1
|
Gootjes C, Zwaginga JJ, Roep BO, Nikolic T. Defining Human Regulatory T Cells beyond FOXP3: The Need to Combine Phenotype with Function. Cells 2024; 13:941. [PMID: 38891073 PMCID: PMC11172350 DOI: 10.3390/cells13110941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Regulatory T cells (Tregs) are essential to maintain immune homeostasis by promoting self-tolerance. Reduced Treg numbers or functionality can lead to a loss of tolerance, increasing the risk of developing autoimmune diseases. An overwhelming variety of human Tregs has been described, based on either specific phenotype, tissue compartment, or pathological condition, yet the bulk of the literature only addresses CD25-positive and CD127-negative cells, coined by naturally occurring Tregs (nTregs), most of which express the transcription factor Forkhead box protein 3 (FOXP3). While the discovery of FOXP3 was seminal to understanding the origin and biology of nTregs, there is evidence in humans that not all T cells expressing FOXP3 are regulatory, and that not all Tregs express FOXP3. Namely, the activation of human T cells induces the transient expression of FOXP3, irrespective of whether they are regulatory or inflammatory effectors, while some induced T cells that may be broadly defined as Tregs (e.g., Tr1 cells) typically lack demethylation and do not express FOXP3. Furthermore, it is unknown whether and how many nTregs exist without FOXP3 expression. Several other candidate regulatory molecules, such as GITR, Lag-3, GARP, GPA33, Helios, and Neuropilin, have been identified but subsequently discarded as Treg-specific markers. Multiparametric analyses have uncovered a plethora of Treg phenotypes, and neither single markers nor combinations thereof can define all and only Tregs. To date, only the functional capacity to inhibit immune responses defines a Treg and distinguishes Tregs from inflammatory T cells (Teffs) in humans. This review revisits current knowledge of the Treg universe with respect to their heterogeneity in phenotype and function. We propose that it is unavoidable to characterize human Tregs by their phenotype in combination with their function, since phenotype alone does not unambiguously define Tregs. There is an unmet need to align the expression of specific markers or combinations thereof with a particular suppressive function to coin functional Treg entities and categorize Treg diversity.
Collapse
Affiliation(s)
- Chelsea Gootjes
- Laboratory of Immunomodulation and Regenerative Cell Therapy, Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (J.J.Z.); (T.N.)
| | | | | | | |
Collapse
|
2
|
Ansari MA, Singh PK, Dar SA, Rai G, Akhter N, Pandhi D, Gaurav V, Bhattacharya SN, Banerjee BD, Ahmad A, Das S. Deregulated phenotype of autoreactive Th17 and Treg clone cells in pemphigus vulgaris after in-vitro treatment with desmoglein antigen (Dsg-3). Immunobiology 2023; 228:152340. [PMID: 36689824 DOI: 10.1016/j.imbio.2023.152340] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/26/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
The loss of balance between regulatory T (Treg) and T helper 17 (Th17) causes loss of tolerance against desmoglein (Dsg)-3 leading to pemphigus vulgaris (PV), an autoimmune bullous skin disorder associated with autoantibodies against Dsg-3. We aimed to elucidate the complex relationship of Th17 and Treg cells, their molecules, and the underlying mechanism in the development of PV disease. Using cytokine secretion assays, Th17 and Treg cells were sorted by FACS Aria-III within Dsg-3-responsive PBMC population and homogeneous T cell clones were generated in-vitro. Different cell surface molecules like CD25, GITR, CD122, CD152, CD45RO, IL-23R, STAT3, STAT5, CD127, HLA-DR, CCR4, CCR5, CCR6 and CCR7 were studied. The functional response of Th17 and Treg cells were elucidated by measuring the levels of various cytokines released by IL-10 and IL-17 T cells. The mRNA expression of transcription factors (FoxP3 and RORγt) was also analyzed. IL-17 secreting (Th17) cells with phenotype CD4+IL-17+ were greatly increased and IL-10 secreting (Treg) cells with phenotype CD4+IL-10+ were reduced in PV cases than healthy controls. The qPCR analysis showing high expression of retinoic acid receptor-related orphan receptor gamma (RORγt) mRNA in comparison to forkhead box P3 (FoxP3) mRNA confirmed the development of pro-inflammatory Th17 response in PV. Further, the cytokine profile of pro-inflammatory and anti-inflammatory cytokines suggested defective suppressive functions in Treg cells with high inflammatory response. Our findings indicate that autoantigen Dsg-3 specifically allows the proliferation of IL-17 secreting T cells though has a negative effect on IL-10 secreting T cells leading to dysregulation of immunity in PV patients. This antagonistic relationship between Dsg-3-specific Th17 and Treg cells may be critical for the onset and persistence of inflammation in PV cases.
Collapse
Affiliation(s)
- Mohammad Ahmad Ansari
- Multidisciplinary Research Unit (Department of Health Research), University College of Medical Sciences (University of Delhi) & GTB Hospital, Delhi 110095, India
| | - Praveen Kumar Singh
- Department of Microbiology, University College of Medical Sciences (University of Delhi) & GTB Hospital, Delhi 110095, India
| | - Sajad Ahmad Dar
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan 45142, Saudi Arabia
| | - Gargi Rai
- Department of Microbiology, University College of Medical Sciences (University of Delhi) & GTB Hospital, Delhi 110095, India
| | - Naseem Akhter
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha 65731, Saudi Arabia
| | - Deepika Pandhi
- Department of Dermatology & STD, University College of Medical Sciences (University of Delhi) & GTB Hospital, Delhi 110095, India
| | - Vishal Gaurav
- Department of Dermatology & STD, University College of Medical Sciences (University of Delhi) & GTB Hospital, Delhi 110095, India
| | - Sambit Nath Bhattacharya
- Department of Dermatology & STD, University College of Medical Sciences (University of Delhi) & GTB Hospital, Delhi 110095, India
| | - Basu Dev Banerjee
- Department of Biochemistry, University College of Medical Sciences (University of Delhi) & GTB Hospital, Delhi 110095, India
| | - Abrar Ahmad
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shukla Das
- Department of Microbiology, University College of Medical Sciences (University of Delhi) & GTB Hospital, Delhi 110095, India.
| |
Collapse
|
3
|
Gerasimova EV, Tabakov DV, Gerasimova DA, Popkova TV. Activation Markers on B and T Cells and Immune Checkpoints in Autoimmune Rheumatic Diseases. Int J Mol Sci 2022; 23:ijms23158656. [PMID: 35955790 PMCID: PMC9368764 DOI: 10.3390/ijms23158656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
In addition to identifying the major B- and T-cell subpopulations involved in autoimmune rheumatic diseases (ARDs), in recent years special attention has been paid to studying the expression of their activation markers and immune checkpoints (ICPs). The activation markers on B and T cells are a consequence of the immune response, and these molecules are considered as sensitive specific markers of ARD activity and as promising targets for immunotherapy. ICPs regulate the activation of the immune response by preventing the initiation of autoimmune processes, and they modulate it by reducing immune cell-induced organ and tissue damage. The article considers the possible correlation of ICPs with the activity of ARDs, the efficacy of specific ARD treatments, and the prospects for the use of activation molecules and activation/blocking ICPs for the treatment of ARDs.
