1
|
Zhu S, Liu J, Wang Q, Yang Y, Du L, Qiu X, Qi R, Wang J. Resolvin D1 alleviates apoptosis triggered by endoplasmic reticulum stress in IPEC-J2 cells. BMC Vet Res 2024; 20:125. [PMID: 38561794 PMCID: PMC10983747 DOI: 10.1186/s12917-023-03820-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/22/2023] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Resolvin D1 (RvD1), a specialized pro-resolving lipid mediator (SPM), is derived from docosahexaenoic acid (DHA). It plays a key role in actively resolving inflammatory responses, which further reduces small intestinal damage. However, its regulation of the apoptosis triggered by endoplasmic reticulum (ER) stress in intestinal epithelial cells is still poorly understood. The intestinal porcine epithelial cells (IPEC-J2) were stimulated with tunicamycin to screen an optimal stimulation time and concentration to establish an ER stress model. Meanwhile, RvD1 (0, 1, 10, 20, and 50 nM) cytotoxicity and its impact on cell viability and the effective concentration for reducing ER stress and apoptosis were determined. Finally, the effects of RvD1 on ER stress and associated apoptosis were furtherly explored by flow cytometry analysis, AO/EB staining, RT-qPCR, and western blotting. RESULTS The ER stress model of IPEC-J2 cells was successfully built by stimulating the cells with 1 µg/mL tunicamycin for 9 h. Certainly, the increased apoptosis and cell viability inhibition also appeared under the ER stress condition. RvD1 had no cytotoxicity, and its concentration of 1 nM significantly decreased cell viability inhibition (p= 0.0154) and the total apoptosis rate of the cells from 14.13 to 10.00% (p= 0.0000). RvD1 at the concentration of 1 nM also significantly reduced the expression of glucose-regulated protein 78 (GRP-78, an ER stress marker gene) (p= 0.0000) and pro-apoptotic gene Caspase-3 (p= 0.0368) and promoted the expression of B cell lymphoma 2 (Bcl-2, an anti-apoptotic gene)(p= 0.0008). CONCLUSIONS Collectively, the results shed light on the potential of RvD1 for alleviating apoptosis triggered by ER stress, which may indicate an essential role of RvD1 in maintaining intestinal health and homeostasis.
Collapse
Affiliation(s)
- Siyuan Zhu
- Chongqing Academy of Animal Sciences, Chongqing, 402460, P. R. China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Jingbo Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Qi Wang
- Chongqing Academy of Animal Sciences, Chongqing, 402460, P. R. China
| | - Yong Yang
- Chongqing Academy of Animal Sciences, Chongqing, 402460, P. R. China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Lei Du
- Chongqing Academy of Animal Sciences, Chongqing, 402460, P. R. China
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China
| | - Xiaoyu Qiu
- Chongqing Academy of Animal Sciences, Chongqing, 402460, P. R. China
| | - Renli Qi
- Chongqing Academy of Animal Sciences, Chongqing, 402460, P. R. China.
| | - Jing Wang
- Chongqing Academy of Animal Sciences, Chongqing, 402460, P. R. China.
| |
Collapse
|
2
|
Kariminezhad Z, Rahimi M, Fernandes J, Maltais R, Sancéau JY, Poirier D, Fahmi H, Benderdour M. Development of New Resolvin D1 Analogues for Osteoarthritis Therapy: Acellular and Computational Approaches to Study Their Antioxidant Activities. Antioxidants (Basel) 2024; 13:386. [PMID: 38671833 PMCID: PMC11047542 DOI: 10.3390/antiox13040386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024] Open
Abstract
In osteoarthritis (OA), oxidative stress plays a crucial role in maintaining and sustaining cartilage degradation. Current OA management requires a combination of pharmaceutical and non-pharmacological strategies, including intraarticular injections of hyaluronic acid (HA). However, several lines of evidence reported that HA oxidation by reactive oxygen species (ROS) is linked with HA cleavage and fragmentation, resulting in reduced HA viscosity. Resolvin D1 (RvD1) is a lipid mediator that is biosynthesized from omega-3 polyunsaturated fatty acids and is a good candidate with the potential to regulate a panoply of biological processes, including tissue repair, inflammation, oxidative stress, and cell death in OA. Herein, newly designed and synthesized imidazole-derived RvD1 analogues were introduced to compare their potential antioxidant properties with commercially available RvD1. Their antioxidant capacities were investigated by several in vitro chemical assays including oxygen radical absorbance capacity, 2,2-diphenyl-1-picrylhydrazyl radical scavenging, ferric ion reducing antioxidant power, hydroxyl radical scavenging, and HA fragmentation assay. All results proved that imidazole-derived RvD1 analogues showed excellent antioxidant performance compared to RvD1 due to their structural modifications. Interestingly, they scavenged the formed reactive oxygen species (ROS) and protected HA from degradation, as verified by agarose gel electrophoresis and gel permission chromatography. A computational study using Gaussian 09 with DFT calculations and a B3LYP/6-31 G (d, p) basis set was also employed to study the relationship between the antioxidant properties and chemical structures as well as calculation of the molecular structures, frontier orbital energy, molecular electrostatic potential, and bond length. The results showed that the antioxidant activity of our analogues was higher than that of RvD1. In conclusion, the findings suggest that imidazole-derived RvD1 analogues can be good candidates as antioxidant molecules for the treatment of oxidative stress-related diseases like OA. Therefore, they can prolong the longevity of HA in the knee and thus may improve the mobility of the articulation.
