1
|
Clanchy FI, Borghese F, Bystrom J, Balog A, Penn H, Hull DN, Mageed RA, Taylor PC, Williams RO. Inflammatory disease status and response to TNF blockade are associated with mechanisms of endotoxin tolerance. J Autoimmun 2024; 148:103300. [PMID: 39116634 DOI: 10.1016/j.jaut.2024.103300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024]
Abstract
The mechanisms of endotoxin tolerance (ET), which down-regulate inflammation, are well described in response to exogenous toll-like receptor ligands, but few studies have focused on ET-associated mechanisms in inflammatory disease. As blocking TNF can attenuate the development of ET, the effect of anti-TNF on the expression of key ET-associated molecules in inflammatory auto-immune disease was measured; changes in inflammatory gene expression were confirmed using an ET bioassay. The expression of immunomodulatory molecules was measured in a murine model of arthritis treated with anti-TNF and the expression of ET-associated molecules was measured in whole blood in rheumatoid arthritis (RA) and ankylosing spondylitis (AS) patients, before and after therapy. The expression of ET-associated genes was also measured in RA patient monocytes before and after therapy, in anti-TNF responders and non-responders. Tnfaip3, Ptpn6 and Irak3 were differentially expressed in affected paws, spleens, lymph nodes and circulating leucocytes in experimental murine arthritis treated with anti-TNF. Prior to therapy, the expression of TNFAIP3, INPP5D, PTPN6, CD38 and SIGIRR in whole blood differed between human healthy controls and RA or AS patients. In blood monocytes from RA patients, the expression of TNFAIP3 was significantly reduced by anti-TNF therapy in non-responders. Prior to therapy, anti-TNF non-responders had higher expression of TNFAIP3 and SLPI, compared to responders. Although the expression of TNFAIP3 was significantly higher in RA non-responders prior to treatment, the post-treatment reduction to a level similar to responders did not coincide with a clinical response to therapy.
Collapse
Affiliation(s)
- Felix Il Clanchy
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, United Kingdom; Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.
| | - Federica Borghese
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| | - Jonas Bystrom
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Attila Balog
- Department of Rheumatology and Immunology, Szent-Györgyi Albert Clinical Centre, University of Szeged, Szeged, Hungary
| | - Henry Penn
- Northwick Park Hospital, Harrow, United Kingdom
| | - Dobrina N Hull
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| | - Rizgar A Mageed
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Peter C Taylor
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Richard O Williams
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| |
Collapse
|
2
|
Miedema J, Cinetto F, Smed-Sörensen A, Spagnolo P. The immunopathogenesis of sarcoidosis. J Autoimmun 2024:103247. [PMID: 38734536 DOI: 10.1016/j.jaut.2024.103247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Sarcoidosis is a granulomatous multiorgan disease, thought to result from exposure to yet unidentified antigens in genetically susceptible individuals. The exaggerated inflammatory response that leads to granuloma formation is highly complex and involves the innate and adaptive immune system. Consecutive immunological studies using advanced technology have increased our understanding of aberrantly activated immune cells, mediators and pathways that influence the formation, maintenance and resolution of granulomas. Over the years, it has become increasingly clear that disease immunopathogenesis can only be understood if the clinical heterogeneity of sarcoidosis is taken into consideration, along with the distribution of immune cells in peripheral blood and involved organs. Most studies offer an immunological snapshot during disease course, while the cellular composition of both the circulation and tissue microenvironment may change over time. Despite these challenges, novel insights on the role of the immune system are continuously published, thus bringing the field forward. This review highlights current knowledge on the innate and adaptive immune responses involved in sarcoidosis pathogenesis, as well as the pathways involved in non-resolving disease and fibrosis development. Additionally, we describe proposed immunological mechanisms responsible for drug-induced sarcoid like reactions. Although many aspects of disease immunopathogenesis remain to be unraveled, the identification of crucial immune reactions in sarcoidosis may help identify new treatment targets. We therefore also discuss potential therapies and future strategies based on the latest immunological findings.
Collapse
Affiliation(s)
- Jelle Miedema
- Department of Pulmonary Medicine, Center of Expertise for Interstitial Lung Disease, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - Francesco Cinetto
- Rare Diseases Referral Center, Internal Medicine 1, Ca' Foncello Hospital, AULSS2 Marca Trevigiana, Italy; Department of Medicine - DIMED, University of Padova, Padova, Italy.
| | - Anna Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.
| | - Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy.
| |
Collapse
|
3
|
Wang J, Zhang SX, Chang JS, Cheng T, Jiang XJ, Su QY, Zhang JQ, Luo J, Li XF. Low-dose IL-2 improved clinical symptoms by restoring reduced regulatory T cells in patients with refractory rheumatoid arthritis: A randomized controlled trial. Front Immunol 2022; 13:947341. [PMID: 36524114 PMCID: PMC9744779 DOI: 10.3389/fimmu.2022.947341] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022] Open
Abstract
Background Regulatory T cells (Tregs) have been found to play crucial roles in immune tolerance. However, the status of Tregs in refractory rheumatoid arthritis (RA) is still unclear. Moreover, low-dose interleukin-2 (IL-2) has been reported to selectively promote the expansion of Tregs. This study investigated the status of CD4+ Tregs and low-dose IL-2 therapy in patients with refractory RA. Methods The absolute number of CD4+CD25+FOXP3+ Treg (CD4 Treg), CD4+IL17+ T (Th17), and other subsets in peripheral blood (PB) from 41 patients with refractory RA and 40 healthy donors was characterized by flow cytometry combined with an internal microsphere counting standard. Twenty-six patients with refractory RA were treated with daily subcutaneous injections of 0.5 million IU of human IL-2 for five consecutive days. Then, its effects on CD4 Treg and Th17 cells in PB were analyzed. Results A decrease in the absolute number of PB CD4 Tregs rather than the increase in the number of Th17 was found to contribute to an imbalance between Th17 and CD4 Tregs in these patients, suggesting an essential role of CD4 Tregs in sustained high disease activity. Low-dose IL-2 selectively increased the number of CD4 Tregs and rebalanced the ratio of Th17 and CD4 Tregs, leading to increased clinical symptom remission without the observed side effects. Conclusions An absolute decrease of PB CD4 Tregs in patients with refractory RA was associated with continuing disease activation but not the increase of Th17 cells. Low-dose IL-2, a potential therapeutic candidate, restored decreased CD4 Tregs and promoted the rapid remission of patients with refractory RA without overtreatment and the observed side effects. Clinical trial registration http://www.chictr.org.cn/showproj.aspx?proj=13909, identifier ChiCTR-INR-16009546.