Collapse
Affiliation(s)
- Elena V. Gerasimova
- Department of Systemic Rheumatic Diseases, V.A. Nasonova Research Institute of Rheumatology, Kashirskoe Shosse, 115522 Moscow, Russia
- Correspondence: ; Tel.: +7-905-538-0399
| | - Dmitry V. Tabakov
- Department of Systemic Rheumatic Diseases, V.A. Nasonova Research Institute of Rheumatology, Kashirskoe Shosse, 115522 Moscow, Russia
| | - Daria A. Gerasimova
- Department of Organization and Economy of Pharmacy, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2, Trubetskaya St., 119526 Moscow, Russia
| | - Tatiana V. Popkova
- Department of Systemic Rheumatic Diseases, V.A. Nasonova Research Institute of Rheumatology, Kashirskoe Shosse, 115522 Moscow, Russia
| |
Collapse
|
4
|
Zeng X, Zheng M, Liu T, Bahabayi A, Kang R, Xu Q, Alimu X, Lu S, Song Y, Liu C. Changes in the expression of T-cell factor-1 in follicular helper T cells reflect the condition of systemic lupus erythematosus patients. Int Immunopharmacol 2022; 108:108877. [DOI: 10.1016/j.intimp.2022.108877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023]
|
5
|
Singh RP, Bischoff DS, Hahn BH. CD8 + T regulatory cells in lupus. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2021; 2:147-156. [PMID: 35880241 PMCID: PMC9242525 DOI: 10.2478/rir-2021-0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/23/2021] [Indexed: 04/11/2023]
Abstract
T regulatory cells (Tregs) have a key role in the maintenance of immune homeostasis and the regulation of immune tolerance by preventing the inflammation and suppressing the autoimmune responses. Numerical and functional deficits of these cells have been reported in systemic lupus erythematosus (SLE) patients and mouse models of SLE, where their imbalance and dysregulated activities have been reported to significantly influence the disease pathogenesis, progression and outcomes. Most studies in SLE have focused on CD4+ Tregs and it has become clear that a critical role in the control of immune tolerance after the breakdown of self-tolerance is provided by CD8+ Tregs. Here we review the role, cellular and molecular phenotypes, and mechanisms of action of CD8+ Tregs in SLE, including ways to induce these cells for immunotherapeutic modulation in SLE.
Collapse
Affiliation(s)
- Ram P. Singh
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- Department of Medicine, Division of Rheumatology, University of California, Los Angeles, USA
| | - David S. Bischoff
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bevra H. Hahn
- Department of Medicine, Division of Rheumatology, University of California, Los Angeles, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
6
|
Zhang Y, Zhang J, Shi Y, Shen M, Lv H, Chen S, Feng Y, Chen H, Xu X, Yang T, Xu K. Differences in Maturation Status and Immune Phenotypes of Circulating Helios + and Helios - Tregs and Their Disrupted Correlations With Monocyte Subsets in Autoantibody-Positive T1D Individuals. Front Immunol 2021; 12:628504. [PMID: 34054801 PMCID: PMC8149963 DOI: 10.3389/fimmu.2021.628504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/22/2021] [Indexed: 12/22/2022] Open
Abstract
CD4 Tregs are involved in the regulation of various autoimmune diseases but believed to be highly heterogeneous. Studies have indicated that Helios controls a distinct subset of functional Tregs. However, the immunological changes in circulating Helios+ and Helios− Tregs are not fully explored in type 1 diabetes (T1D). Here, we elucidated the differences in maturation status and immune regulatory phenotypes of Helios+ and Helios− Tregs and their correlations with monocyte subsets in T1D individuals. As CD25−/low FOXP3+ Tregs also represent a subset of functional Tregs, we defined Tregs as FOXP3+CD127−/low and examined circulating Helios+ and Helios− Treg subpopulations in 68 autoantibody-positive T1D individuals and 68 age-matched healthy controls. We found that expression of both FOXP3 and CTLA4 diminished in Helios− Tregs, while the proportion of CD25−/low Tregs increased in Helios+ Tregs of T1D individuals. Although the frequencies of neither Helios+ nor Helios− Tregs were affected by investigated T1D genetic risk loci, Helios+ Tregs correlated with age at T1D diagnosis negatively and disease duration positively. Moreover, the negative correlation between central and effector memory proportions of Helios+ Tregs in healthy controls was disrupted in T1D individuals. Finally, regulatory non-classical and intermediate monocytes also decreased in T1D individuals, and positive correlations between these regulatory monocytes and Helios+/Helios− Treg subsets in healthy controls disappeared in T1D individuals. In conclusion, we demonstrated the alternations in maturation status and immune phenotypes in Helios+ and Helios− Treg subsets and revealed the missing association between these Treg subsets and monocyte subsets in T1D individuals, which might point out another option for elucidating T1D mechanisms.
Collapse
Affiliation(s)
- Yuyue Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yun Shi
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Shen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Lv
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shu Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yingjie Feng
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Heng Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyu Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Yang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kuanfeng Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Filleron A, Tran TA, Hubert A, Letierce A, Churlaud G, Koné-Paut I, Saadoun D, Cezar R, Corbeau P, Rosenzwajg M. Regulatory T cell/Th17 balance in the pathogenesis of pediatric Behçet disease. Rheumatology (Oxford) 2021; 61:422-429. [PMID: 33734346 DOI: 10.1093/rheumatology/keab253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Behçet disease (BD) is a chronic systemic inflammatory disorder of unknown aetiology. The aim of this study was to determine the orientation of T cell subpopulations in pediatric BD and more precisely to look for a regulatory T lymphocytes (Tregs)/Th17 imbalance. METHODS T cell subpopulations were analyzed by flow cytometry in the peripheral blood of pediatric patients with acute (aBD, n = 24), remitting (rBD, n = 12) BD, and in healthy controls (HC, n = 24). Tregs (CD4+CD25hiCD127-/loFoxp3+), activated Tregs (GITR, LAP, CTLA-4, and HLA-DR expression), CD4+ and CD8+ T cells producing interferon-g (Th1 and Tc1) or interleukin (IL)-17 (Th17 and Tc17) under polyclonal (OKT3/IL-2) or antigenic (Streptococcus sanguis KTH-1 peptides and HSP-60) stimulation, were numerated. RESULTS Th17 (1.9 and 5.1 fold) and Tc17 (4.0 and 2.0 fold) frequency under mitogenic stimulation was significantly increased in aBD and rBD patients as compared with HC. Th17 frequency under antigenic stimulation was also higher in patients than in HC. The percentage and number of Tregs and activated Tregs in patients and in HC were similar. However, when Tregs were removed, antigen-driven differentiation into Th1 and Th17 was significantly boosted in BD but not in HC CD4+T cells. CONCLUSION There is a bias toward a Th17 polarization in acute and remitting BD children. Although we did not observe an increase in the number of Tregs in these patients, their Tregs limit CD4+T cell differentiation into Th1 and Th17 cells. Thus, in pediatric BD, Tregs seem to incompletely counterbalance a Th17 orientation of the helper T cell response.