Collapse
Affiliation(s)
- Zahra Kariminezhad
- Orthopedic Research Laboratory, Hôpital du Sacré-Cœur de Montréal, Université de Montréal, Montréal, QC H4J 1C5, Canada; (Z.K.); (M.R.); (J.F.)
| | - Mahdi Rahimi
- Orthopedic Research Laboratory, Hôpital du Sacré-Cœur de Montréal, Université de Montréal, Montréal, QC H4J 1C5, Canada; (Z.K.); (M.R.); (J.F.)
| | - Julio Fernandes
- Orthopedic Research Laboratory, Hôpital du Sacré-Cœur de Montréal, Université de Montréal, Montréal, QC H4J 1C5, Canada; (Z.K.); (M.R.); (J.F.)
| | - René Maltais
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada; (R.M.); (J.-Y.S.); (D.P.)
| | - Jean-Yves Sancéau
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada; (R.M.); (J.-Y.S.); (D.P.)
| | - Donald Poirier
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada; (R.M.); (J.-Y.S.); (D.P.)
- Organic Synthesis Service, Medicinal Chemistry Platform, CHU de Québec Research Center, Université Laval, Québec, QC G1V 4G2, Canada
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montréal, QC H2X 0A9, Canada;
| | - Mohamed Benderdour
- Orthopedic Research Laboratory, Hôpital du Sacré-Cœur de Montréal, Université de Montréal, Montréal, QC H4J 1C5, Canada; (Z.K.); (M.R.); (J.F.)
| |
Collapse
|
3
|
Natami M, Hosseini SM, Khaleel RA, Addulrahman TS, Zarei M, Asadi S, Gholami S, Mehrvar A. The role of specialized pro-resolving mediators (SPMs) in inflammatory arthritis: A therapeutic strategy. Prostaglandins Other Lipid Mediat 2024; 170:106798. [PMID: 37977352 DOI: 10.1016/j.prostaglandins.2023.106798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/28/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Rheumatoid arthritis (RA) is classified as a persistent inflammatory autoimmune disorder leading to the subsequent erosion of articular cartilage and bone tissue originating from the synovium. The fundamental objective of therapeutic interventions in RA has been the suppression of inflammation. Nevertheless, conventional medicines that lack target specificity may exhibit unpredictable effects on cell metabolism. In recent times, there has been evidence suggesting that specialized pro-resolving mediators (SPMs), which are lipid metabolites, have a role in facilitating the resolution of inflammation and the reestablishment of tissue homeostasis. SPMs are synthesized by immune cells through the enzymatic conversion of omega-3 fatty acids. In the context of RA, there is a possibility of dysregulation in the production of these SPMs. In this review, we delve into the present comprehension of the endogenous functions of SPMs in RA as lipids that exhibit pro-resolutive, protective, and immunoresolvent properties.
Collapse
Affiliation(s)
- Mohammad Natami
- Department of Urology, Shahid Mohammadi Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Seyed Mehdi Hosseini
- Department of Oral and Maxillofacial surgery, School of Dentistry, Azad University of Medical Science, Shiraz, Iran
| | | | | | - Mehdi Zarei
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Sahar Asadi
- Department of Community and Family Medicine, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sepideh Gholami
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Amir Mehrvar
- Taleghani Hospital Clinical Research Development Unit, Shahid Beheshti University of Medical Science, Tehran, Iran.