Collapse
Affiliation(s)
- Jia Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Jia-Song Chang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Ting Cheng
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Xiao-Jing Jiang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Qin-Yi Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Jia-Qi Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Jing Luo
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Xiao-Feng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| |
Collapse
|
4
|
Rani L, Kumar A, Karhade J, Pandey G, Guha A, Mishra GC, Wani MR. IL-3 regulates the differentiation of pathogenic Th17 cells. Eur J Immunol 2022; 52:1842-1858. [PMID: 36074916 DOI: 10.1002/eji.202149674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 07/26/2022] [Accepted: 09/06/2022] [Indexed: 11/06/2022]
Abstract
IL-17 producing Th17 cells play an important role in pathogenesis of rheumatoid arthritis (RA). Aberrant immune activation due to imbalance between Th17 and regulatory T (Treg) cells is associated with development of RA and other autoimmune diseases. Targeting pathogenic Th17 cells and their associated molecules is emerging as a promising strategy to treat and reverse RA. Here, we demonstrate that IL-3 inhibits the differentiation of Th17 cells and promotes the development of Treg cells in IL-2-dependent manner. In IL-2 knockout mice, we observed that IL-3 has no effect on differentiation of both Th17 and Treg cells. In addition, IL-3 decreases pathogenic IL-17A+ TNF-α+ , IL-17A+ IFN-γ+ and IL-23R+ Th17 cells, secretion of GM-CSF and IFN-γ, and osteoclastogenesis when presented in the culture together with Th-17 polarizing cytokines. Mechanistically, IL-3 regulates the development of Th17 cells through inhibition of STAT3 phosphorylation. IL-3 treatment significantly decreases the pathogenic Th17 cell responses and arthritic scores in mouse model of RA. Importantly, IL-3 inhibits differentiation of human Th17 cells. Thus, our results suggest a novel therapeutic role of IL-3 in regulation of Th17 cell-mediated pathophysiology of RA. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lekha Rani
- Bone and Cartilage Research Laboratory, National Centre for Cell Science, Pune, 411007, India
| | - Anil Kumar
- Bone and Cartilage Research Laboratory, National Centre for Cell Science, Pune, 411007, India
| | - Juilee Karhade
- Bone and Cartilage Research Laboratory, National Centre for Cell Science, Pune, 411007, India
| | - Garima Pandey
- Bone and Cartilage Research Laboratory, National Centre for Cell Science, Pune, 411007, India
| | - Adrita Guha
- Bone and Cartilage Research Laboratory, National Centre for Cell Science, Pune, 411007, India
| | - Gyan C Mishra
- Bone and Cartilage Research Laboratory, National Centre for Cell Science, Pune, 411007, India
| | - Mohan R Wani
- Bone and Cartilage Research Laboratory, National Centre for Cell Science, Pune, 411007, India
| |
Collapse
|
5
|
Fonseca Peixoto R, Ewerton Maia Rodrigues C, Henrique de Sousa Palmeira P, Cézar Comberlang Queiroz Davis Dos Santos F, Keesen de Souza Lima T, de Sousa Braz A. Immune hallmarks of rheumatoid arthritis management: A brief review. Cytokine 2022; 158:156007. [PMID: 35985174 DOI: 10.1016/j.cyto.2022.156007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022]
Abstract
The purpose of this review was to examine current evidence on immunomodulation mediated by conventional drugs and the use of novel biological agents for the treatment of rheumatoid arthritis (RA). Currently, treatment is focused on maximizing quality of life through sustained clinical remission and/or attenuating disease activity. To do so, disease-modifying antirheumatic drugs, especially methotrexate, are used alone or in combination with other drugs, including leflunomide, biological disease-modifying antirheumatic drugs (bDMARDs) and targeted synthetic disease-modifying antirheumatic drugs (tsDMARDs). The most recent strategies modulate the immune response of the individual RA patient using tsDMARDs such as JAK inhibitors and bDMARDs such as ig-CTLA-4, anti- IL6R, anti-TNF-α and anti-CD20. To better understand current immunopharmacological interventions, we also looked at documented mechanisms of RA-mediated immunomodulation, highlighting perspectives potentially boosting RA treatment.
Collapse
Affiliation(s)
- Rephany Fonseca Peixoto
- Laboratory of Immunology of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | - Carlos Ewerton Maia Rodrigues
- Post‑Graduate Program in Medical Sciences, Medical School, University of Fortaleza (Unifor), Fortaleza, Brazil; Department of Internal Medicine, Federal University of Ceará, Brazil.
| | - Pedro Henrique de Sousa Palmeira
- Laboratory of Immunology of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | | | - Tatjana Keesen de Souza Lima
- Laboratory of Immunology of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | | |
Collapse
|
6
|
Gene Ontology Analysis Highlights Biological Processes Influencing Non-Response to Anti-TNF Therapy in Rheumatoid Arthritis. Biomedicines 2022; 10:biomedicines10081808. [PMID: 36009355 PMCID: PMC9404936 DOI: 10.3390/biomedicines10081808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/20/2022] Open
Abstract
Anti-TNF therapy has significantly improved disease control in rheumatoid arthritis, but a fraction of rheumatoid arthritis patients do not respond to anti-TNF therapy or lose response over time. Moreover, the mechanisms underlying non-response to anti-TNF therapy remain largely unknown. To date, many single biomarkers of response to anti-TNF therapy have been published but they have not yet been analyzed as a system of interacting nodes. The aim of our study is to systematically elucidate the biological processes underlying non-response to anti-TNF therapy in rheumatoid arthritis using the gene ontologies of previously published predictive biomarkers. Gene networks were constructed based on published biomarkers and then enriched gene ontology terms were elucidated in subgroups using gene ontology software tools. Our results highlight the novel role of proteasome-mediated protein catabolic processes (p = 2.91 × 10−15) and plasma lipoproteins (p = 4.55 × 10−11) in anti-TNF therapy response. The results of our gene ontology analysis help elucidate the biological processes underlying non-response to anti-TNF therapy in rheumatoid arthritis and encourage further study of the highlighted processes.
Collapse
|
7
|
Snyder EC, Abdelbary M, El-Marakby A, Sullivan JC. Treatment of male and female spontaneously hypertensive rats with TNF-α inhibitor etanercept increases markers of renal injury independent of an effect on blood pressure. Biol Sex Differ 2022; 13:17. [PMID: 35413930 PMCID: PMC9006436 DOI: 10.1186/s13293-022-00424-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 03/28/2022] [Indexed: 11/10/2022] Open
Abstract
Hypertension remains the leading risk factor for cardiovascular disease. Young females tend to be protected from hypertension compared with age-matched males. Although it has become increasingly clear that the immune system plays a key role in the development of hypertension in both sexes, few studies have examined how cytokines mediate hypertension in males versus females. We previously published that there are sex differences in the levels of the cytokine tumor necrosis factor (TNF)-α in spontaneously hypertensive rats (SHR). The goal of this study was to test the hypothesis that TNF-α inhibition with etanercept will lower BP in male and female SHR. However, as male SHR have a more pro-inflammatory status than female SHR, we further hypothesize that males will have a greater decrease in BP with TNF-α inhibition than females. Young adult male and female SHR were administered increasing doses of the TNF-α inhibitor etanercept or vehicle twice weekly for 31 days and BP was continuously measured via telemetry. Following treatment, kidneys and urine were collected and analyzed for markers of inflammation and injury. Despite significantly decreasing renal TNF-α levels, renal phospho-NFκB and urinary MCP-1 excretion, etanercept did not alter BP in either male or female SHR. Interestingly, treatment with etanercept increased urinary excretion of protein, creatinine and KIM-1 in both sexes. These results indicate that TNF-α does not contribute to sex differences in BP in SHR but may be vital in the maintenance of renal health.
Collapse
Affiliation(s)
- Elizabeth C Snyder
- Department of Physiology, Medical College of Georgia at Augusta University, 1459 Laney Walker Blvd CB-2204, Augusta, GA, 30912, USA
| | - Mahmoud Abdelbary
- Department of Physiology, Medical College of Georgia at Augusta University, 1459 Laney Walker Blvd CB-2204, Augusta, GA, 30912, USA
| | - Ahmed El-Marakby
- Department of Oral Biology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Jennifer C Sullivan
- Department of Physiology, Medical College of Georgia at Augusta University, 1459 Laney Walker Blvd CB-2204, Augusta, GA, 30912, USA.
| |
Collapse
|
8
|
Pharmacogenomics of Anti-TNF Treatment Response Marks a New Era of Tailored Rheumatoid Arthritis Therapy. Int J Mol Sci 2022; 23:ijms23042366. [PMID: 35216481 PMCID: PMC8879844 DOI: 10.3390/ijms23042366] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/19/2022] [Accepted: 02/19/2022] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is the most commonly occurring chronic inflammatory arthritis, the exact mechanism of which is not fully understood. Tumor Necrosis Factor (TNF)-targeting drugs has been shown to exert high effectiveness for RA, which indicates the key importance of this cytokine in this disease. Nevertheless, the response to TNF inhibitors varies, and approximately one third of RA patients are non-responders, which is explained by the influence of genetic factors. Knowledge in the field of pharmacogenomics of anti-TNF drugs is growing, but has not been applied in the clinical practice so far. Different genome-wide association studies identified a few single nucleotide polymorphisms associated with anti-TNF treatment response, which largely map genes involved in T cell function. Studies of the gene expression profile of RA patients have also indicated specific gene signatures that may be useful to develop novel prognostic tools. In this article, we discuss the significance of TNF in RA and present the current knowledge in pharmacogenomics related to anti-TNF treatment response.