Collapse
Affiliation(s)
- Anne Filleron
- INSERM U 1183, Université Montpellier-Nîmes, France.,Service de pédiatrie, Centre hospitalier universitaire de Nîmes, Université Montpellier-Nîmes, France
| | - Tu Anh Tran
- INSERM U 1183, Université Montpellier-Nîmes, France.,Service de pédiatrie, Centre hospitalier universitaire de Nîmes, Université Montpellier-Nîmes, France
| | - Audrey Hubert
- Département de Biothérapies (CIC-BTi) et Inflammation-Immunopathologie-Biothérapie (I2B), AP-HP, Hôpital La Pitié-Salpêtrière, Paris, F-75651, France.,Sorbonne Université, INSERM, UMR_S 959, Immunologie-Immunopathologie- Immunothérapie (I3); F-75561, Paris, France
| | - Alexia Letierce
- Unité de Recherche Clinique Paris Sud. Hôpital Bicêtre. Le Kremlin Bicêtre, France
| | - Guillaume Churlaud
- Département de Biothérapies (CIC-BTi) et Inflammation-Immunopathologie-Biothérapie (I2B), AP-HP, Hôpital La Pitié-Salpêtrière, Paris, F-75651, France.,Sorbonne Université, INSERM, UMR_S 959, Immunologie-Immunopathologie- Immunothérapie (I3); F-75561, Paris, France
| | - Isabelle Koné-Paut
- Service de Rhumatologie pédiatrique. Centre Hospitalier Universitaire Bicêtre, université Paris Sud. Le Kremlin Bicêtre, . France
| | - David Saadoun
- Service de Médecine interne. Centre Hospitalier Universitaire La Pitié Salpêtrière. AP-HP. Paris, France
| | - Renaud Cezar
- Laboratoire d'immunologie, Centre hospitalier universitaire de Nîmes, Nîmes, France
| | - Pierre Corbeau
- Laboratoire d'immunologie, Centre hospitalier universitaire de Nîmes, Nîmes, France.,Institut de génétique humaine, CNRS UPR1142, Université de Montpellier, Montpellier
| | - Michelle Rosenzwajg
- Département de Biothérapies (CIC-BTi) et Inflammation-Immunopathologie-Biothérapie (I2B), AP-HP, Hôpital La Pitié-Salpêtrière, Paris, F-75651, France.,Sorbonne Université, INSERM, UMR_S 959, Immunologie-Immunopathologie- Immunothérapie (I3); F-75561, Paris, France
| |
Collapse
|
8
|
Roth-Walter F, Adcock IM, Benito-Villalvilla C, Bianchini R, Bjermer L, Boyman O, Caramori G, Cari L, Fan Chung K, Diamant Z, Eguiluz-Gracia I, Knol EF, Kolios A, Levi-Schaffer F, Nocentini G, Palomares O, Redegeld F, Van Esch B, Stellato C. Immune modulation via T regulatory cell enhancement: Disease-modifying therapies for autoimmunity and their potential for chronic allergic and inflammatory diseases-An EAACI position paper of the Task Force on Immunopharmacology (TIPCO). Allergy 2021; 76:90-113. [PMID: 32593226 DOI: 10.1111/all.14478] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/09/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
Abstract
Therapeutic advances using targeted biologicals and small-molecule drugs have achieved significant success in the treatment of chronic allergic, autoimmune, and inflammatory diseases particularly for some patients with severe, treatment-resistant forms. This has been aided by improved identification of disease phenotypes. Despite these achievements, not all severe forms of chronic inflammatory and autoimmune diseases are successfully targeted, and current treatment options, besides allergen immunotherapy for selected allergic diseases, fail to change the disease course. T cell-based therapies aim to cure diseases through the selective induction of appropriate immune responses following the delivery of engineered, specific cytotoxic, or regulatory T cells (Tregs). Adoptive cell therapies (ACT) with genetically engineered T cells have revolutionized the oncology field, bringing curative treatment for leukemia and lymphoma, while therapies exploiting the suppressive functions of Tregs have been developed in nononcological settings, such as in transplantation and autoimmune diseases. ACT with Tregs are also being considered in nononcological settings such as cardiovascular disease, obesity, and chronic inflammatory disorders. After describing the general features of T cell-based approaches and current applications in autoimmune diseases, this position paper reviews the experimental models testing or supporting T cell-based approaches, especially Treg-based approaches, in severe IgE-mediated responses and chronic respiratory airway diseases, such as severe asthma and COPD. Along with an assessment of challenges and unmet needs facing the application of ACT in these settings, this article underscores the potential of ACT to offer curative options for patients with severe or treatment-resistant forms of these immune-driven disorders.
Collapse
Affiliation(s)
- Franziska Roth-Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
| | - Ian M Adcock
- Molecular Cell Biology Group, National Heart & Lung Institute, Imperial College London, London, UK
| | - Cristina Benito-Villalvilla
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Rodolfo Bianchini
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
| | - Leif Bjermer
- Department of Respiratory Medicine and Allergology, Lung and Allergy research, Allergy, Asthma and COPD Competence Center, Lund University, Lund, Sweden
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gaetano Caramori
- Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), Respiratory Medicine Unit, University of Messina, Messina, Italy
| | - Luigi Cari
- Department of Medicine, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Kian Fan Chung
- Experimental Studies Medicine at National Heart & Lung Institute, Imperial College London & Royal Brompton & Harefield NHS Trust, London, UK
| | - Zuzana Diamant
- Department of Respiratory Medicine and Allergology, Institute for Clinical Science, Skane University Hospital, Lund, Sweden
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
- Department of Clinical Pharmacy & Pharmacology, University Groningen, University Medical Center Groningen and QPS-NL, Groningen, Netherlands
| | - Ibon Eguiluz-Gracia
- Allergy Unit, Hospital Regional Universitario de Málaga-Instituto de Investigación Biomédica de Málaga (IBIMA)-ARADyAL, Málaga, Spain
| | - Edward F Knol
- Departments of Immunology and Dermatology/Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Antonios Kolios
- Department of Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Francesca Levi-Schaffer
- Pharmacology Unit, Faculty of Medicine, Institute for Drug Research, The Hebrew University of Jerusalem, Israel
| | - Giuseppe Nocentini
- Department of Medicine, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Frank Redegeld
- Faculty of Science, Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Betty Van Esch
- Faculty of Science, Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| |
Collapse
|
9
|
Huang G, Zhang Y, Wei X, Yu Z, Lai J, Shen Q, Chen X, Tan G, Chen C, Luo W, Li Y, Zhou M, Li Y, Li B. CD8+GITR+ T cells may negatively regulate T cell overactivation in aplastic anemia. Immunol Invest 2020; 50:406-415. [PMID: 32462957 DOI: 10.1080/08820139.2020.1770785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Guixuan Huang
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Yuping Zhang
- Department of Hematology, Guangzhou First People’s Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou, China
| | - Xiaolei Wei
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhi Yu
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jing Lai
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Qi Shen
- Department of Hematology, Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Shengzhen, China
| | - Xiaohui Chen
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Guangxiao Tan
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Cunte Chen
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | | | - Yumiao Li
- Department of Hematology, Guangzhou First People’s Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou, China
| | - Ming Zhou
- Department of Hematology, Guangzhou First People’s Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou, China
| | - Yangqiu Li
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Bo Li
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
10
|
Cari L, Montanucci P, Basta G, Petrillo MG, Ricci E, Pescara T, Greco A, Cipriani S, Shimizu J, Migliorati G, Nocentini G, Calafiore R, Riccardi C. Microencapsulated G3C Hybridoma Cell Graft Delays the Onset of Spontaneous Diabetes in NOD Mice by an Expansion of Gitr + Treg Cells. Diabetes 2020; 69:965-980. [PMID: 32169893 DOI: 10.2337/db19-0087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/25/2020] [Indexed: 11/13/2022]
Abstract
As an alternative to lifelong insulin supplementation, potentiation of immune tolerance in patients with type 1 diabetes could prevent the autoimmune destruction of pancreatic islet β-cells. This study was aimed to assess whether the G3c monoclonal antibody (mAb), which triggers the glucocorticoid-induced TNFR-related (Gitr) costimulatory receptor, promotes the expansion of regulatory T cells (Tregs) in SV129 (wild-type) and diabetic-prone NOD mice. The delivery of the G3c mAb via G3C hybridoma cells enveloped in alginate-based microcapsules (G3C/cps) for 3 weeks induced Foxp3+ Treg-cell expansion in the spleen of wild-type mice but not in Gitr-/- mice. G3C/cps also induced the expansion of nonconventional Cd4+Cd25-/lowFoxp3lowGitrint/high (GITR single-positive [sp]) Tregs. Both Cd4+Cd25+GitrhighFoxp3+ and GITRsp Tregs (including also antigen-specific cells) were expanded in the spleen and pancreas of G3C/cps-treated NOD mice, and the number of intact islets was higher in G3C/cps-treated than in empty cps-treated and untreated animals. Consequently, all but two G3C/cps-treated mice did not develop diabetes and all but one survived until the end of the 24-week study. In conclusion, long-term Gitr triggering induces Treg expansion, thereby delaying/preventing diabetes development in NOD mice. This therapeutic approach may have promising clinical potential for the treatment of inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Luigi Cari
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Pia Montanucci
- Section of Internal Medicine and Endocrine and Metabolic Sciences, Department of Medicine, and Laboratory for Endocrine Cell Transplants and Biohybrid Organs, University of Perugia, Perugia, Italy
| | - Giuseppe Basta
- Section of Internal Medicine and Endocrine and Metabolic Sciences, Department of Medicine, and Laboratory for Endocrine Cell Transplants and Biohybrid Organs, University of Perugia, Perugia, Italy
| | - Maria G Petrillo
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Erika Ricci
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Teresa Pescara
- Section of Internal Medicine and Endocrine and Metabolic Sciences, Department of Medicine, and Laboratory for Endocrine Cell Transplants and Biohybrid Organs, University of Perugia, Perugia, Italy
| | - Alessia Greco
- Section of Internal Medicine and Endocrine and Metabolic Sciences, Department of Medicine, and Laboratory for Endocrine Cell Transplants and Biohybrid Organs, University of Perugia, Perugia, Italy
| | - Sabrina Cipriani
- Rheumatology Unit, Department of Medicine, School of Medicine, University of Perugia, Perugia, Italy
| | - Jun Shimizu
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Graziella Migliorati
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Giuseppe Nocentini
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Riccardo Calafiore
- Section of Internal Medicine and Endocrine and Metabolic Sciences, Department of Medicine, and Laboratory for Endocrine Cell Transplants and Biohybrid Organs, University of Perugia, Perugia, Italy
| | - Carlo Riccardi
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
11
|
Immune checkpoint molecules. Possible future therapeutic implications in autoimmune diseases. J Autoimmun 2019; 104:102333. [DOI: 10.1016/j.jaut.2019.102333] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
|
12
|
Nocentini G, Cari L, Riccardi C. Novel Immune Targets in Melanoma-Letter. Clin Cancer Res 2019; 25:5422-5423. [PMID: 31481484 DOI: 10.1158/1078-0432.ccr-19-1140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/09/2019] [Accepted: 06/19/2019] [Indexed: 11/16/2022]
Affiliation(s)
- Giuseppe Nocentini
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy.
