1
|
Daneshmand M, Panfilov E, Bayramoglu N, Korhonen RK, Saarakkala S. Deep learning based detection of osteophytes in radiographs and magnetic resonance imagings of the knee using 2D and 3D morphology. J Orthop Res 2024. [PMID: 38323840 DOI: 10.1002/jor.25800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/26/2023] [Accepted: 01/19/2024] [Indexed: 02/08/2024]
Abstract
In this study, we investigated the discriminative capacity of knee morphology in automatic detection of osteophytes defined by the Osteoarthritis Research Society International atlas, using X-ray and magnetic resonance imaging (MRI) data. For the X-ray analysis, we developed a deep learning (DL) based model to segment femur and tibia. In case of MRIs, we utilized previously validated segmentations of femur, tibia, corresponding cartilage tissues, and menisci. Osteophyte detection was performed using DL models in four compartments: medial femur (FM), lateral femur (FL), medial tibia (TM), and lateral tibia (TL). To analyze the confounding effects of soft tissues, we investigated their morphology in combination with bones, including bones+cartilage, bones+menisci, and all the tissues. From X-ray-based 2D morphology, the models yielded balanced accuracy of 0.73, 0.69, 0.74, and 0.74 for FM, FL, TM, TL, respectively. Using 3D bone morphology from MRI, balanced accuracy was 0.80, 0.77, 0.71, and 0.76, respectively. The performance was higher than in 2D for all the compartments except for TM, with significant improvements observed for femoral compartments. Adding menisci or cartilage morphology consistently improved balanced accuracy in TM, with the greatest improvement seen for small osteophyte. Otherwise, the models performed similarly to bones-only. Our experiments demonstrated that MRI-based models show higher detection capability than X-ray based models for identifying knee osteophytes. This study highlighted the feasibility of automated osteophyte detection from X-ray and MRI data and suggested further need for development of osteophyte assessment criteria in addition to OARSI, particularly, for early osteophytic changes.
Collapse
Affiliation(s)
| | - Egor Panfilov
- Faculty of Medicine, University of Oulu, Oulu, Finland
| | | | | | - Simo Saarakkala
- University of Oulu and Oulu University Hospital, Oulu, Finland
| |
Collapse
|
2
|
Negishi Y, Kaneko H, Aoki T, Liu L, Adili A, Arita H, Hada S, Momoeda M, Huang H, Tomura J, Wakana S, Shiozawa J, Kubota M, Someya Y, Tamura Y, Aoki S, Watada H, Kawamori R, Negishi-Koga T, Okada Y, Ishijima M. Medial meniscus extrusion is invariably observed and consistent with tibial osteophyte width in elderly populations: The Bunkyo Health Study. Sci Rep 2023; 13:22805. [PMID: 38129496 PMCID: PMC10739745 DOI: 10.1038/s41598-023-49868-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
We reported that the full-length width of medial tibial osteophytes comprising cartilage and bone parts correlates with medial meniscus extrusion (MME) in early-stage knee osteoarthritis (OA). However, no data exist on the prevalence of MME and its relationship with osteophytes in the elderly population. 1191 elderly individuals (females 57%; 72.9 years old on average) in the Bunkyo Health Study underwent standing plain radiograph and proton density-weighted MRI on knee joints. MRI-detected OA changes were evaluated according to the Whole-Organ Magnetic Resonance Imaging Score. A new method of assessing the cartilage and bone parts of osteophytes was developed using pseudo-coloring images of proton density-weighted fat-suppressed MRI. Most subjects showed Kellgren-Lawrence grade 1 or 2 radiographic medial knee OA (88.1%), MME (98.7%, 3.90 ± 2.01 mm), and medial tibial osteophytes (99.3%, 3.27 ± 1.50 mm). Regarding OA changes, MME was closely associated with the full-length width of medial tibial osteophytes (β = 1.114; 95% CI 1.069-1.159; p < 0.001) in line with osteophyte width (intraclass correlation coefficient, 0.804; 95% CI 0.783-0.823). Our data revealed that MME and medial tibial osteophytes are observed in the elderly and demonstrate that the degree of MME is consistent with the full-length width of medial tibial osteophytes, suggesting that osteophytes might be implicated in MME.