Collapse
|
9
|
Laranjeira P, Pedrosa M, Duarte C, Pedreiro S, Antunes B, Ribeiro T, dos Santos F, Martinho A, Fardilha M, Domingues MR, Abecasis M, Pereira da Silva JA, Paiva A. Human Bone Marrow Mesenchymal Stromal/Stem Cells Regulate the Proinflammatory Response of Monocytes and Myeloid Dendritic Cells from Patients with Rheumatoid Arthritis. Pharmaceutics 2022; 14:pharmaceutics14020404. [PMID: 35214136 PMCID: PMC8880255 DOI: 10.3390/pharmaceutics14020404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis (RA) is a disabling autoimmune disease whose treatment is ineffective for one-third of patients. Thus, the immunomodulatory potential of mesenchymal stromal/stem cells (MSCs) makes MSC-based therapy a promising approach to RA. This study aimed to explore the immunomodulatory action of human bone marrow (BM)-MSCs on myeloid dendritic cells (mDCs) and monocytes, especially on cytokines/chemokines involved in RA physiopathology. For that, LPS plus IFNγ-stimulated peripheral blood mononuclear cells from RA patients (n = 12) and healthy individuals (n = 6) were co-cultured with allogeneic BM-MSCs. TNF-α, CD83, CCR7 and MIP-1β protein levels were assessed in mDCs, classical, intermediate, and non-classical monocytes. mRNA expression of other cytokines/chemokines was also evaluated. BM-MSCs effectively reduced TNF-α, CD83, CCR7 and MIP-1β protein levels in mDCs and all monocyte subsets, in RA patients. The inhibition of TNF-α production was mainly achieved by the reduction of the percentage of cellsproducing this cytokine. BM-MSCs exhibited a remarkable suppressive action over antigen-presenting cells from RA patients, potentially affecting their ability to stimulate the immune adaptive response at different levels, by hampering their migration to the lymph node and the production of proinflammatory cytokines and chemokines. Accordingly, MSC-based therapies can be a valuable approach for RA treatment, especially for non-responder patients.
Collapse
Affiliation(s)
- Paula Laranjeira
- Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, Av. Bissaya Barreto, Bloco de Celas, 3000-075 Coimbra, Portugal;
- Centro do Sangue e da Transplantação de Coimbra, Instituto Português do Sangue e da Transplantação, Coimbra, Portugal, Quinta da Vinha Moura, São Martinho do Bispo, 3041-861 Coimbra, Portugal; (M.P.); (S.P.); (A.M.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (C.D.); (J.A.P.d.S.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Polo 1, 1.° Piso, FMUC, Rua Larga, 3004-504 Coimbra, Portugal
| | - Mónia Pedrosa
- Centro do Sangue e da Transplantação de Coimbra, Instituto Português do Sangue e da Transplantação, Coimbra, Portugal, Quinta da Vinha Moura, São Martinho do Bispo, 3041-861 Coimbra, Portugal; (M.P.); (S.P.); (A.M.)
- Signal Transduction Laboratory, Center of Cellular Biology, SACS and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
- Enzifarma—Diagnostica e Farmacêutica, S.A., Estrada da Luz, n.° 90, 2° F, 1600-160 Lisbon, Portugal
| | - Cátia Duarte
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (C.D.); (J.A.P.d.S.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Rheumatology Department, Hospitais da Universidade de Coimbra, Centro Hospitalar e Universitário de Coimbra, Praceta Professor Mota Pinto, 3000-075 Coimbra, Portugal
| | - Susana Pedreiro
- Centro do Sangue e da Transplantação de Coimbra, Instituto Português do Sangue e da Transplantação, Coimbra, Portugal, Quinta da Vinha Moura, São Martinho do Bispo, 3041-861 Coimbra, Portugal; (M.P.); (S.P.); (A.M.)
| | - Brígida Antunes
- Cell2B Advanced Therapeutics, SA, Biocant Park, Núcleo 04, Lote 4A, 3060-197 Cantanhede, Portugal; ; (B.A.); (T.R.); (F.d.S.)
| | - Tânia Ribeiro
- Cell2B Advanced Therapeutics, SA, Biocant Park, Núcleo 04, Lote 4A, 3060-197 Cantanhede, Portugal; ; (B.A.); (T.R.); (F.d.S.)
| | - Francisco dos Santos
- Cell2B Advanced Therapeutics, SA, Biocant Park, Núcleo 04, Lote 4A, 3060-197 Cantanhede, Portugal; ; (B.A.); (T.R.); (F.d.S.)
- Stemlab SA, Biocant Park, Núcleo 04, Lote 2, 3060-197 Cantanhede, Portugal
| | - António Martinho
- Centro do Sangue e da Transplantação de Coimbra, Instituto Português do Sangue e da Transplantação, Coimbra, Portugal, Quinta da Vinha Moura, São Martinho do Bispo, 3041-861 Coimbra, Portugal; (M.P.); (S.P.); (A.M.)
| | - Margarida Fardilha
- Signal Transduction Laboratory, Center of Cellular Biology, SACS and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
- Laboratory of Signal Transduction, Institute of Biomedicine—iBiMED, Department of Medical Sciences, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - M. Rosário Domingues
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal;
- Centre for Environmental and Marine Studies (CESAM), Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Manuel Abecasis
- Serviço de Transplantação de Progenitores Hematopoiéticos (UTM), Instituto Português de Oncologia de Lisboa Francisco Gentil, Rua Professor Lima Basto, 1099-023 Lisbon, Portugal;
- Instituto Português do Sangue e da Transplantação—CEDACE, Alameda das Linhas de Torres, 117, 1769-001 Lisbon, Portugal
| | - José António Pereira da Silva
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (C.D.); (J.A.P.d.S.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Rheumatology Department, Hospitais da Universidade de Coimbra, Centro Hospitalar e Universitário de Coimbra, Praceta Professor Mota Pinto, 3000-075 Coimbra, Portugal
| | - Artur Paiva
- Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, Av. Bissaya Barreto, Bloco de Celas, 3000-075 Coimbra, Portugal;
- Centro do Sangue e da Transplantação de Coimbra, Instituto Português do Sangue e da Transplantação, Coimbra, Portugal, Quinta da Vinha Moura, São Martinho do Bispo, 3041-861 Coimbra, Portugal; (M.P.); (S.P.); (A.M.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (C.D.); (J.A.P.d.S.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, Ciências Biomédicas Laboratoriais, Rua 5 de Outubro, 3046-854 Coimbra, Portugal
- Correspondence: ; Tel.: +351-239-488-700
| |
Collapse
|
10
|
RORα is critical for mTORC1 activity in T cell-mediated colitis. Cell Rep 2021; 36:109682. [PMID: 34525365 DOI: 10.1016/j.celrep.2021.109682] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/15/2021] [Accepted: 08/17/2021] [Indexed: 01/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is multi-factorial chronic intestinal inflammation driven by pathogenic T cells, among which a large portion of patients are resistant to current anti-inflammatory regimes. The mechanisms underlying colitis pathogenicity and drug resistance are not fully understood. Here, we demonstrate that RORα is highly expressed in active UC patients, particularly in those non-responsive to anti-TNF treatment. Rorα deficiency in CD4+ T cells greatly reduced colitis development. Mechanistically, RORα regulated T cell infiltration in colon and inhibited T cell apoptosis. Meanwhile, genome-wide occupancy and transcriptome analysis revealed that RORα promoted mTORC1 activation. mTORC1 signaling, also hyperactivated in active UC patients, is necessary for T cell-mediated colitis. Our results thus demonstrate a crucial role of the RORα-mTORC1 axis in CD4+ T cells in promoting IBD, which may be targeted in human patients.