| | - Luigi Cari
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Carlo Riccardi
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
13
|
Minning S, Xiaofan Y, Anqi X, Bingjie G, Dinglei S, Mingshun Z, Juan X, Xiaohui J, Huijuan W. Imbalance between CD8 +CD28 + and CD8 +CD28 - T-cell subsets and its clinical significance in patients with systemic lupus erythematosus. Lupus 2019; 28:1214-1223. [PMID: 31399013 DOI: 10.1177/0961203319867130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the changes in CD8+CD28-/CD8+CD28+ T-cell subset balance and in the CD8+CD28- Treg cell number and function in patients with systemic lupus erythematosus (SLE). METHODS Cell isolation and flow cytometry analysis were employed to investigate the T-cell subsets. RESULTS It was found that in high-activity SLE patients, the CD8+CD28+ T-cell subset was reduced, which was inversely correlated with the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI), and that the CD8+CD28-/CD8+CD28+ ratio was elevated, which was positively correlated with SLEDAI and with renal damage and inversely correlated with serum complement level, whereas the CD8+CD28- T-cell subset was increased only in inactive patients. It was also found that apoptosis of CD8+ T cells increased, and Fas, Fas ligand (FasL) and interleukin (IL)-6 expression were high, whereas cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) expression was low by the CD8+CD28+ T cell subset in active SLE patients; apoptosis was positively correlated with SLEDAI and with the expression of Fas and FasL by the CD8+CD28+ T-cell subset in active SLE patients. IL-6 and CTLA-4 expression were found to be low by the CD8+CD28- T cell subset in active SLE patients. CONCLUSION These data suggest that high expression of Fas, FasL and IL-6 and low expression of CTLA-4 by the CD8+CD28+ T-cell subset promotes the activation-induced cell death of the CD8+CD28+ T-cell subset, resulting in an imbalance of CD8+CD28-/CD8+CD28+ T cells in active SLE patients, which represents an important feature in the immunological pathogenesis of SLE. The CD8+CD28- T-cell subset may play some role in inactive SLE.
Collapse
Affiliation(s)
- S Minning
- 1 Department of Rheumatology, Nanjing First Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Y Xiaofan
- 2 Department of Immunology, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - X Anqi
- 2 Department of Immunology, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - G Bingjie
- 1 Department of Rheumatology, Nanjing First Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - S Dinglei
- 1 Department of Rheumatology, Nanjing First Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Z Mingshun
- 2 Department of Immunology, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - X Juan
- 2 Department of Immunology, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - J Xiaohui
- 2 Department of Immunology, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - W Huijuan
- 2 Department of Immunology, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Kato R, Sumitomo S, Tsuchida Y, Tsuchiya H, Nakachi S, Sakurai K, Hanata N, Nagafuchi Y, Kubo K, Tateishi S, Kanda H, Okamura T, Yamamoto K, Fujio K. CD4 +CD25 +LAG3 + T Cells With a Feature of Th17 Cells Associated With Systemic Lupus Erythematosus Disease Activity. Front Immunol 2019; 10:1619. [PMID: 31354747 PMCID: PMC6640175 DOI: 10.3389/fimmu.2019.01619] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that involves multiple immune cell subsets. We analyzed immune cell subsets in human peripheral blood mononuclear cells (PBMC) in order to identify the cells that are significantly associated with SLE disease activity and treatment. The frequencies of various subsets of CD4+ T cells, B cells, monocytes and NK cells in PBMC were assessed in 30 healthy controls (HC), 30 rheumatoid arthritis (RA) patients and 26 SLE patients using flow cytometry. The correlations between subset frequencies in SLE and clinical traits including Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) were examined. Changes in subset frequencies after the treatment in SLE patients were investigated. We focused on CD25+LAG3+ T cells and investigated their characteristics, including cytokine secretion, mRNA expression and suppression capacity. We assessed correlations between CD25+LAG3+ T cells and SLEDAI by Spearman's rank correlation coefficient. CD25+LAG3+ T cells were significantly increased in SLE whereas there were few in RA and HC groups. CD25+LAG3+ T cell frequencies were significantly correlated with SLEDAI and were increased in patients with a high SLEDAI score (> 10). CD25+LAG3+ T cells produced both IL-17 and FOXP3, expressed mRNA of both FOXP3 and RORC and lacked suppressive capacity. CD25+LAG3+ T cells were associated with disease activity of SLE. CD25+LAG3+ T cells had features of both CD25+FOXP3+ regulatory T cells (CD25+ Treg) and Th17. CD25+LAG3+ T cells could be associated with the inflammatory pathophysiology of SLE.
Collapse
Affiliation(s)
- Rika Kato
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shuji Sumitomo
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yumi Tsuchida
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruka Tsuchiya
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinichiro Nakachi
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keiichi Sakurai
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Norio Hanata
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuo Nagafuchi
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kanae Kubo
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shoko Tateishi
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Immunotherapy Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroko Kanda
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Immunotherapy Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomohisa Okamura
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Max Planck-The University of Tokyo Center for Integrative Inflammology, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Yamamoto
- Center for Integrative Medical Sciences, The Institute of Physical and Chemical Research, Yokohama, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Ryba-Stanisławowska M, Sakowska J, Zieliński M, Ławrynowicz U, Trzonkowski P. Regulatory T cells: the future of autoimmune disease treatment. Expert Rev Clin Immunol 2019; 15:777-789. [PMID: 31104510 DOI: 10.1080/1744666x.2019.1620602] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction: CD4 + T regulatory cells (Tregs) have been described as the most potent immunosuppressive cells in the human body. They have been found to control autoimmunity, and clinical attempts have been made to apply them to treat autoimmune diseases. Some specific pathways utilized by Tregs in the regulation of immune response or Tregs directly as cellular products are tested in the clinic. Areas covered: Here, we present recent advances in the research on the biology and clinical applications of Tregs in the treatment of autoimmune diseases. Expert opinion: Regulatory T cells seem to be a promising tool for the treatment of autoimmune diseases. The development of both cell-based therapies and modern pharmacotherapies which affect Tregs may strongly improve the treatment of autoimmune disorders. Growing knowledge about Treg biology together with the latest biotechnology tools may give an opportunity for personalized therapies in these conditions.
