Linseisen
- Epidemiology, Medical Faculty, University Augsburg, University Hospital Augsburg, 86156, Augsburg, Germany
- Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Ludwig-Maximilians-Universität München, 81377, Munich, Germany
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
- German Research Center for Cardiovascular Disease (DZHK), Partner Site Munich Heart Alliance, 80802, Munich, Germany
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK.
| |
Collapse
|
5
|
McAllan L, Baranasic D, Villicaña S, Brown S, Zhang W, Lehne B, Adamo M, Jenkinson A, Elkalaawy M, Mohammadi B, Hashemi M, Fernandes N, Lambie N, Williams R, Christiansen C, Yang Y, Zudina L, Lagou V, Tan S, Castillo-Fernandez J, King JWD, Soong R, Elliott P, Scott J, Prokopenko I, Cebola I, Loh M, Lenhard B, Batterham RL, Bell JT, Chambers JC, Kooner JS, Scott WR. Integrative genomic analyses in adipocytes implicate DNA methylation in human obesity and diabetes. Nat Commun 2023; 14:2784. [PMID: 37188674 PMCID: PMC10185556 DOI: 10.1038/s41467-023-38439-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/03/2023] [Indexed: 05/17/2023] Open
Abstract
DNA methylation variations are prevalent in human obesity but evidence of a causative role in disease pathogenesis is limited. Here, we combine epigenome-wide association and integrative genomics to investigate the impact of adipocyte DNA methylation variations in human obesity. We discover extensive DNA methylation changes that are robustly associated with obesity (N = 190 samples, 691 loci in subcutaneous and 173 loci in visceral adipocytes, P < 1 × 10-7). We connect obesity-associated methylation variations to transcriptomic changes at >500 target genes, and identify putative methylation-transcription factor interactions. Through Mendelian Randomisation, we infer causal effects of methylation on obesity and obesity-induced metabolic disturbances at 59 independent loci. Targeted methylation sequencing, CRISPR-activation and gene silencing in adipocytes, further identifies regional methylation variations, underlying regulatory elements and novel cellular metabolic effects. Our results indicate DNA methylation is an important determinant of human obesity and its metabolic complications, and reveal mechanisms through which altered methylation may impact adipocyte functions.
Collapse
Affiliation(s)
- Liam McAllan
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
| | - Damir Baranasic
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
| | - Sergio Villicaña
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Scarlett Brown
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, Middlesex, UB1 3HW, UK
| | - Benjamin Lehne
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
| | - Marco Adamo
- UCLH Bariatric Centre for Weight Loss, Weight Management and Metabolic and Endocrine Surgery, University College London Hospitals, Ground Floor West Wing, 250 Euston Road, London, NW1 2PG, UK
| | - Andrew Jenkinson
- UCLH Bariatric Centre for Weight Loss, Weight Management and Metabolic and Endocrine Surgery, University College London Hospitals, Ground Floor West Wing, 250 Euston Road, London, NW1 2PG, UK
| | - Mohamed Elkalaawy
- UCLH Bariatric Centre for Weight Loss, Weight Management and Metabolic and Endocrine Surgery, University College London Hospitals, Ground Floor West Wing, 250 Euston Road, London, NW1 2PG, UK
| | - Borzoueh Mohammadi
- UCLH Bariatric Centre for Weight Loss, Weight Management and Metabolic and Endocrine Surgery, University College London Hospitals, Ground Floor West Wing, 250 Euston Road, London, NW1 2PG, UK
| | - Majid Hashemi
- UCLH Bariatric Centre for Weight Loss, Weight Management and Metabolic and Endocrine Surgery, University College London Hospitals, Ground Floor West Wing, 250 Euston Road, London, NW1 2PG, UK
| | - Nadia Fernandes
- Imperial BRC Genomics Facility, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Nathalie Lambie
- Imperial BRC Genomics Facility, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Richard Williams
- Imperial BRC Genomics Facility, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Colette Christiansen
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- School of Mathematics and Statistics, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, UK
| | - Youwen Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
- School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, King's College London British Heart Foundation Centre of Excellence, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Liudmila Zudina
- Department of Clinical & Experimental Medicine, University of Surrey, Guildford, UK
| | - Vasiliki Lagou
- Department of Microbiology and Immunology, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Sili Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | | | - James W D King
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
| | - Richie Soong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pathology, National University Hospital, Singapore, Singapore
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- National Institute for Health Research Biomedical Research Centre, Imperial College London, London, UK
| | - James Scott
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
- Imperial College Healthcare NHS Trust, London, W12 0HS, UK
| | - Inga Prokopenko
- Department of Clinical & Experimental Medicine, University of Surrey, Guildford, UK
- People-Centred Artificial Intelligence Institute, University of Surrey, Guildford, UK
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre Russian Academy of Sciences, Ufa, Russian Federation
| | - Inês Cebola
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Marie Loh
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore, 138648, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Boris Lenhard
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
| | - Rachel L Batterham
- UCLH Bariatric Centre for Weight Loss, Weight Management and Metabolic and Endocrine Surgery, University College London Hospitals, Ground Floor West Wing, 250 Euston Road, London, NW1 2PG, UK
- Centre for Obesity Research, Rayne Institute, Department of Medicine, University College, London, WC1E 6JJ, UK
- National Institute of Health Research University College London Hospitals Biomedical Research Centre, London, W1T 7DN, UK
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - John C Chambers
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, Middlesex, UB1 3HW, UK
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, London, W12 0HS, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jaspal S Kooner
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, Middlesex, UB1 3HW, UK
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
- Imperial College Healthcare NHS Trust, London, W12 0HS, UK
| | - William R Scott
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
- MRC London Institute of Medical Sciences, London, W12 0NN, UK.
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK.
- Imperial College Healthcare NHS Trust, London, W12 0HS, UK.
| |
Collapse
|