Collapse
Affiliation(s)
- Yoshifumi Negishi
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Haruka Kaneko
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Pathophysiology for Locomotive Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takako Aoki
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Lizu Liu
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Arepati Adili
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hitoshi Arita
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shinnosuke Hada
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Masahiro Momoeda
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Pathophysiology for Locomotive Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hui Huang
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Jun Tomura
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Suguru Wakana
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Jun Shiozawa
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Pathophysiology for Locomotive Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mitsuaki Kubota
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Community Medicine and Research for Bone and Joint Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuki Someya
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshifumi Tamura
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hirotaka Watada
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ryuzo Kawamori
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takako Negishi-Koga
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Community Medicine and Research for Bone and Joint Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasunori Okada
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
- Department of Pathophysiology for Locomotive Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Muneaki Ishijima
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
- Department of Pathophysiology for Locomotive Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- Department of Community Medicine and Research for Bone and Joint Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
3
|
Cao Y, Luo J, Han S, Li Z, Fan T, Zeng M, Wen X, Peng Y, Jiang L, Han W, Lin L, Fu SN, Hunter DJ, Ding C, Li L, Zhu Z. A model-based quantitative analysis of efficacy and associated factors of platelet rich plasma treatment for osteoarthritis. Int J Surg 2023; 109:1742-1752. [PMID: 36999827 PMCID: PMC10389201 DOI: 10.1097/js9.0000000000000337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/07/2023] [Indexed: 04/01/2023]
Abstract
OBJECTIVE While platelet rich plasma (PRP) has been extensively studied in treating osteoarthritis (OA), there has been an ongoing debate regarding the efficacy of PRP and the optimal subpopulation for PRP treatment remains unknown. The authors hereby aim to establish a pharmacodynamic model-based meta-analysis to quantitatively evaluate PRP efficacy, comparing with hyaluronic acid (HA) and identify relevant factors that significantly affect the efficacy of PRP treatment for OA. METHODS The authors searched for PubMed and the Cochrane Library Central Register of Controlled Trials of PRP randomized controlled trials (RCTs) for the treatment of symptomatic or radiographic OA from the inception dates to 15 July 2022. Participants' clinical and demographic characteristics and efficacy data, defined as Western Ontario and McMaster Universities Osteoarthritis Index and visual analog scale pain scores at each time point were extracted. RESULTS A total of 45 RCTs (3829 participants) involving 1805 participants injected with PRP were included in the analysis. PRP reached a peak efficacy at ~ 2-3 months after injection in patients with OA. Both conventional meta-analysis and pharmacodynamic maximal effect models showed that PRP was significantly more effective than HA for joint pain and function impairment (additional decrease of 1.1, 0.5, 4.3, and 1.1 scores compared to HA treatment at 12 months for Western Ontario and McMaster Universities Osteoarthritis Index pain, stiffness, function, and visual analog scale pain scores, respectively). Higher baseline symptom scores, older age (≥60 years), higher BMI (≥30), lower Kellgren-Lawrence grade (≤2) and shorter OA duration (<6 months) were significantly associated with greater efficacy of PRP treatment. CONCLUSION These findings sugges t that PRP is a more effective treatment for OA than the more well-known HA treatment. The authors also determined the time when the PRP injection reaches peak efficacy and optimized the targeting subpopulation of OA. Further high-quality RCTs are required to confirm the optimal population of PRP in the treatment of OA.