| |
Collapse
|
4
|
Su Y, Han Y, Choi HS, Lee GY, Cho HW, Choi H, Choi JH, Jang YS, Seo JW. Lipid mediators obtained from docosahexaenoic acid by soybean lipoxygenase attenuate RANKL-induced osteoclast differentiation and rheumatoid arthritis. Biomed Pharmacother 2024; 171:116153. [PMID: 38232664 DOI: 10.1016/j.biopha.2024.116153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic immune-mediated inflammatory disease characterized by persistent inflammation and joint destruction. A lipid mediator (LM, namely, 17S-monohydroxy docosahexaenoic acid, resolvin D5, and protectin DX in a ratio of 3:47:50) produced by soybean lipoxygenase from DHA, exhibits anti-inflammatory activity. In this study, we determined the effect of LM on collagen antibody-induced arthritis (CAIA) in mice and receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation in RAW264.7 cells. LM effectively downregulated the expression of tartrate-resistant acid phosphatase (TRAP) and cathepsin K, inhibited osteoclast formation, and suppressed the NF-κB signaling pathway in vitro. In vivo, LM at 10 μg/kg/day significantly decreased paw swelling and inhibited progression of arthritis in CAIA mice. Moreover, proinflammatory cytokine (tumor necrosis factor-α, interleukin (IL)-6, IL-1β, IL-17, and interferon-γ) levels in serum were decreased, whereas IL-10 levels were increased following LM treatment. Furthermore, LM alleviated joint inflammation, cartilage erosion, and bone destruction in the ankles, which may be related to matrix metalloproteinase and Janus kinase (JAK)-signal transducer and activators of transcription (STAT) signaling pathway. Our findings suggest that LM attenuates arthritis severity, restores serum imbalances, and modifies joint damage. Thus, LM represents a promising therapy for relieving RA symptoms.
Collapse
Affiliation(s)
- Yan Su
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-Si 56212, South Korea; Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju 54896, South Korea
| | - Yunjon Han
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-Si 56212, South Korea
| | - Hack Sun Choi
- Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Gil-Yong Lee
- Healthcare Technology Institute, Kolon Advanced Research Center, 110 Magokdong-ro, Seoul 07793, South Korea
| | - Hee Won Cho
- Healthcare Technology Institute, Kolon Advanced Research Center, 110 Magokdong-ro, Seoul 07793, South Korea
| | - Heonsik Choi
- Healthcare Technology Institute, Kolon Advanced Research Center, 110 Magokdong-ro, Seoul 07793, South Korea
| | - Jong Hyun Choi
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-Si 56212, South Korea
| | - Yong-Suk Jang
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju 54896, South Korea.
| | - Jeong-Woo Seo
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-Si 56212, South Korea.
| |
Collapse
|
5
|
Zhang X, Zhang H. Pro-resolving and anti-inflammatory effects of resolvins and protectins in rheumatoid arthritis. Inflammopharmacology 2023; 31:2995-3004. [PMID: 37831392 DOI: 10.1007/s10787-023-01343-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023]
Abstract
Rheumatoid arthritis (RA) is typified by persistent joint inflammation, which leads to the deterioration of bone and cartilage and a reduction in overall quality of life. The global prevalence of pain as a primary symptom in RA is influenced by the interplay between inflammation and its resolution. The identification of a family of lipid mediators known as specialized pro-resolving mediators (SPM)s has contributed to the progress of our comprehension of inflammatory conditions. SPMs have been observed to trigger the process of inflammation resolution, thereby reinstating the homeostasis of the inflammatory response. Autacoids are synthesized through the stereo-selective transformation of essential fatty acids, resulting in molecules dynamically modulated during inflammation and possessing strong immunoregulatory properties. This review delves into the available evidence that supports the involvement of certain SPM as protective lipids, biomarkers with potential, and therapeutic targets in the context of RA.