Collapse
Affiliation(s)
- Monika Ryba-Stanisławowska
- a Department of Medical Immunology , Laboratory of Experimental Immunology, Medical University of Gdańsk , Debinki , Poland
| | - Justyna Sakowska
- b Department of Medical Immunology , Medical University of Gdańsk , Debinki , Poland
| | - Maciej Zieliński
- b Department of Medical Immunology , Medical University of Gdańsk , Debinki , Poland
| | - Urszula Ławrynowicz
- a Department of Medical Immunology , Laboratory of Experimental Immunology, Medical University of Gdańsk , Debinki , Poland
| | - Piotr Trzonkowski
- a Department of Medical Immunology , Laboratory of Experimental Immunology, Medical University of Gdańsk , Debinki , Poland
- b Department of Medical Immunology , Medical University of Gdańsk , Debinki , Poland
| |
Collapse
|
16
|
Cari L, De Rosa F, Nocentini G, Riccardi C. Context-Dependent Effect of Glucocorticoids on the Proliferation, Differentiation, and Apoptosis of Regulatory T Cells: A Review of the Empirical Evidence and Clinical Applications. Int J Mol Sci 2019; 20:E1142. [PMID: 30845709 PMCID: PMC6429178 DOI: 10.3390/ijms20051142] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoids (GCs) are widely used to treat several diseases because of their powerful anti-inflammatory and immunomodulatory effects on immune cells and non-lymphoid tissues. The effects of GCs on T cells are the most relevant in this regard. In this review, we analyze how GCs modulate the survival, maturation, and differentiation of regulatory T (Treg) cell subsets into both murine models and humans. In this way, GCs change the Treg cell number with an impact on the mid-term and long-term efficacy of GC treatment. In vitro studies suggest that the GC-dependent expansion of Treg cells is relevant when they are activated. In agreement with this observation, the GC treatment of patients with established autoimmune, allergic, or (auto)inflammatory diseases causes an expansion of Treg cells. An exception to this appears to be the local GC treatment of psoriatic lesions. Moreover, the effects on Treg number in patients with multiple sclerosis are uncertain. The effects of GCs on Treg cell number in healthy/diseased subjects treated with or exposed to allergens/antigens appear to be context-dependent. Considering the relevance of this effect in the maturation of the immune system (tolerogenic response to antigens), the success of vaccination (including desensitization), and the tolerance to xenografts, the findings must be considered when planning GC treatment.
Collapse
Affiliation(s)
- Luigi Cari
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia I-06129, Italy.
| | - Francesca De Rosa
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia I-06129, Italy.
| | - Giuseppe Nocentini
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia I-06129, Italy.
| | - Carlo Riccardi
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia I-06129, Italy.
| |
Collapse
|
17
|
Yang X, Wang W, Xu J, Zhang MS, Mei H, Shen Y, Zhang MJ, Ji X, Wang H. Significant association of CD4 +CD25 +Foxp3 + regulatory T cells with clinical findings in patients with systemic lupus erythematosus. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:93. [PMID: 31019943 DOI: 10.21037/atm.2019.01.38] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Regulatory T (Treg) cells are one of the important mechanisms in maintaining self-tolerance and immune homeostasis. CD4+CD25+Foxp3+Treg is considered to have a role in the pathogenesis of systemic lupus erythematosus (SLE). However, the data reported is controversial, and a conclusive result has not been given thus far. The aim of the present study is to evaluate the role of CD4+Treg in SLE further. Methods The peripheral blood T cells (PBMCs) from patients with SLE and healthy controls were isolated, and followed by the isolation of CD3+T cells. The PBMCs were tested for the expressions of CD25 and Foxp3 molecules on the surface of CD4+T cells, and CD3+T cells were tested for their cytokine expressions including IFN-γ, TGF-β, and IL-10, with the method of flow cytometry. The correlations of test results with clinical features of the disease were evaluated by linear correlation analysis. Results CD4+CD25+ Foxp3+Treg decreased in SLE patients and was correlated with the SLE Disease Activity Index (SLEDAI), and a few immunological abnormalities, including anti-dsDNA antibody positive, IgG increase and C3 decrease, and types of tissue damage, including leukocytopenia and kidney damage. IFN-γ+ cells in the CD4+CD25+T subset fresh-isolated from SLE patients increased slightly, but IFN-γ-producing response to stimulation in CD4+CD25+T subset of SLE decreased. The number of TGF-β-producing cells in the CD4+CD25+T subset from SLE patients also decreased. While the percentages of CD4+CD25+IL-10+T subset in the CD3+T cells increased in SLE, however, these changes of cytokine expressions did not show any significant correlations with SLEDAI. Conclusions There is clear and definite evidence from the present study indicating the important role of CD4+CD25+Foxp3+Treg in the pathogenesis of SLE, for the abnormalities in functional cytokine productions of the CD4+CD25+ T subset, and for the feasibility of a CD4+CD25+Foxp3+Treg- based immunotherapy in SLE.
Collapse
Affiliation(s)
- Xiaofan Yang
- Department of Immunology, School of Basic Medical Science, Nanjing Medical University (NJMU), Nanjing 211166, China
| | - Weiwen Wang
- Nanjing First Hospital Affiliated to NJMU, Nanjing 210006, China
| | - Juan Xu
- Department of Immunology, School of Basic Medical Science, Nanjing Medical University (NJMU), Nanjing 211166, China
| | - Ming-Shun Zhang
- Department of Immunology, School of Basic Medical Science, Nanjing Medical University (NJMU), Nanjing 211166, China
| | - Huanping Mei
- Department of Rheumatology, the First Affiliated Hospital of NJMU, Nanjing 210036, China
| | - Youxuan Shen
- Department of Rheumatology, the First Affiliated Hospital of NJMU, Nanjing 210036, China
| | - Miao-Jia Zhang
- Department of Rheumatology, the First Affiliated Hospital of NJMU, Nanjing 210036, China
| | - Xiaohui Ji
- Department of Immunology, School of Basic Medical Science, Nanjing Medical University (NJMU), Nanjing 211166, China
| | - Huijuan Wang
- Department of Immunology, School of Basic Medical Science, Nanjing Medical University (NJMU), Nanjing 211166, China
| |
Collapse
|
18
|
Wu JH, Zhou M, Jin Y, Meng ZJ, Xiong XZ, Sun SW, Miao SY, Han HL, Tao XN. Generation and Immune Regulation of CD4 +CD25 -Foxp3 + T Cells in Chronic Obstructive Pulmonary Disease. Front Immunol 2019; 10:220. [PMID: 30842769 PMCID: PMC6392103 DOI: 10.3389/fimmu.2019.00220] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/25/2019] [Indexed: 11/13/2022] Open
Abstract
The imbalance of CD4+Foxp3+ T cell subsets is reportedly involved in abnormal inflammatory immune responses in patients with chronic obstructive pulmonary disease (COPD). However, the possible role of CD4+CD25-Foxp3+ T cells in immune regulation in COPD remains to be investigated. In the current study, distribution and phenotypic characteristics of CD4+CD25-Foxp3+ T cells from peripheral blood were determined by flow cytometry; the origin, immune function and ultimate fate of CD4+CD25-Foxp3+ T cells were further explored in vitro. It was observed that circulating CD4+CD25-Foxp3+ T cells were significantly increased in stable COPD patients (SCOPD) and resembled central memory or effector memory T cells. Compared with peripheral CD4+CD25+Foxp3+ T cells, peripheral CD4+CD25-Foxp3+ T cells showed a lower expression of Foxp3, CTLA-4, HELIOS, and TIGIT, but a higher expression of CD127 and KI-67, suggesting that CD4+CD25-Foxp3+ T cells lost the expression of Tregs-associated molecules following the reduction in CD25. Unexpectedly, our study found that transforming growth factor-β1 (TGFβ1) decreased CD25 expression and played a critical role in the generation of CD4+CD25-Foxp3+ T cells from CD4+CD25+Foxp3+ T cells. Phenotypic analysis further revealed that both inducible and peripheral CD4+CD25-Foxp3+ T cells exhibited the features of activated conventional T cells. Importantly, memory CD4+CD25-Foxp3+ T cells facilitated the proliferation and differentiation of naïve CD4+ T cells into Th17 cells in the presence of IL-1β, IL-6, IL-23, and TGFβ1. Finally, a fraction of CD4+CD25-Foxp3+ T cells, exhibiting instability and plasticity, were converted to Th17 cells when subjected to Th17 cell-polarizing condition. Taken together, we propose that TGFβ1 is responsible for the generation of CD4+CD25-Foxp3+ T cells, and these cells functionally exert an auxiliary effect on Th17 cells generation and might perpetuate chronic inflammation in COPD.