Collapse
Affiliation(s)
- Ying Cao
- Clinical Research Center
- The Second School of Clinical Medicine, Southern Medical University
| | - Jieren Luo
- Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, Shanghai
| | - Shun Han
- Clinical Research Center
- The Second School of Clinical Medicine, Southern Medical University
| | - Zewei Li
- Clinical Research Center
- The Second School of Clinical Medicine, Southern Medical University
| | | | | | | | | | - Li Jiang
- Departments of Rehabilitation, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong
| | - Weiyu Han
- Clinical Research Center
- Department of Joint and Orthopedics
| | | | - Siu Ngor Fu
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - David J Hunter
- Department of Rheumatology, Royal North Shore Hospital and Sydney Musculoskeletal Health, Kolling Institute, University of Sydney, Sydney
| | - Changhai Ding
- Clinical Research Center
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Lujin Li
- Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, Shanghai
| | - Zhaohua Zhu
- Clinical Research Center
- Department of Joint and Orthopedics
| |
Collapse
|
4
|
Fan T, Chen S, Zeng M, Li J, Wang X, Ruan G, Cao P, Zhang Y, Chen T, Ou Q, Wang Q, Wluka AE, Cicuttini F, Ding C, Zhu Z. Osteophytes mediate the associations between cartilage morphology and changes in knee symptoms in patients with knee osteoarthritis. Arthritis Res Ther 2022; 24:217. [PMID: 36076236 PMCID: PMC9454107 DOI: 10.1186/s13075-022-02905-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Aims To investigate whether the associations between cartilage defects and cartilage volumes with changes in knee symptoms were mediated by osteophytes. Methods Data from the Vitamin D Effects on Osteoarthritis (VIDEO) study were analyzed as a cohort. The Western Ontario and McMaster Universities Osteoarthritis Index was used to assess knee symptoms at baseline and follow-up. Osteophytes, cartilage defects, and cartilage volumes were measured using magnetic resonance imaging at baseline. Associations between cartilage morphology and changes in knee symptoms were assessed using linear regression models, and mediation analysis was used to test whether these associations were mediated by osteophytes. Results A total of 334 participants (aged 50 to 79 years) with symptomatic knee osteoarthritis were included in the analysis. Cartilage defects were significantly associated with change in total knee pain, change in weight-bearing pain, and change in non-weight-bearing pain after adjustment for age, sex, body mass index, and intervention. Cartilage volume was significantly associated with change in weight-bearing pain and change in physical dysfunction after adjustment. Lateral tibiofemoral and patellar osteophyte mediated the associations of cartilage defects with change in total knee pain (49–55%) and change in weight-bearing pain (61–62%) and the association of cartilage volume with change in weight-bearing pain (27–30%) and dysfunction (24–25%). Both cartilage defects and cartilage volume had no direct effects on change in knee symptoms. Conclusions The significant associations between cartilage morphology and changes in knee symptoms were indirect and were partly mediated by osteophytes. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02905-8.
Collapse
Affiliation(s)
- Tianxiang Fan
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shibo Chen
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Muhui Zeng
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jia Li
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoshuai Wang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Guangfeng Ruan
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Peihua Cao
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan Zhang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Tianyu Chen
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qianhua Ou
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qianyi Wang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Anita E Wluka
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Flavia Cicuttini
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China. .,Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia. .,Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia. .,Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Zhaohua Zhu
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China. .,Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Faber BG, Ebsim R, Saunders FR, Frysz M, Lindner C, Gregory JS, Aspden RM, Harvey NC, Smith GD, Cootes T, Tobias JH. Osteophyte size and location on hip DXA scans are associated with hip pain: Findings from a cross sectional study in UK Biobank. Bone 2021; 153:116146. [PMID: 34389476 PMCID: PMC8503366 DOI: 10.1016/j.bone.2021.116146] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE It remains unclear how the different features of radiographic hip osteoarthritis (rHOA) contribute to hip pain. We examined the relationship between rHOA, including its individual components, and hip pain using a novel dual-energy x-ray absorptiometry (DXA)-based method. METHODS Hip DXAs were obtained from UK Biobank. A novel automated method obtained minimum joint space width (mJSW) from points placed around the femoral head and acetabulum. Osteophyte areas at the lateral acetabulum, superior and inferior femoral head were derived manually. Semi-quantitative measures of osteophytes and joint space narrowing (JSN) were combined to define rHOA. Logistic regression was used to examine the relationships between these variables and hip pain, obtained via questionnaires. RESULTS 6807 hip DXAs were examined. rHOA was present in 353 (5.2%) individuals and was associated with hip pain [OR 2.42 (1.78-3.29)] and hospital diagnosed OA [6.01 (2.98-12.16)]. Total osteophyte area but not mJSW was associated with hip pain in mutually adjusted models [1.31 (1.23-1.39), 0.95 (0.87-1.04) respectively]. On the other hand, JSN as a categorical variable showed weak associations between grade ≥ 1 and grade ≥ 2 JSN with hip pain [1.30 (1.06-1.60), 1.80 (1.34-2.42) respectively]. Acetabular, superior and inferior femoral osteophyte areas were all independently associated with hip pain [1.13 (1.06-1.20), 1.13 (1.05-1.24), 1.10 (1.03-1.17) respectively]. CONCLUSION In this cohort, the relationship between rHOA and prevalent hip pain was explained by 2-dimensional osteophyte area, but not by the apparent mJSW. Osteophytes at different locations showed important, potentially independent, associations with hip pain, possibly reflecting the contribution of distinct biomechanical pathways.