Collapse
|
11
|
Al-Bogami M, Bystrom J, Clanchy F, Taher TE, Mangat P, Williams RO, Jawad AS, Mageed RA. TNFα inhibitors reduce bone loss in rheumatoid arthritis independent of clinical response by reducing osteoclast precursors and IL-20. Rheumatology (Oxford) 2021; 60:947-957. [PMID: 32984900 DOI: 10.1093/rheumatology/keaa551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/17/2020] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES About half of RA patients treated with TNFα inhibitors either do not respond or lose their initial therapeutic response over time. The clinical response is measured by reduction in DAS28, which primarily reflects inflammation. However, other effects of TNFα inhibitors, such as impact on bone erosion, are not assessed by DAS28. We aimed to examine the effect of TNFα inhibitors on bone density, bone biomarkers and cytokine production in responder and non-responder patients and assessed mechanisms of action. METHODS BMD in the lumbar spine and femur neck of 117 RA patients was measured by DEXA scan. Bone turnover biomarkers CTX, osteoprotegerin (OPG), osteocalcin and RANKL were measured by ELISA. Levels of 16 cytokines in plasma and in tissue culture supernatants of ex vivo T cells were measured by multiplex assays and ELISA. The effect of treatment with TNFα inhibitors on blood mononuclear cell (MNC) differentiation to osteoclast precursors (OCP) was measured flow cytometry and microscopy. RESULTS TNFα inhibitors improved lumbar spine BMD but had modest effects on blood bone biomarkers, irrespective of patients' clinical response. Blood OCP numbers and the ability of monocytes to differentiate to OCP in vitro declined after treatment. Treatment also reduced RANK expression and IL-20 production. BMD improvement correlated with reduced levels of IL-20 in responder patients. CONCLUSION This study reveals that TNFα inhibitors reduce lumbar spine bone loss in RA patients irrespective of changes in DAS28. The reduction in bone loss is associated with reduction in IL-20 levels in responder patients.
Collapse
Affiliation(s)
- Mohammed Al-Bogami
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Jonas Bystrom
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Felix Clanchy
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Taher E Taher
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Pamela Mangat
- Department of Rheumatology, Royal Free Hospital, NHS Foundation Trust London, London, UK
| | | | - Ali S Jawad
- Department of Rheumatology, Barts Health NHS Trust, London, UK
| | - Rizgar A Mageed
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, UK
| |
Collapse
|
12
|
Mezghiche I, Yahia-Cherbal H, Rogge L, Bianchi E. Novel approaches to develop biomarkers predicting treatment responses to TNF-blockers. Expert Rev Clin Immunol 2021; 17:331-354. [PMID: 33622154 DOI: 10.1080/1744666x.2021.1894926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Chronic inflammatory diseases (CIDs) cause significant morbidity and are a considerable burden for the patients in terms of pain, impaired function, and diminished quality of life. Important progress in CID treatment has been obtained with biological therapies, such as tumor-necrosis-factor blockers. However, more than a third of the patients fail to respond to these inhibitors and are exposed to the side effects of treatment, without the benefits. Therefore, there is a strong interest in developing tools to predict response of patients to biologics. Areas covered: The authors searched PubMed for recent studies on biomarkers for disease assessment and prediction of therapeutic responses, focusing on the effect of TNF blockers on immune responses in spondyloarthritis (SpA), and other CID, in particular rheumatoid arthritis and inflammatory bowel disease. Conclusions will be drawn about the possible development of predictive biomarkers for response to treatment. Expert opinion: No validated biomarker is currently available to predict treatment response in CID. New insight could be generated through the development of new bioinformatic modeling approaches to combine multidimensional biomarkers that explain the different genetic, immunological and environmental determinants of therapeutic responses.
Collapse
Affiliation(s)
- Ikram Mezghiche
- Department of Immunology, Immunoregulation Unit, Institut Pasteur, Paris, France.,Université De Paris, Sorbonne Paris Cité, Paris, France
| | - Hanane Yahia-Cherbal
- Department of Immunology, Immunoregulation Unit, Institut Pasteur, Paris, France.,Fondation AP-HP, Paris, France
| | - Lars Rogge
- Department of Immunology, Immunoregulation Unit, Institut Pasteur, Paris, France.,Unité Mixte AP-HP/Institut Pasteur, Institut Pasteur, Paris, France
| | - Elisabetta Bianchi
- Department of Immunology, Immunoregulation Unit, Institut Pasteur, Paris, France.,Unité Mixte AP-HP/Institut Pasteur, Institut Pasteur, Paris, France
| |
Collapse
|
13
|
Abstract
Immune checkpoint inhibitors (ICIs) are effective in the treatment of patients with advanced cancer and have emerged as a pillar of standard cancer care. However, their use is complicated by adverse effects known as immune-related adverse events (irAEs), including ICI-induced inflammatory arthritis. ICI-induced inflammatory arthritis is distinguished from other irAEs by its persistence and requirement for long-term treatment. TNF inhibitors are commonly used to treat inflammatory diseases such as rheumatoid arthritis, spondyloarthropathies and inflammatory bowel disease, and have also been adopted as second-line agents to treat irAEs refractory to glucocorticoid treatment. Experiencing an irAE is associated with a better antitumour response after ICI treatment. However, whether TNF inhibition can be safely used to treat irAEs without promoting cancer progression, either by compromising ICI therapy efficacy or via another route, remains an open question. In this Review, we discuss clinical and preclinical studies that address the relationship between TNF, TNF inhibition and cancer. The bulk of the evidence suggests that at least short courses of TNF inhibitors are safe for the treatment of irAEs in patients with cancer undergoing ICI therapy. Data from preclinical studies hint that TNF inhibition might augment the antitumour effect of ICI therapy while simultaneously ameliorating irAEs.
Collapse
|
14
|
Wu Y, He X, Huang N, Yu J, Shao B. A20: a master regulator of arthritis. Arthritis Res Ther 2020; 22:220. [PMID: 32958016 PMCID: PMC7504854 DOI: 10.1186/s13075-020-02281-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
A20, also known as TNF-α-induced protein 3 (TNFAIP3), is an anti-inflammatory protein that plays an important part in both immune responses and cell death. Impaired A20 function is associated with several human inflammatory and autoimmune diseases. Although the role of A20 in mediating inflammation has been frequently discussed, its intrinsic link to arthritis awaits further explanation. Here, we review new findings that further demonstrate the molecular mechanisms through which A20 regulates inflammatory arthritis, and we discuss the regulation of A20 by many factors. We conclude by reviewing the latest A20-associated mouse models that have been applied in related research because they reflect the characteristics of arthritis, the study of which will hopefully cast new light on anti-arthritis treatments.
Collapse
Affiliation(s)
- Yongyao Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaomin He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ning Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiayun Yu
- State Key Laboratory of Biotherapy anf Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bin Shao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China. .,State Key Laboratory of Biotherapy anf Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
15
|
Drug-resistance in rheumatoid arthritis: the role of p53 gene mutations, ABC family transporters and personal factors. Curr Opin Pharmacol 2020; 54:59-71. [PMID: 32942096 DOI: 10.1016/j.coph.2020.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/15/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that is associated with chronic inflammation in joints, which contribute to synovial membrane hyperplasia and cartilage damage. Conventional disease-modifying antirheumatic drugs (DMARDs), such as methotrexate (MTX) and leflunomide (LEF), are the common RA therapy to reduce inflammation and disease progression. Recently, drug-resistance in RA with conventional treatment has become an issue. Mutations in p53 tumor suppressor gene and overexpression of ABCB1/MDR-1/P-gp transporters may contribute to antirheumatic drug-resistance in RA. Biologic DMARDs (bDMARDs) are often prescribed, when conventional DMARDs fail to treat RA, by targeting proinflammatory mediators such as tumor necrosis factor-α (TNF-α) and interleukin (IL)-6. The efficacy of bDMARDs is affected by personal factors, for example, age, smoking, body mass index (BMI), immunogenicity, and genetic polymorphisms. This review highlights the role of p53 gene mutations, ABC family transporters and personal factors in antirheumatic drug-resistance, which may lead to new personalized therapies against RA with an increased drug-sensitivity.