Collapse
Affiliation(s)
- Jiang-Hua Wu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao-Ji Meng
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xian-Zhi Xiong
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng-Wen Sun
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai-Ying Miao
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Li Han
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Nan Tao
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
The Role of Circulating Regulatory T Cell Levels on Subclinical Atherosclerosis and Cardiovascular Risk Factors in Women with Systemic Lupus Erythematosus. Mediators Inflamm 2018; 2018:3271572. [PMID: 30662367 PMCID: PMC6312616 DOI: 10.1155/2018/3271572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/10/2018] [Accepted: 11/14/2018] [Indexed: 01/24/2023] Open
Abstract
The increase in cardiovascular disease (CVD) in patients with systemic lupus erythematosus (SLE) is not fully explained by traditional CVD risk factors. Regulatory T cells (Treg cells) are considered atheroprotective. We investigated the relationship between the absolute number of different phenotypes of Treg cells and abnormal carotid intima-media thickness (IMT) in women with SLE. Sixty-six women with SLE with no history of CV disease were included. Carotid IMT was quantified by ultrasound. Abnormal carotid IMT was defined as ≥0.8 mm and two groups were compared according to this definition. Flow cytometry was used to analyze Foxp3 and Helios expression in peripheral blood CD4 T cells. A significantly higher level of absolute CD4+CD25+FoxP3high T cells was present in patients with abnormal carotid IMT compared with those without (1.795 ± 4.182 cells/μl vs. 0.274 ± 0.784 cells/μl; p = 0.003). However, no correlations were found between any Treg cell phenotypes and carotid IMT. Only the absolute number of CD4+CD45RA+FoxP3low T cells was significantly decreased in SLE patients with low HDL cholesterol compared with those with normal HDL cholesterol (0.609 ± 2.362 cells/μl vs. 1.802 ± 4.647 cells/μl; p = 0.009 and 15.358 ± 11.608 cells/μl vs. 28.274 ± 34.139; p = 0.012, respectively). In conclusion, in SLE women, diminished levels of Treg cells based on flow cytometry were not a good indicator of abnormal carotid IMT.
Collapse
|
20
|
Kumar P, Bhattacharya P, Prabhakar BS. A comprehensive review on the role of co-signaling receptors and Treg homeostasis in autoimmunity and tumor immunity. J Autoimmun 2018; 95:77-99. [PMID: 30174217 PMCID: PMC6289740 DOI: 10.1016/j.jaut.2018.08.007] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/22/2018] [Accepted: 08/26/2018] [Indexed: 12/22/2022]
Abstract
The immune system ensures optimum T-effector (Teff) immune responses against invading microbes and tumor antigens while preventing inappropriate autoimmune responses against self-antigens with the help of T-regulatory (Treg) cells. Thus, Treg and Teff cells help maintain immune homeostasis through mutual regulation. While Tregs can contribute to tumor immune evasion by suppressing anti-tumor Teff response, loss of Treg function can result in Teff responses against self-antigens leading to autoimmune disease. Thus, loss of homeostatic balance between Teff/Treg cells is often associated with both cancer and autoimmunity. Co-stimulatory and co-inhibitory receptors, collectively known as co-signaling receptors, play an indispensable role in the regulation of Teff and Treg cell expansion and function and thus play critical roles in modulating autoimmune and anti-tumor immune responses. Over the past three decades, considerable efforts have been made to understand the biology of co-signaling receptors and their role in immune homeostasis. Mutations in co-inhibitory receptors such as CTLA4 and PD1 are associated with Treg dysfunction, and autoimmune diseases in mice and humans. On the other hand, growing tumors evade immune surveillance by exploiting co-inhibitory signaling through expression of CTLA4, PD1 and PDL-1. Immune checkpoint blockade (ICB) using anti-CTLA4 and anti-PD1 has drawn considerable attention towards co-signaling receptors in tumor immunology and created renewed interest in studying other co-signaling receptors, which until recently have not been as well studied. In addition to co-inhibitory receptors, co-stimulatory receptors like OX40, GITR and 4-1BB have also been widely implicated in immune homeostasis and T-cell stimulation, and use of agonistic antibodies against OX40, GITR and 4-1BB has been effective in causing tumor regression. Although ICB has seen unprecedented success in cancer treatment, autoimmune adverse events arising from ICB due to loss of Treg homeostasis poses a major obstacle. Herein, we comprehensively review the role of various co-stimulatory and co-inhibitory receptors in Treg biology and immune homeostasis, autoimmunity, and anti-tumor immunity. Furthermore, we discuss the autoimmune adverse events arising upon targeting these co-signaling receptors to augment anti-tumor immune responses.
Collapse
Affiliation(s)
- Prabhakaran Kumar
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL, USA
| | - Palash Bhattacharya
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL, USA
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL, USA; Department of Ophthalmology, Associate Dean for Technological Innovation and Training, University of Illinois College of Medicine, Room E-705, (M/C 790), 835 S. Wolcott Ave, Chicago, IL, 60612, USA.