Collapse
Affiliation(s)
- Benjamin G Faber
- Musculoskeletal Research Unit, University of Bristol, UK; Medical Research Council Integrative Epidemiology Unit, University of Bristol, UK.
| | - Raja Ebsim
- Division of Informatics, Imaging and Data Science, University of Manchester, UK
| | - Fiona R Saunders
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, UK
| | - Monika Frysz
- Musculoskeletal Research Unit, University of Bristol, UK; Medical Research Council Integrative Epidemiology Unit, University of Bristol, UK
| | - Claudia Lindner
- Division of Informatics, Imaging and Data Science, University of Manchester, UK
| | - Jennifer S Gregory
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, UK
| | - Richard M Aspden
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, UK
| | - Nicholas C Harvey
- Medical Research Council Lifecourse Epidemiology Unit, University of Southampton, UK
| | - George Davey Smith
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, UK
| | - Timothy Cootes
- Division of Informatics, Imaging and Data Science, University of Manchester, UK
| | - Jonathan H Tobias
- Musculoskeletal Research Unit, University of Bristol, UK; Medical Research Council Integrative Epidemiology Unit, University of Bristol, UK
| |
Collapse
|
6
|
Snoeker BAM, Ishijima M, Kumm J, Zhang F, Turkiewicz AT, Englund M. Are structural abnormalities on knee MRI associated with osteophyte development? Data from the Osteoarthritis Initiative. Osteoarthritis Cartilage 2021; 29:1701-1708. [PMID: 34284113 DOI: 10.1016/j.joca.2021.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/26/2021] [Accepted: 06/28/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To assess which structural abnormalities on knee MRI are associated with development of osteophytes in middle-aged subjects without radiographic knee osteoarthritis. DESIGN We included subjects from the Osteoarthritis Initiative, aged 40-55 years, Kellgren & Lawrence grade 0 in both knees, and knee MRIs from both knees available at baseline, 24, 48 and 72 months. Structural exposures on MRI assessed using MOAKS included cartilage damage, bone marrow lesions, meniscal tear, meniscal extrusion, and Hoffa/effusion synovitis. We assessed whether each structural exposure was associated with the development of osteophytes on MRI in the medial and lateral tibiofemoral, and patellofemoral compartment. We estimated hazard ratios (HR) including 95% confidence intervals (CI) for osteophyte development using a mixed complementary log-log regression model adjusted for age, sex, and body mass index. RESULTS We included 680 knees from 340 subjects with a mean (SD) age of 50 years (3.0), and 51% men. In the medial tibiofemoral compartment, the absolute risk of osteophyte development in the first 24-month period was 4% in knees without, and 15% in knees with medial meniscal tear. Corresponding adjusted HR was 6.6 (95%CI = 3.4-12.9). In the lateral tibiofemoral compartment, the adjusted HR for developing osteophytes having a lateral meniscal tear was 3.3 (95%CI = 1.3-8.4). In the patellofemoral compartment, patellofemoral cartilage damage was most clearly associated with developing osteophytes (HR = 2.6, 95%CI = 1.8-3.7). CONCLUSIONS Meniscal tear seem to be the strongest structural risk factor for the development of tibiofemoral osteophytes, and patellofemoral cartilage damage for the development of patellofemoral osteophytes, respectively. Local biomechanical factors are important in early osteophyte development.