Collapse
|
16
|
Dulic S, Toldi G, Sava F, Kovács L, Molnár T, Milassin Á, Farkas K, Rutka M, Balog A. Specific T-Cell Subsets Can Predict the Efficacy of Anti-TNF Treatment in Inflammatory Bowel Diseases. Arch Immunol Ther Exp (Warsz) 2020; 68:12. [PMID: 32248339 PMCID: PMC7128008 DOI: 10.1007/s00005-020-00575-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 03/03/2020] [Indexed: 12/19/2022]
Abstract
The effect of TNF-blockers on T-lymphocyte subsets is largely unknown in inflammatory bowel diseases (IBDs). The aim of the present study was to analyze the prevalence of T-cell subtypes and their correlation to therapeutic response. Sixty-eight patients with Crohn’s disease (CD), 46 with ulcerative colitis (UC) were enrolled. (1) The clinical course was followed after the initiation of TNF-blockers (prospective study). (2) The immunophenotype was also compared between long-term anti-TNF treated-responders and non-responders (cross-sectional study). The results were compared with those of therapy-naïve patients with active disease and those in remission with non-biological immunosuppressive therapy, and with healthy controls. Fourteen subtypes of peripheral blood T cells were measured with flow cytometry. The prevalence of Th2 and Th17 cells, of HLA-DR- and CD69-positive CD4 and CD8 cells, was higher, whereas the percentage of CD45RA-positive CD4 and CD8 cells was lower in both IBDs than in controls. CD8CD69 cell frequency was lower in remission, and decreased during anti-TNF therapy in CD responders. CD8CD45RO memory cells had higher prevalence in UC non-responders than in those starting anti-TNF. CD4CD45RO percentage < 49.05 at the initiation of TNF-blockers was predictive of a subsequent therapeutic response in CD, and Th2 and Th17 prevalence correlated with the duration of remission on TNF-blockers in UC. This study provided a detailed description of the T-cell composition in IBDs. CD8CD69 prevalence may be an activity marker in CD, and CD4CD45RO, Th2 and Th17 levels could be predictive for a therapeutic response to anti-TNF.
Collapse
Affiliation(s)
- Sonja Dulic
- Department of Rheumatology and Immunology, Faculty of Medicine, Albert Szent-Györgyi Health Center, University of Szeged, Kálvária sgt. 57, Szeged, 6725, Hungary
| | - Gergely Toldi
- First Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
| | - Florentina Sava
- First Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
| | - László Kovács
- Department of Rheumatology and Immunology, Faculty of Medicine, Albert Szent-Györgyi Health Center, University of Szeged, Kálvária sgt. 57, Szeged, 6725, Hungary
| | - Tamás Molnár
- First Department of Medicine, Faculty of Medicine, Albert Szent-Györgyi Health Center, University of Szeged, Szeged, Hungary
| | - Ágnes Milassin
- First Department of Medicine, Faculty of Medicine, Albert Szent-Györgyi Health Center, University of Szeged, Szeged, Hungary
| | - Klaudia Farkas
- First Department of Medicine, Faculty of Medicine, Albert Szent-Györgyi Health Center, University of Szeged, Szeged, Hungary
| | - Mariann Rutka
- First Department of Medicine, Faculty of Medicine, Albert Szent-Györgyi Health Center, University of Szeged, Szeged, Hungary
| | - Attila Balog
- Department of Rheumatology and Immunology, Faculty of Medicine, Albert Szent-Györgyi Health Center, University of Szeged, Kálvária sgt. 57, Szeged, 6725, Hungary.
| |
Collapse
|
17
|
Pedrosa M, Gomes J, Laranjeira P, Duarte C, Pedreiro S, Antunes B, Ribeiro T, Santos F, Martinho A, Fardilha M, Domingues MR, Abecasis M, P da Silva JA, Paiva A. Immunomodulatory effect of human bone marrow-derived mesenchymal stromal/stem cells on peripheral blood T cells from rheumatoid arthritis patients. J Tissue Eng Regen Med 2019; 14:16-28. [PMID: 31502378 DOI: 10.1002/term.2958] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/04/2019] [Accepted: 09/03/2019] [Indexed: 12/18/2022]
Abstract
Rheumatoid arthritis (RA) is a Th1/Th17-mediated autoimmune disease whose current treatment, consisting in the blockage of inflammatory cytokines by disease-modifying antirheumatic drugs, is not effective for all patients. The therapeutic potential of mesenchymal stromal/stem cells' (MSCs) immunomodulatory properties is being explored in RA. Here, we investigate the effect of human bone marrow (BM)-MSCs on the expression of cytokines involved in RA physiopathology by the distinct functional compartments of CD4+ and CD8+ T cells from RA patients. Peripheral blood mononuclear cells from healthy individuals (n = 6) and RA patients (n = 12) were stimulated with phorbol myristate acetate plus ionomycin and cultured in the presence/absence of BM-MSCs. The expression of (interleukin) IL-2, tumor necrosis factor alpha (TNF-α), and interferon-gamma (IFN-γ) was evaluated in naive, central memory, effector memory, and effector CD4+ and CD8+ T cells, whereas IL-6, IL-9, and IL-17 expression was measured in total CD4+ and CD8+ T cells. mRNA expression of IL-4, IL-10, transforming growth factor beta (TGF-β), cytotoxic T-lymphocyte-associated antigen 4, and/or forkhead box P3 was quantified in fluorescence-activated cell sorting-purified CD4+ T cells, CD8+ T cells, and CD4+ Treg. BM-MSCs inhibited the production of TNF-α, IL-17, IL-6, IL-2, IFN-γ, and IL-9 by T cells from RA patients, mainly by reducing the percentage of cells producing cytokines. This inhibitory effect was transversal to all T cell subsets analyzed. At mRNA level, BM-MSCs increased expression of IL-10 and TGF-β by CD4+ and CD8+ T cells. BM-MSCs displayed a striking inhibitory action over T cells from RA patients, reducing the expression of cytokines involved in RA physiopathology. Remarkably, BM-MSC-derived immunomodulation affected either naive, effector, and memory T cells.