| |
Collapse
|
21
|
Riccardi C, Ronchetti S, Nocentini G. Glucocorticoid-induced TNFR-related gene (GITR) as a therapeutic target for immunotherapy. Expert Opin Ther Targets 2018; 22:783-797. [DOI: 10.1080/14728222.2018.1512588] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Carlo Riccardi
- Department of Medicine, University of Perugia, Perugia, Italy
| | | | | |
Collapse
|
22
|
|
23
|
Alunno A, Bistoni O, Montanucci P, Basta G, Calafiore R, Gerli R. Umbilical cord mesenchymal stem cells for the treatment of autoimmune diseases: beware of cell-to-cell contact. Ann Rheum Dis 2017; 77:e14. [PMID: 28611081 DOI: 10.1136/annrheumdis-2017-211790] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 05/16/2017] [Indexed: 01/25/2023]
Affiliation(s)
- Alessia Alunno
- Rheumatology Unit, Department of Medicine, University of Perugia, Perugia, Italy
| | - Onelia Bistoni
- Rheumatology Unit, Department of Medicine, University of Perugia, Perugia, Italy
| | - Pia Montanucci
- Laboratory for Endocrine Cell Transplants and Biohybrid Organs, Section of Cardiovascular, Endocrine and Metabolic Clinical Physiology, Department of Medicine, University of Perugia, Perugia, Perugia, Italy
| | - Giuseppe Basta
- Laboratory for Endocrine Cell Transplants and Biohybrid Organs, Section of Cardiovascular, Endocrine and Metabolic Clinical Physiology, Department of Medicine, University of Perugia, Perugia, Perugia, Italy
| | - Riccardo Calafiore
- Laboratory for Endocrine Cell Transplants and Biohybrid Organs, Section of Cardiovascular, Endocrine and Metabolic Clinical Physiology, Department of Medicine, University of Perugia, Perugia, Perugia, Italy
| | - Roberto Gerli
- Rheumatology Unit, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
24
|
Nocentini G, Cari L, Migliorati G, Riccardi C. The role of GITR single-positive cells in immune homeostasis. IMMUNITY INFLAMMATION AND DISEASE 2017; 5:4-6. [PMID: 28250919 PMCID: PMC5322158 DOI: 10.1002/iid3.148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Giuseppe Nocentini
- Section of Pharmacology, Department of Medicine University of Perugia Perugia Italy
| | - Luigi Cari
- Section of Pharmacology, Department of Medicine University of Perugia Perugia Italy
| | - Graziella Migliorati
- Section of Pharmacology, Department of Medicine University of Perugia Perugia Italy
| | - Carlo Riccardi
- Section of Pharmacology, Department of Medicine University of Perugia Perugia Italy
| |
Collapse
|
25
|
Richards AL, Kapp LM, Wang X, Howie HL, Hudson KE. Regulatory T Cells Are Dispensable for Tolerance to RBC Antigens. Front Immunol 2016; 7:348. [PMID: 27698653 PMCID: PMC5027202 DOI: 10.3389/fimmu.2016.00348] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/30/2016] [Indexed: 02/03/2023] Open
Abstract
Autoimmune hemolytic anemia (AIHA) occurs when pathogenic autoantibodies against red blood cell (RBC) antigens are generated. While the basic disease pathology of AIHA is well studied, the underlying mechanism(s) behind the failure in tolerance to RBC autoantigens are poorly understood. Thus, to investigate the tolerance mechanisms required for the establishment and maintenance of tolerance to RBC antigens, we developed a novel murine model. With this model, we evaluated the role of regulatory T cells (Tregs) in tolerance to RBC-specific antigens. Herein, we show that neither sustained depletion of Tregs nor immunization with RBC-specific proteins in conjunction with Treg depletion led to RBC-specific autoantibody generation. Thus, these studies demonstrate that Tregs are not required to prevent autoantibodies to RBCs and suggest that other tolerance mechanisms are likely involved.
Collapse
Affiliation(s)
| | - Linda M Kapp
- Bloodworks Northwest Research Institute , Seattle, WA , USA
| | - Xiaohong Wang
- Bloodworks Northwest Research Institute , Seattle, WA , USA
| | | | | |
Collapse
|
26
|
Wang K, Gu J, Ni X, Ding Z, Wang Q, Zhou H, Zheng S, Li B, Lu L. CD25 signaling regulates the function and stability of peripheral Foxp3+ regulatory T cells derived from the spleen and lymph nodes of mice. Mol Immunol 2016; 76:35-40. [PMID: 27344615 DOI: 10.1016/j.molimm.2016.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/19/2016] [Accepted: 06/10/2016] [Indexed: 02/06/2023]
Abstract
Regulatory T cells (Tregs) play a critical role in sustaining immune tolerance and maintaining immune balance to alloantigen after transplatation. However, the functions of peripheral Tregs in different organs have not been fully characterized. Here, we showed that spleen-derived Tregs exhibited higher expression of Foxp3, greater suppressive capacity, and lower levels of IL-17A secretion than lymph node-derived Tregs in vitro in the presence or absence of inflammatory cytokines, such as IL-6. We found a higher percentage of CD25(bright) Tregs among spleen-derived Tregs than among lymph node-derived Tregs. Additionally, in vivo experiments demonstrated that adoptive transfer of spleen-derived Tregs, but not lymph node-derived Tregs, alleviated ischemia-reperfusion injury. These results reveal novel functions of Tregs derived from peripheral organs. In particular, spleen-derived Tregs, primarily consisting of CD25(bright) cells, may provide a more significant contribution to the suppression of immune-mediated autoimmune and inflammatory disease.
Collapse
Affiliation(s)
- Kunpeng Wang
- Translational Medicine Research Center, Affiliated Jiangning Hospital, and Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Jian Gu
- Translational Medicine Research Center, Affiliated Jiangning Hospital, and Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Xuhao Ni
- Translational Medicine Research Center, Affiliated Jiangning Hospital, and Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Zheng Ding
- Translational Medicine Research Center, Affiliated Jiangning Hospital, and Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Qi Wang
- Translational Medicine Research Center, Affiliated Jiangning Hospital, and Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Haoming Zhou
- Translational Medicine Research Center, Affiliated Jiangning Hospital, and Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - SongGuo Zheng
- Division of Rheumatology, Penn State Hershey College of Medicine, Hershey, PA 17033, USA
| | - Bin Li
- Key Laboratory of Molecular Virology & Immunology, CAS Center for Excellence in Molecular Cell Science, Unit of Molecular Immunology, Institute Pasteur of Shanghai, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Ling Lu
- Translational Medicine Research Center, Affiliated Jiangning Hospital, and Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
27
|
Nocentini G, Cari L, Ronchetti S, Riccardi C. Modulation of tumor immunity: a patent evaluation of WO2015026684A1. Expert Opin Ther Pat 2016; 26:417-25. [DOI: 10.1517/13543776.2016.1118061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
Alunno A, Carubbi F, Bistoni O, Caterbi S, Bartoloni E, Mirabelli G, Cannarile F, Cipriani P, Giacomelli R, Gerli R. T Regulatory and T Helper 17 Cells in Primary Sjögren's Syndrome: Facts and Perspectives. Mediators Inflamm 2015; 2015:243723. [PMID: 26060357 PMCID: PMC4427804 DOI: 10.1155/2015/243723] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/14/2015] [Accepted: 04/16/2015] [Indexed: 12/11/2022] Open
Abstract
Historically, primary Sjögren's syndrome (pSS) was thought to be a T helper (h) 1 driven disease due to the predominance of CD4(+)T lymphocytes and their products in target organs and peripheral blood of patients. In the last decades, the identification of a number of T cell subsets, including Th17, T regulatory (Treg), and follicular helper T cells, challenged this long-standing paradigm and prompted to identify their role in pSS pathogenesis. In addition the impact of abnormal proinflammatory cytokine production, such as IL-6, IL-17, IL-22, and IL-23, has also attracted considerable attention. However, although several studies have been carried out in experimental models and patients with pSS, many aspects concerning the role of Treg cells and IL-17/Th17 cell system in pSS pathogenesis are not fully elucidated. In particular, the role played by different IL-17-producing T cell subsets as well as the effects of pharmacological therapies on Treg/Th17 cell balance represents an intriguing issue. The aim of this review article is to provide an overview of current knowledge on Treg cells and IL-17-producing T cells in pSS pathogenesis. We believe that these insights into pSS pathogenesis may provide the basis for successful therapeutic intervention in this disease.