Collapse
Affiliation(s)
- B A M Snoeker
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Clinical Epidemiology Unit, Lund, Sweden.
| | - M Ishijima
- Department of Orthopaedic Surgery, Juntendo University, Tokyo, Japan
| | - J Kumm
- Department of Radiology, University of Tartu, Estonia
| | - F Zhang
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Clinical Epidemiology Unit, Lund, Sweden
| | - A T Turkiewicz
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Clinical Epidemiology Unit, Lund, Sweden
| | - M Englund
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Clinical Epidemiology Unit, Lund, Sweden
| |
Collapse
|
7
|
Omoumi P, Schuler A, Babel H, Stoffel C, Jolles BM, Favre J. Proximal tibial osteophyte volumes are correlated spatially and with knee alignment: a quantitative analysis suggesting the influence of biochemical and mechanical factors in the development of osteophytes. Osteoarthritis Cartilage 2021; 29:1691-1700. [PMID: 34571138 DOI: 10.1016/j.joca.2021.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/16/2021] [Accepted: 09/17/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To characterize the differences and correlations in osteophyte volumes between and within proximal tibial compartments, and to assess the correlations between osteophyte volumes and the femorotibial angle. DESIGN CT scans of 73 knees with predominantly medial femorotibial osteoarthritis (21 K/L2, 28 K/L3, 24 K/L4) were retrospectively analyzed using a new, reproducible method measuring total and subregional osteophyte volumes in the medial and lateral compartments. Non-parametric statistics was used for comparison and correlation analyses. RESULTS Total osteophyte volumes were larger in the medial than in the lateral compartment for all severity groups (p < 0.05). Additionally, statistically significant differences were observed among subregions of the lateral compartment in K/L3 and K/L4 knees. Statistically significant positive correlations were found between the medial and lateral total osteophyte volumes in K/L3 and K/L4 knees (ρ ≥ 0.44, p = 0.03), and among most subregional osteophyte volumes within each compartment in K/L3 knees. Markedly fewer statistically significant correlations were present in K/L2 and K/L4 knees. In K/L3 knees, the femorotibial angle was statistically significantly positively correlated with the total osteophyte volume in the medial compartment (ρ = 0.50, p = 0.01), with osteophyte volumes in most medial subregions, and with the osteophyte volume in the lateral posterior subregion (ρ = 0.40, p = 0.05). CONCLUSIONS Quantitative assessment of osteophytes may bring insight on factors influencing their development. Positive correlations of osteophyte volumes found between and within compartments suggest the influence of biochemical mediators acting on the entire joint, while positive correlations between the femorotibial angle and osteophyte volumes suggest a role of mechanical factors. These hypotheses are to be further confirmed.
Collapse
Affiliation(s)
- P Omoumi
- Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Department of Diagnostic and Interventional Radiology, Lausanne, Switzerland; Cliniques Universitaires St Luc - UC Louvain, Department of Radiology, Brussels, Belgium.