Collapse
Affiliation(s)
- Mónia Pedrosa
- Centro do Sangue e da Transplantação de Coimbra, Instituto Português do Sangue e da Transplantação, Coimbra, Portugal.,Signal Transduction Laboratory, Center of Cellular Biology, SACS and Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Joana Gomes
- Centro do Sangue e da Transplantação de Coimbra, Instituto Português do Sangue e da Transplantação, Coimbra, Portugal.,Mass Spectrometry Center, QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Paula Laranjeira
- Centro do Sangue e da Transplantação de Coimbra, Instituto Português do Sangue e da Transplantação, Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Cátia Duarte
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal.,Rheumatology Department, Hospitais da Universidade de Coimbra, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Susana Pedreiro
- Centro do Sangue e da Transplantação de Coimbra, Instituto Português do Sangue e da Transplantação, Coimbra, Portugal
| | | | - Tânia Ribeiro
- Cell2B Advanced Therapeutics, SA, Cantanhede, Portugal
| | - Francisco Santos
- Cell2B Advanced Therapeutics, SA, Cantanhede, Portugal.,Stemlab SA, Cantanhede, Portugal
| | - António Martinho
- Centro do Sangue e da Transplantação de Coimbra, Instituto Português do Sangue e da Transplantação, Coimbra, Portugal
| | - Margarida Fardilha
- Signal Transduction Laboratory, Center of Cellular Biology, SACS and Department of Biology, University of Aveiro, Aveiro, Portugal.,Laboratory of Signal Transduction, Institute of Biomedicine-iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Center, QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,Departament of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Manuel Abecasis
- Serviço de Transplantação de Progenitores Hematopoiéticos (UTM), Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | - José António P da Silva
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal.,Rheumatology Department, Hospitais da Universidade de Coimbra, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Artur Paiva
- Centro do Sangue e da Transplantação de Coimbra, Instituto Português do Sangue e da Transplantação, Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal.,Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Instituto Politecnico de Coimbra, ESTESC-Coimbra Health School, Ciencias Biomedicas Laboratoriais, Coimbra, Portugal
| |
Collapse
|
18
|
Mao D, Li H, Zhang L, Xu J, Yu C, Zhang Q. Bilobalide alleviates IL-17-induced inflammatory injury in ATDC5 cells by downregulation of microRNA-125a. J Biochem Mol Toxicol 2019; 33:e22405. [PMID: 31593333 DOI: 10.1002/jbt.22405] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/01/2019] [Accepted: 09/18/2019] [Indexed: 01/03/2023]
Abstract
Ankylosing spondylitis (AS) is a high disability and greatly destructive disease. In this study, we preliminarily studied the function and mechanism of bilobalide (BIL) on interleukin (IL)-17-induced inflammatory injury in ATDC5 cells. CCK-8 and migration assays were used to detect the functions of IL-7, BIL, and microRNA (miR)-125a on cell viability and migration. The miR-125a level was changed by transfection, and tested by real-time quantitative polymerase chain reaction. Additionally, Western blot tested the levels of inflammatory factors (IL-6 and tumor necrosis factor-α), matrix metalloproteinases (MMPs), and pathway-related proteins. Moreover, the enzyme-linked immunosorbent assay also was used to detect inflammatory factor levels. IL-7 was used to construct an inflammatory injury model in ATDC5 cells. Based on this, BIL inhibited IL-17-induced cell viability, migration, and expressions of inflammatory factors and MMPs. Furthermore, we found BIL negatively regulated miR-125a, and the miR-125a mimic could partly reverse the effects of BIL on IL-17-injury. Finally, we showed that BIL inhibited the c-Jun N-terminal kinase (JNK) and nuclear factor kappa B (NF-κB) pathways, and the miR-125a mimic had the opposite effect. BIL inhibited IL-17-induced inflammatory injury in ATDC5 cells by downregulation of miR-125a via JNK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Dongmei Mao
- Department of Cardiology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Hong Li
- Department of Critical Care Medicine, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Lei Zhang
- Department of Rheumatology and Immunology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Jian Xu
- Department of Rheumatology and Immunology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Chunyan Yu
- Department of Rheumatology and Immunology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Qi Zhang
- Department of Rheumatology and Immunology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| |
Collapse
|
19
|
Al-Mossawi H, Taams LS, Goodyear CS, Kirkham BW, McInnes IB, Siebert S, Coates LC. Precision medicine in psoriatic arthritis: how should we select targeted therapies? THE LANCET. RHEUMATOLOGY 2019; 1:e66-e73. [PMID: 38229362 DOI: 10.1016/s2665-9913(19)30008-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 01/17/2023]
Abstract
Psoriatic arthritis (PsA) is a heterogeneous inflammatory arthritis associated with psoriasis. Patients manifest variable presentations with potential involvement of peripheral joints, spine, tendons, skin, and nails. There has been a rapid expansion in targeted treatment options for patients with PsA, but typically less than half of those who receive therapy achieve optimal treatment targets. Many patients respond to second-line or third-line biological therapies, but little evidence exists to guide the choice of therapeutics for each individual. At present, choice of therapy is driven by active clinical disease domains, clinician familiarity with existing treatments, and cost. Here, we review recent data that highlight the potential for personalised, or precision, medicine in PsA and other forms of inflammatory arthritis, noting that this research is still at a preliminary stage. In the future, a combination of detailed immunophenotyping and sophisticated statistical analyses should help to facilitate a personalised medicine approach in PsA, following examples from other clinical areas, such as oncology. This change in approach to the treatment of PsA has the potential to maximise outcomes for patients and to provide optimal therapies without delay.
Collapse
Affiliation(s)
- Hussein Al-Mossawi
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Leonie S Taams
- Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Carl S Goodyear
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Bruce W Kirkham
- Department of Rheumatology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Iain B McInnes
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Stefan Siebert
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Laura C Coates
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
20
|
Klasen C, Meyer A, Wittekind PS, Waqué I, Nabhani S, Kofler DM. Prostaglandin receptor EP4 expression by Th17 cells is associated with high disease activity in ankylosing spondylitis. Arthritis Res Ther 2019; 21:159. [PMID: 31253169 PMCID: PMC6599260 DOI: 10.1186/s13075-019-1948-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/18/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Th17 cells are involved in the pathogenesis of ankylosing spondylitis (AS). However, the mechanism underlying enhanced Th17 cell accumulation in AS remains unknown. The prostaglandin E2 receptor EP2/EP4 signaling pathway plays a critical role in the development of autoimmune Th17 cells. Interestingly, recent genome-wide association studies (GWAS) have identified five risk alleles for AS in PTGER4, the gene encoding for EP4. The aim of this study was to reveal a possible link between EP4 and disease activity in patients with AS. METHODS Th17 cells from patients with AS were analyzed for the transcriptional expression of prostaglandin receptor genes by quantitative RT-PCR. Th17 cells from patients with rheumatoid arthritis (RA) and from healthy individuals served as controls. EP4 receptor expression in Th17 cells was assessed ex vivo by flow cytometry and by western blot. Functional analysis using EP4-specific agonists was performed to reveal how EP4 regulates Th17 cells. RESULTS EP4 is significantly overexpressed in Th17 cells from patients with AS compared to Th17 cells from healthy individuals or patients with RA or psoriatic arthritis (PsA). EP4 upregulation is unique to Th17 cells and is not found in other CD4+ T cell subsets. Specific activation of EP4 drives Th17 cell development and promotes EP4 expression in a positive feedback loop in AS but not in RA or PsA. Mechanistically, EP4 acts via upregulation of the interleukin-23 receptor (IL-23R), by suppressing the RORγt inhibitor FoxO1 and by enhancing STAT3 phosphorylation. Increased EP4 expression levels in Th17 cells from AS patients correlate with high disease activity as defined by a Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) score ≥ 4 (r = 0.7591, p = 0.0016). CONCLUSIONS EP4 is a potential marker of disease activity in patients with AS. Aberrant EP4 expression might contribute to pathogenic Th17 cell accumulation and represent a new target for the treatment of AS.
Collapse
Affiliation(s)
- Charlotte Klasen
- Division of Clinical Immunology and Rheumatology, Department I of Internal Medicine, University of Cologne, Kerpenerstr. 62, 50937, Cologne, Germany
| | - Anja Meyer
- Division of Clinical Immunology and Rheumatology, Department I of Internal Medicine, University of Cologne, Kerpenerstr. 62, 50937, Cologne, Germany
| | - Paula S Wittekind
- Division of Clinical Immunology and Rheumatology, Department I of Internal Medicine, University of Cologne, Kerpenerstr. 62, 50937, Cologne, Germany
| | - Iris Waqué
- Division of Clinical Immunology and Rheumatology, Department I of Internal Medicine, University of Cologne, Kerpenerstr. 62, 50937, Cologne, Germany
| | - Schafiq Nabhani
- Division of Clinical Immunology and Rheumatology, Department I of Internal Medicine, University of Cologne, Kerpenerstr. 62, 50937, Cologne, Germany
| | - David M Kofler
- Division of Clinical Immunology and Rheumatology, Department I of Internal Medicine, University of Cologne, Kerpenerstr. 62, 50937, Cologne, Germany.