Collapse
Affiliation(s)
- Alessia Alunno
- Rheumatology Unit, Department of Medicine, University of Perugia, 06123 Perugia, Italy
| | - Francesco Carubbi
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Onelia Bistoni
- Rheumatology Unit, Department of Medicine, University of Perugia, 06123 Perugia, Italy
| | - Sara Caterbi
- Rheumatology Unit, Department of Medicine, University of Perugia, 06123 Perugia, Italy
| | - Elena Bartoloni
- Rheumatology Unit, Department of Medicine, University of Perugia, 06123 Perugia, Italy
| | - Giulia Mirabelli
- Rheumatology Unit, Department of Medicine, University of Perugia, 06123 Perugia, Italy
| | - Francesca Cannarile
- Rheumatology Unit, Department of Medicine, University of Perugia, 06123 Perugia, Italy
| | - Paola Cipriani
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Roberto Giacomelli
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Roberto Gerli
- Rheumatology Unit, Department of Medicine, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
29
|
Glucocorticoid-induced tumour necrosis factor receptor-related protein: a key marker of functional regulatory T cells. J Immunol Res 2015; 2015:171520. [PMID: 25961057 PMCID: PMC4413981 DOI: 10.1155/2015/171520] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/18/2015] [Indexed: 12/18/2022] Open
Abstract
Glucocorticoid-induced tumour necrosis factor receptor-related protein (GITR, TNFRSF18, and CD357) is expressed at high levels in activated T cells and regulatory T cells (Tregs). In this review, we present data from mouse and human studies suggesting that GITR is a crucial player in the differentiation of thymic Tregs (tTregs), and expansion of both tTregs and peripheral Tregs (pTregs). The role of GITR in Treg expansion is confirmed by the association of GITR expression with markers of memory T cells. In this context, it is not surprising that GITR appears to be a marker of active Tregs, as suggested by the association of GITR expression with other markers of Treg activation or cytokines with suppressive activity (e.g., IL-10 and TGF-β), the presence of GITR(+) cells in tissues where Tregs are active (e.g., solid tumours), or functional studies on Tregs. Furthermore, some Treg subsets including Tr1 cells express either low or no classical Treg markers (e.g., FoxP3 and CD25) and do express GITR. Therefore, when evaluating changes in the number of Tregs in human diseases, GITR expression must be evaluated. Moreover, GITR should be considered as a marker for isolating Tregs.
Collapse
|
30
|
Altered immunoregulation in rheumatoid arthritis: the role of regulatory T cells and proinflammatory Th17 cells and therapeutic implications. Mediators Inflamm 2015; 2015:751793. [PMID: 25918479 PMCID: PMC4397010 DOI: 10.1155/2015/751793] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 12/29/2022] Open
Abstract
In recent years several studies investigated the role of T lymphocyte subpopulations in the pathogenesis of rheumatoid arthritis (RA). Pathogenic Th17 cells mediate pannus growth, osteoclastogenesis, and synovial neoangiogenesis; hence they are key players in the development of the disease. On the other hand, regulatory T (Treg) cells are a T cell subset whose peculiar function is to suppress autoreactive lymphocytes. The imbalance between Th17 and Treg cells has been identified as a crucial event in the pathogenesis of RA. In addition, the effects of currently employed RA therapeutic strategies on these lymphocyte subpopulations have been extensively investigated. This review article aims to discuss current knowledge on Treg and Th17 cells in RA and possible implications of their therapeutic targeting in this disorder.
Collapse
|
31
|
Liu Y, Tang X, Tian J, Zhu C, Peng H, Rui K, Wang Y, Mao C, Ma J, Lu L, Xu H, Wang S. Th17/Treg cells imbalance and GITRL profile in patients with Hashimoto's thyroiditis. Int J Mol Sci 2014; 15:21674-86. [PMID: 25429429 PMCID: PMC4284671 DOI: 10.3390/ijms151221674] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 11/07/2014] [Accepted: 11/10/2014] [Indexed: 12/31/2022] Open
Abstract
Hashimoto’s thyroiditis (HT) is an organ-specific immune disease characterized by the presence of lymphocytic infiltration and serum autoantibodies. Previous studies have confirmed the critical role of Th17 cells in the pathopoiesis of HT patients. Additionally, regulatory T cells (Treg) display a dysregulatory function in autoimmune disease. The purpose of this study is to investigate the alteration of Th17 and Treg cells in HT patients and explore contributing factors. We found there was an increased ratio of Th17/Treg in HT patients and a positive correlation with autoantibodies (anti-TgAb). In addition, there was an increased level of GITRL, which has been demonstrated to be correlated with the increassement of Th17 cells in the serum and thyroid glands of HT patients; the upregulated serum level of GITRL has a positive correlation with the percentage of Th17 cells in HT patients. In summary, an increase in GITRL may impair the balance of Th17/Treg, and contribute to the pathopoiesis of Hashimoto’s thyroiditis.
Collapse
Affiliation(s)
- Yingzhao Liu
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, China.
| | - Xinyi Tang
- Institute of Laboratory Medicine, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang 212013, China.
| | - Jie Tian
- Institute of Laboratory Medicine, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang 212013, China.
| | - Chenlu Zhu
- Institute of Laboratory Medicine, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang 212013, China.
| | - Huiyong Peng
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, China.
| | - Ke Rui
- Institute of Laboratory Medicine, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang 212013, China.
| | - Yungang Wang
- Institute of Laboratory Medicine, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang 212013, China.
| | - Chaoming Mao
- Institute of Laboratory Medicine, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang 212013, China.
| | - Jie Ma
- Institute of Laboratory Medicine, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang 212013, China.
| | - Liwei Lu
- Department of Pathology and Centre of Infection and Immunology, The University of Hong Kong, Hong Kong 999077, China.
| | - Huaxi Xu
- Institute of Laboratory Medicine, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang 212013, China.
| | - Shengjun Wang
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, China.
| |
Collapse
|
32
|
Petrillo MG, Ronchetti S, Ricci E, Alunno A, Gerli R, Nocentini G, Riccardi C. GITR+ regulatory T cells in the treatment of autoimmune diseases. Autoimmun Rev 2014; 14:117-26. [PMID: 25449679 DOI: 10.1016/j.autrev.2014.10.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 09/28/2014] [Indexed: 01/07/2023]
Abstract
Autoimmune diseases decrease life expectancy and quality of life for millions of women and men. Although treatments can slow disease progression and improve quality of life, all currently available drugs have adverse effects and none of them are curative; therefore, requiring patients to take immunosuppressive drugs for the remainder of their lives. A curative therapy that is safe and effective is urgently needed. We believe that therapies promoting the in vivo expansion of regulatory T cells (Tregs) or injection of in vitro expanded autologous/heterologous Tregs (cellular therapy) can alter the natural history of autoimmune diseases. In this review, we present data from murine and human studies suggesting that 1) glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) plays a crucial role in thymic Treg (tTreg) differentiation and expansion; 2) GITR plays a crucial role in peripheral Treg (pTreg) expansion; 3) in patients with Sjögren syndrome and systemic lupus erythematosus, CD4(+)GITR(+) pTregs are expanded in patients with milder forms of the disease; and 4) GITR is superior to other cell surface markers to differentiate Tregs from other CD4(+) T cells. In this context, we consider two potential new approaches for treating autoimmune diseases consisting of the in vivo expansion of GITR(+) Tregs by GITR-triggering drugs and in vitro expansion of autologous or heterologous GITR(+) Tregs to be infused in patients. Advantages of such an approach, technical problems, and safety issues are discussed.
Collapse
Affiliation(s)
| | - Simona Ronchetti
- Department of Medicine, Section of Pharmacology, University of Perugia, Italy
| | - Erika Ricci
- Department of Medicine, Section of Pharmacology, University of Perugia, Italy
| | - Alessia Alunno
- Department of Medicine, Rheumatology Unit, University of Perugia, Italy
| | - Roberto Gerli
- Department of Medicine, Rheumatology Unit, University of Perugia, Italy
| | - Giuseppe Nocentini
- Department of Medicine, Section of Pharmacology, University of Perugia, Italy.
| | - Carlo Riccardi
- Department of Medicine, Section of Pharmacology, University of Perugia, Italy
| |
Collapse
|