| | - A Schuler
- Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Department of Musculoskeletal Medicine, Swiss BioMotion Lab, Lausanne, Switzerland
| | - H Babel
- Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Department of Musculoskeletal Medicine, Swiss BioMotion Lab, Lausanne, Switzerland
| | - C Stoffel
- Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Department of Musculoskeletal Medicine, Swiss BioMotion Lab, Lausanne, Switzerland
| | - B M Jolles
- Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Department of Musculoskeletal Medicine, Swiss BioMotion Lab, Lausanne, Switzerland; Ecole Polytechnique Fédérale Lausanne (EPFL), Institute of Microengineering, Lausanne, Switzerland
| | - J Favre
- Ecole Polytechnique Fédérale Lausanne (EPFL), Institute of Microengineering, Lausanne, Switzerland
| |
Collapse
|
8
|
Tozawa R, Ogawa Y, Minamoto Y, Ninomiya T, Ogura T, Watanabe S, Kimura S, Shiko Y, Kawasaki Y, Akagi R, Sasho T. Possible role of MRI-detected osteophytes as a predictive biomarker for development of osteoarthritis of the knee: A study using data from the Osteoarthritis Initiative. OSTEOARTHRITIS AND CARTILAGE OPEN 2021; 3:100200. [DOI: 10.1016/j.ocarto.2021.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/30/2021] [Indexed: 11/28/2022] Open
|
9
|
Fan T, Ruan G, Antony B, Cao P, Li J, Han W, Li Y, Yung SN, Wluka AE, Winzenberg T, Cicuttini F, Ding C, Zhu Z. The interactions between MRI-detected osteophytes and bone marrow lesions or effusion-synovitis on knee symptom progression: an exploratory study. Osteoarthritis Cartilage 2021; 29:1296-1305. [PMID: 34216729 DOI: 10.1016/j.joca.2021.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To investigate the longitudinal association between MRI-detected osteophyte scores and progression of knee symptoms, and whether the association was modified in the presence of bone marrow lesions (BMLs) or effusion-synovitis. METHODS Data from Vitamin D Effects on Osteoarthritis (VIDEO) study, a randomized, double-blinded and placebo-controlled clinical trial in symptomatic knee osteoarthritis (OA) patients, were analyzed as an exploratory study. Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) was used to assess knee symptoms. Osteophytes, BMLs and effusion-synovitis were measured using MRI. RESULTS 334 participants with MRI information and WOMAC score (baseline and follow-up) were included in the analyses, with 24.3% of them having knee pain increased 2 years later. Statistically significant interactions were found between MRI-detected osteophytes and BMLs or effusion-synovitis on increased knee symptoms. In participants with BMLs, higher baseline scores of MRI-detected osteophytes in most compartments were significantly associated with increased total knee pain, weight-bearing pain, stiffness, and physical dysfunction, after adjustment for age, sex, body mass index, intervention and effusion-synovitis. In participants with effusion-synovitis, higher baseline scores of MRI-detected osteophytes in almost all the compartments were significantly associated with increased total knee pain, weight-bearing pain, stiffness, and physical dysfunction, after adjustment for age, sex, body mass index, intervention and BMLs. In contrast, MRI-detected osteophyte scores were generally not associated with knee symptom progression in participants without baseline BMLs or effusion-synovitis. CONCLUSIONS MRI-detected OPs are associated with increased total knee pain, weight-bearing knee pain, stiffness and physical dysfunction in participants presenting BMLs or effusion-synovitis, but not in participants lacking BMLs or effusion-synovitis. This suggests they could interact with bone or synovial abnormalities to induce symptoms in knee OA.
Collapse
Affiliation(s)
- T Fan
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - G Ruan
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - B Antony
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.
| | - P Cao
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - J Li
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - W Han
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Y Li
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - S N Yung
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - A E Wluka
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.
| | - T Winzenberg
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.
| | - F Cicuttini
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.
| | - C Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia; Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.
| | - Z Zhu
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Kuhi L, Tamm AE, Tamm AO, Kisand K. Risk Assessment of the Progression of Early Knee Osteoarthritis by Collagen Neoepitope C2C: A Longitudinal Study of an Estonian Middle-Aged Cohort. Diagnostics (Basel) 2021; 11:1236. [PMID: 34359319 PMCID: PMC8303529 DOI: 10.3390/diagnostics11071236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/29/2021] [Accepted: 07/07/2021] [Indexed: 12/26/2022] Open
Abstract
One of the unmet needs to be addressed is prognostic biomarkers for early knee osteoarthritis (kOA). We aimed to study the association of urinary collagen type-II C-terminal cleavage neoepitope (uC2C) with the emergence and progression of kOA. The longitudinal data of 330 subjects (aged 32-60 years) from an Estonian population-based cohort were used. The radiographic progression was evaluated by the grading system of Nagaosa et al. of knee compartments at baseline and three years later. The emerging kOA consisted of subjects with developing osteophytes or joint space narrowing, whereas kOA progressors showed aggravation of radiographic grade. Baseline uC2C levels were measured by the IBEX-uC2C assay. At baseline, the subjects were middle-aged (mean age, 47.6 years) and overweight (mean BMI, 28.0 kg/m2), and the majority of them (51.2%) had a diagnosis of kOA grade 1. Multiple logistic regression models adjusted for sex, age, and BMI were used for risk calculations. We demonstrate that increased uC2C accurately predicted the risk of emerging of kOA (OR = 5.87 (1.71-20.22); AUC = 0.79) compared with controls without radiographic kOA over 12 years. However, the most accurate prediction of progression by the biomarker was found in women (OR = 23.0 (2.2-245), AUC = 0.91). In conclusion, uC2C may be a promising candidate as a prognostic biomarker for kOA progression, particularly of emerging kOA in women.