| |
Collapse
|
21
|
Glatt S, Taylor PC, McInnes IB, Schett G, Landewé R, Baeten D, Ionescu L, Strimenopoulou F, Watling MIL, Shaw S. Efficacy and safety of bimekizumab as add-on therapy for rheumatoid arthritis in patients with inadequate response to certolizumab pegol: a proof-of-concept study. Ann Rheum Dis 2019; 78:1033-1040. [PMID: 31177099 PMCID: PMC6691864 DOI: 10.1136/annrheumdis-2018-214943] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/17/2019] [Accepted: 04/23/2019] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Evaluate the efficacy and safety of dual neutralisation of interleukin (IL)-17A and IL-17F with bimekizumab, a monoclonal IgG1 antibody, in addition to certolizumab pegol (CZP) in patients with rheumatoid arthritis (RA) and inadequate response (IR) to certolizumab pegol. METHODS During this phase 2a, double-blind, proof-of-concept (PoC) study (NCT02430909), patients with moderate-to-severe RA received open-label CZP 400 mg at Weeks 0, 2 and 4, and 200 mg at Week 6. Patients with IR at Week 8 (Disease Activity Score 28-joint count C-reactive protein (DAS28(CRP))>3.2) were randomised 2:1 to CZP (200 mg every 2 weeks (Q2W)) plus bimekizumab (240 mg loading dose then 120 mg Q2W) or CZP plus placebo. The primary efficacy and safety variables were change in DAS28(CRP) between Weeks 8 and 20 and incidence of treatment-emergent adverse events (TEAEs). RESULTS Of 159 patients enrolled, 79 had IR at Week 8 and were randomised to CZP plus bimekizumab (n=52) or CZP plus placebo (n=27). At Week 20, there was a greater reduction in DAS28(CRP) in the CZP-IR plus bimekizumab group compared with the CZP-IR plus placebo group (99.4% posterior probability). The most frequent TEAEs were infections and infestations (CZP plus bimekizumab, 50.0% (26/52); CZP plus placebo, 22.2% (6/27)). CONCLUSIONS PoC was confirmed based on the rapid decrease in disease activity achieved with 12 weeks of CZP plus bimekizumab. No unexpected or new safety signals were identified when neutralising IL-17A and IL-17F in patients with RA concomitantly treated with CZP, but the rate of TEAEs was higher with dual inhibition.
Collapse
Affiliation(s)
| | - Peter C Taylor
- Botnar Research Centre, University of Oxford, Oxford, UK
| | - Iain B McInnes
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich Alexander University Erlangen-Nurnberg and Universitatsklinikum Erlangen, Erlangen, Germany
| | - Robert Landewé
- University Medical Centre, Amsterdam Rheumatology and Immunology Center, The Netherlands and Zuyderland Medical Centre, Heerlen, The Netherlands
| | - Dominique Baeten
- University Medical Centre, Amsterdam Rheumatology and Immunology Center, The Netherlands and Zuyderland Medical Centre, Heerlen, The Netherlands.,Patient Value Practices Development and Medical, UCB Pharma, Slough, UK
| | - Lucian Ionescu
- Patient Value Practices Development and Medical, UCB Pharma, Slough, UK
| | | | | | - Stevan Shaw
- Translational Medicine, UCB Pharma, Slough, UK
| |
Collapse
|
22
|
Menegatti S, Bianchi E, Rogge L. Anti-TNF Therapy in Spondyloarthritis and Related Diseases, Impact on the Immune System and Prediction of Treatment Responses. Front Immunol 2019; 10:382. [PMID: 30941119 PMCID: PMC6434926 DOI: 10.3389/fimmu.2019.00382] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/14/2019] [Indexed: 12/14/2022] Open
Abstract
Immune-mediated inflammatory diseases (IMIDs), such as spondyloarthritis (SpA), psoriasis, Crohn's disease (CD), and rheumatoid arthritis (RA) remain challenging illnesses. They often strike at a young age and cause lifelong morbidity, representing a considerable burden for the affected individuals and society. Pioneering studies have revealed the presence of a TNF-dependent proinflammatory cytokine cascade in several IMIDs, and the introduction of anti-TNF therapy 20 years ago has proven effective to reduce inflammation and clinical symptoms in RA, SpA, and other IMID, providing unprecedented clinical benefits and a valid alternative in case of failure or intolerable adverse effects of conventional disease-modifying antirheumatic drugs (DMARDs, for RA) or non-steroidal anti-inflammatory drugs (NSAIDs, for SpA). However, our understanding of how TNF inhibitors (TNFi) affect the immune system in patients is limited. This question is relevant because anti-TNF therapy has been associated with infectious complications. Furthermore, clinical efficacy of TNFi is limited by a high rate of non-responsiveness (30–40%) in RA, SpA, and other IMID, exposing a substantial fraction of patients to side-effects without clinical benefit. Despite the extensive use of TNFi, it is still not possible to determine which patients will respond to TNFi before treatment initiation. The recent introduction of antibodies blocking IL-17 has expanded the therapeutic options for SpA, as well as psoriasis and psoriatic arthritis. It is therefore essential to develop tools to guide treatment decisions for patients affected by SpA and other IMID, both to optimize clinical care and contain health care costs. After a brief overview of the biology of TNF, its receptors and currently used TNFi in the clinics, we summarize the progress that has been made to increase our understanding of the action of TNFi on the immune system in patients. We then summarize efforts dedicated to identify biomarkers that can predict treatment responses to TNFi and we conclude with a section dedicated to the recently introduced inhibitors of IL-17A and IL-23 in SpA and related diseases. The focus of this review is on SpA, however, we also refer to RA on topics for which only limited information is available on SpA in the literature.
Collapse
Affiliation(s)
- Silvia Menegatti
- Immunoregulation Unit, Department of Immunology, Institut Pasteur, Paris, France.,Unité Mixte de Recherche, Institut Pasteur/AP-HP Hôpital Cochin, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Elisabetta Bianchi
- Immunoregulation Unit, Department of Immunology, Institut Pasteur, Paris, France.,Unité Mixte de Recherche, Institut Pasteur/AP-HP Hôpital Cochin, Paris, France
| | - Lars Rogge
- Immunoregulation Unit, Department of Immunology, Institut Pasteur, Paris, France.,Unité Mixte de Recherche, Institut Pasteur/AP-HP Hôpital Cochin, Paris, France
| |
Collapse
|
23
|
Maggi L, Mazzoni A, Cimaz R, Liotta F, Annunziato F, Cosmi L. Th17 and Th1 Lymphocytes in Oligoarticular Juvenile Idiopathic Arthritis. Front Immunol 2019; 10:450. [PMID: 30930898 PMCID: PMC6428030 DOI: 10.3389/fimmu.2019.00450] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/19/2019] [Indexed: 01/16/2023] Open
Abstract
In the last years much attention has focused on the Th17 and Th1 phenotypes and on their pathogenic role in juvenile idiopathic arthritis, investigating how the cytokines produced by T helper cells act on resident cells on the synovia and which signal transduction pathways regulate Th17 cells proliferation and plasticity. In this context, an important milestone was represented by the identification of the non-classic Th1 phenotype, developed from the shift of Th17 cells. The cytokine TNF-α, beyond its well-known proinflammatory activity is involved in this process and this is one of the reasons why the TNF-α inhibitors are widely used in the treatment of juvenile idiopathic arthritis patients.
Collapse
Affiliation(s)
- Laura Maggi
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Florence, Italy
| | - Alessio Mazzoni
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Florence, Italy
| | - Rolando Cimaz
- Anna Meyer Children's Hospital and University of Florence, Florence, Italy
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Florence, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Florence, Italy
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Florence, Italy
| |
Collapse
|
24
|
Maione F, Iqbal AJ, Raucci F, Letek M, Bauer M, D'Acquisto F. Repetitive Exposure of IL-17 Into the Murine Air Pouch Favors the Recruitment of Inflammatory Monocytes and the Release of IL-16 and TREM-1 in the Inflammatory Fluids. Front Immunol 2018; 9:2752. [PMID: 30555461 PMCID: PMC6284009 DOI: 10.3389/fimmu.2018.02752] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/08/2018] [Indexed: 12/21/2022] Open
Abstract
The infiltration of Th17 cells in tissues and organs during the development of many autoimmune diseases is considered a key step toward the establishment of chronic inflammation. Indeed, the localized and prolonged release of IL-17 in specific tissues has been associated with an increased severity of the inflammatory response that remains sustained over time. The cellular and molecular mechanisms behind these effects are far from being clear. In this study we investigated the effects of two repetitive administration of recombinant IL-17 into the murine air pouch to simulate a scenario where IL-17 is released over time in a pre-inflamed tissue. Consistent with our previous observations, mice receiving a single dose of IL-17 showed a transitory influx of neutrophils into the air pouch that peaked at 24 h and declined at 48 h. Conversely, mice receiving a double dose of the cytokine—one at time 0 and the second after 24 h—showed a more dramatic inflammatory response with almost 2-fold increase in the number of infiltrated leukocytes and significant higher levels of TNF-α and IL-6 in the inflammatory fluids. Further analysis of the exacerbated inflammatory response of double-injected IL-17 mice showed a unique cellular and biochemical profile with inflammatory monocytes as the second main population emigrating to the pouch and IL-16 and TREM-1 as the most upregulated cytokines found in the inflammatory fluids. Most interestingly, mice receiving a double injection of IL-1β did not show any change in the cellular or biochemical inflammatory response compared to those receiving a single injection or just vehicle. Collectively these results shed some light on the function of IL-17 as pro-inflammatory cytokine and provide possible novel ways to target therapeutically the pathogenic effects of IL-17 in autoimmune conditions.