Collapse
Affiliation(s)
- Liisa Kuhi
- Department of Internal Medicine, Institute of Clinical Medicine, University of Tartu, 50090 Tartu, Estonia; (A.O.T.); (K.K.)
- Central Laboratory, Diagnostic Clinic, East-Tallinn Central Hospital, 10138 Tallinn, Estonia
| | - Ann E. Tamm
- Sports Medicine and Rehabilitation Clinic, Institute of Clinical Medicine, University of Tartu, 50090 Tartu, Estonia;
| | - Agu O. Tamm
- Department of Internal Medicine, Institute of Clinical Medicine, University of Tartu, 50090 Tartu, Estonia; (A.O.T.); (K.K.)
| | - Kalle Kisand
- Department of Internal Medicine, Institute of Clinical Medicine, University of Tartu, 50090 Tartu, Estonia; (A.O.T.); (K.K.)
| |
Collapse
|
11
|
Kulkarni P, Martson A, Vidya R, Chitnavis S, Harsulkar A. Pathophysiological landscape of osteoarthritis. Adv Clin Chem 2020; 100:37-90. [PMID: 33453867 DOI: 10.1016/bs.acc.2020.04.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A sharp rise in osteoarthritis (OA) incidence is expected as over 25% of world population ages in the coming decade. Although OA is considered a degenerative disease, mounting evidence suggests a strong connection with chronic metabolic conditions and low-grade inflammation. OA pathology is increasingly understood as a complex interplay of multiple pathological events including oxidative stress, synovitis and immune responses revealing its intricate nature. Cellular, biochemical and molecular aspects of these pathological events along with major outcomes of the relevant research studies in this area are discussed in the present review. With reference to their published and unpublished work, the authors strongly propose synovitis as a central OA pathology and the key OA pathological events are described in connection with it. Recent research outcomes also have succeeded to establish a linkage between metabolic syndrome and OA, which has been precisely included in the present review. Impact of aging process cannot be neglected in OA. Cell senescence is an important mechanism of aging through which it facilitates development of OA like other degenerative disorders, also discussed within a frame of OA. Conclusively, the reviewers urge low-grade inflammation linked to aging and derailed immune function as a pathological platform for OA development and progression. Thus, interventions targeted to prevent inflammaging hold a promising potential in effective OA management and efforts should be invested in this direction.
Collapse
Affiliation(s)
- Priya Kulkarni
- Department of Pathophysiology, Biomedicine and Translational medicine, University of Tartu, Tartu, Estonia; Department of Traumatology and Orthopaedics, Tartu University Hospital, Tartu, Estonia
| | - Aare Martson
- Department of Traumatology and Orthopaedics, Tartu University Hospital, Tartu, Estonia; Clinic of Traumatology and Orthopaedics, Tartu University Hospital, Tartu, Estonia
| | - Ragini Vidya
- Department of Pharmaceutical Biotechnology, Poona College of Pharmacy, Pune, India
| | - Shreya Chitnavis
- Department of Pharmaceutical Biotechnology, Poona College of Pharmacy, Pune, India
| | - Abhay Harsulkar
- Department of Pathophysiology, Biomedicine and Translational medicine, University of Tartu, Tartu, Estonia; Department of Pharmaceutical Biotechnology, Poona College of Pharmacy, Pune, India.
| |
Collapse
|