Collapse
Affiliation(s)
- Francesco Maione
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy.,William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Asif Jilani Iqbal
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Federica Raucci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Michal Letek
- Health Science Research Centre, Department of Life Science, University of Roehampton, London, United Kingdom
| | - Martina Bauer
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Fulvio D'Acquisto
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Health Science Research Centre, Department of Life Science, University of Roehampton, London, United Kingdom
| |
Collapse
|
25
|
Davignon JL, Rauwel B, Degboé Y, Constantin A, Boyer JF, Kruglov A, Cantagrel A. Modulation of T-cell responses by anti-tumor necrosis factor treatments in rheumatoid arthritis: a review. Arthritis Res Ther 2018; 20:229. [PMID: 30314507 PMCID: PMC6235207 DOI: 10.1186/s13075-018-1725-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tumor necrosis factor (TNF) is a pleiotropic cytokine involved in many aspects of immune regulation. Anti-TNF biological therapy has been considered a breakthrough in the treatment of chronic autoimmune diseases, such as rheumatoid arthritis (RA). In this review, because of the major involvement of T cells in RA pathogenesis, we discuss the effects of anti-TNF biotherapy on T-cell responses in RA patients. We also outline the potential fields for future research in the area of anti-TNF therapy in RA.This could be useful to better understand the therapeutic efficiency and the side effects that are encountered in RA patients. Better targeting of T cells in RA could help set more specific anti-TNF strategies and develop prediction tools for response.
Collapse
Affiliation(s)
- Jean-Luc Davignon
- Centre de Physiopathologie Toulouse Purpan, INSERM-CNRS-UPS, UMR 1043, CHU Purpan, 1 Place Baylac, 31024, Toulouse Cedex, France. .,Centre de Rhumatologie, CHU de Toulouse, 31059, Toulouse, France.
| | - Benjamin Rauwel
- Centre de Physiopathologie Toulouse Purpan, INSERM-CNRS-UPS, UMR 1043, CHU Purpan, 1 Place Baylac, 31024, Toulouse Cedex, France
| | - Yannick Degboé
- Centre de Physiopathologie Toulouse Purpan, INSERM-CNRS-UPS, UMR 1043, CHU Purpan, 1 Place Baylac, 31024, Toulouse Cedex, France.,Centre de Rhumatologie, CHU de Toulouse, 31059, Toulouse, France.,Faculté de Médecine, Université Paul Sabatier Toulouse III, 31062, Toulouse, France
| | - Arnaud Constantin
- Centre de Physiopathologie Toulouse Purpan, INSERM-CNRS-UPS, UMR 1043, CHU Purpan, 1 Place Baylac, 31024, Toulouse Cedex, France.,Centre de Rhumatologie, CHU de Toulouse, 31059, Toulouse, France.,Faculté de Médecine, Université Paul Sabatier Toulouse III, 31062, Toulouse, France
| | - Jean-Fredéric Boyer
- Centre de Physiopathologie Toulouse Purpan, INSERM-CNRS-UPS, UMR 1043, CHU Purpan, 1 Place Baylac, 31024, Toulouse Cedex, France.,Centre de Rhumatologie, CHU de Toulouse, 31059, Toulouse, France
| | - Andrey Kruglov
- Lomonosov Moscow State University, 119991, Moscow, Russia.,German Rheumatism Research Center (DRFZ), 10117, Berlin, Germany
| | - Alain Cantagrel
- Centre de Physiopathologie Toulouse Purpan, INSERM-CNRS-UPS, UMR 1043, CHU Purpan, 1 Place Baylac, 31024, Toulouse Cedex, France.,Centre de Rhumatologie, CHU de Toulouse, 31059, Toulouse, France.,Faculté de Médecine, Université Paul Sabatier Toulouse III, 31062, Toulouse, France
| |
Collapse
|
26
|
Maroof A, Patel DD. TNF-α-induced protein 3 (A20): The immunological rheostat. J Allergy Clin Immunol 2018; 142:401-402. [PMID: 29859964 DOI: 10.1016/j.jaci.2018.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/22/2018] [Accepted: 05/25/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Asher Maroof
- New Medicines, UCB Biopharma, Braine-l'Alleud, Belgium, and Slough, United Kingdom
| | - Dhavalkumar D Patel
- New Medicines, UCB Biopharma, Braine-l'Alleud, Belgium, and Slough, United Kingdom.
| |
Collapse
|
27
|
Hypercalcémie sous étanercept : à quoi faut-il penser ? Therapie 2018; 73:283-285. [DOI: 10.1016/j.therap.2017.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/17/2017] [Accepted: 08/31/2017] [Indexed: 11/22/2022]
|
28
|
Livshits G, Kalinkovich A. Hierarchical, imbalanced pro-inflammatory cytokine networks govern the pathogenesis of chronic arthropathies. Osteoarthritis Cartilage 2018; 26:7-17. [PMID: 29074297 DOI: 10.1016/j.joca.2017.10.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/15/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Chronic inflammatory arthropathies, such as rheumatoid arthritis (RA), spondyloarthritis, including psoriatic arthritis (PsA), ankylosing spondyloarthritis (AS), osteoarthritis (OA), and intervertebral disc degenerative disease (DDD) constitute major public health problems that are anticipated to grow significantly as the human population ages. However, many aspects concerning the molecular mechanisms underlying their onset and progression remain unclear. DESIGN This narrative review critically analyzes the molecular mechanisms underlying the inflammation-associated pathogenesis of the aforementioned joint diseases. This includes, in particular, the major role played by several key soluble factors (such as cytokines and the associated signaling pathways, designated as "fragile nodes") produced by local cells and recruited to the joints' immune cells, whose elimination by specific drugs has dramatically improved the diseases' symptomatology and outcome in human clinical trials or in rodent arthritis models. HYPOTHESIS AND THE AIM OF THIS REVIEW We hypothesize that the pathogenesis of chronic inflammatory arthropathies is governed by hierarchical, imbalanced pro-inflammatory cytokine networks (HIPICNs) (comprising a combination of fragile nodes) that are created during the development of both autoimmune (RA, PsA, and AS) and non-autoimmune (OA and DDD) disorders. The main aim of this review is to provide evidence that despite substantial pathobiological differences between these arthropathies, the HIPICNs created are quite common, thus justifying the merging of these disorders mechanistically and suggesting that these common mechanisms exist in the onset and progression of different joint diseases.
Collapse
Affiliation(s)
- G Livshits
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Tel Aviv 69978, Israel.
| | - A Kalinkovich
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| |
Collapse
|
29
|
Increased IL-6 expression on THP-1 by IL-34 stimulation up-regulated rheumatoid arthritis Th17 cells. Clin Rheumatol 2017; 37:127-137. [DOI: 10.1007/s10067-017-3746-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 06/12/2017] [Accepted: 07/03/2017] [Indexed: 01/16/2023]
|