Collapse
Affiliation(s)
- Xiurong Zhang
- Department of Rheumatology, The Fourth Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Hongting Zhang
- Department of Rheumatology, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| |
Collapse
|
6
|
Leite CBG, Merkely G, Charles JF, Lattermann C. From Inflammation to Resolution: Specialized Pro-resolving Mediators in Posttraumatic Osteoarthritis. Curr Osteoporos Rep 2023; 21:758-770. [PMID: 37615856 DOI: 10.1007/s11914-023-00817-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 08/25/2023]
Abstract
PURPOSE OF REVIEW To provide a comprehensive overview of the inflammatory response following anterior cruciate ligament (ACL) injury and to highlight the relationship between specialized pro-resolving mediators (SPMs) and inflammatory joint conditions, emphasizing the therapeutic potential of modulating the post-injury resolution of inflammation to prevent posttraumatic osteoarthritis (PTOA). RECENT FINDINGS The inflammatory response triggered after joint injuries such as ACL tear plays a critical role in posttraumatic osteoarthritis development. Inflammation is a necessary process for tissue healing, but unresolved or overactivated inflammation can lead to chronic diseases. SPMs, a family of lipid molecules derived from essential fatty acids, have emerged as active players in the resolution of inflammation and tissue repair. While their role in other inflammatory conditions has been studied, their relationship with PTOA remains underexplored. Proinflammatory mediators contribute to cartilage degradation and PTOA pathogenesis, while anti-inflammatory and pro-resolving mediators may have chondroprotective effects. Therapies aimed at suppressing inflammation in PTOA have limitations, as inflammation is crucial for tissue healing. SPMs offer a pro-resolving response without causing immunosuppression, making them a promising therapeutic option. The known onset date of PTOA makes it amenable to early interventions, and activating pro-resolving pathways may provide new possibilities for preventing PTOA progression. Harnessing the pro-resolving potential of SPMs may hold promise for preventing PTOA and restoring tissue homeostasis and function after joint injuries.
Collapse
Affiliation(s)
- Chilan B G Leite
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 20 Patriot Place Foxboro, Boston, MA, 02035, USA
| | - Gergo Merkely
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 20 Patriot Place Foxboro, Boston, MA, 02035, USA
| | - Julia F Charles
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 20 Patriot Place Foxboro, Boston, MA, 02035, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Christian Lattermann
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 20 Patriot Place Foxboro, Boston, MA, 02035, USA.
| |
Collapse
|
7
|
Centanni D, Henricks PAJ, Engels F. The therapeutic potential of resolvins in pulmonary diseases. Eur J Pharmacol 2023; 958:176047. [PMID: 37742814 DOI: 10.1016/j.ejphar.2023.176047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023]
Abstract
Uncontrolled inflammation leads to nonspecific destruction and remodeling of tissues and can contribute to many human pathologies, including pulmonary diseases. Stimulation of inflammatory resolution is considered an important process that protects against the progression of chronic inflammatory diseases. Resolvins generated from essential omega-3 polyunsaturated fatty acids have been demonstrated to be signaling molecules in inflammation with important pro-resolving and anti-inflammatory capabilities. By binding to specific receptors, resolvins can modulate inflammatory processes such as neutrophil migration, macrophage phagocytosis and the presence of pro-inflammatory mediators to reduce inflammatory pathologies. The discovery of these pro-resolving mediators has led to a shift in drug research from suppressing pro-inflammatory molecules to investigating compounds that promote resolution to treat inflammation. The exploration of inflammatory resolution also provided the opportunity to further understand the pathophysiology of pulmonary diseases. Alterations of resolution are now linked to both the development and exacerbation of diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, acute respiratory distress syndrome, cancer and COVID-19. These findings have resulted in the rise of novel design and testing of innovative resolution-based therapeutics to treat diseases. Hence, this paper reviews the generation and mechanistic actions of resolvins and investigates their role and therapeutic potential in several pulmonary diseases that may benefit from resolution-based pharmaceuticals.
Collapse
Affiliation(s)
- Daniel Centanni
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, the Netherlands
| | - Paul A J Henricks
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, the Netherlands
| | - Ferdi Engels
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, the Netherlands.
| |
Collapse
|
8
|
Lei Q, Yang J, Li L, Zhao N, Lu C, Lu A, He X. Lipid metabolism and rheumatoid arthritis. Front Immunol 2023; 14:1190607. [PMID: 37325667 PMCID: PMC10264672 DOI: 10.3389/fimmu.2023.1190607] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
As a chronic progressive autoimmune disease, rheumatoid arthritis (RA) is characterized by mainly damaging the synovium of peripheral joints and causing joint destruction and early disability. RA is also associated with a high incidence rate and mortality of cardiovascular disease. Recently, the relationship between lipid metabolism and RA has gradually attracted attention. Plasma lipid changes in RA patients are often detected in clinical tests, the systemic inflammatory status and drug treatment of RA patients can interact with the metabolic level of the body. With the development of lipid metabolomics, the changes of lipid small molecules and potential metabolic pathways have been gradually discovered, which makes the lipid metabolism of RA patients or the systemic changes of lipid metabolism after treatment more and more comprehensive. This article reviews the lipid level of RA patients, as well as the relationship between inflammation, joint destruction, cardiovascular disease, and lipid level. In addition, this review describes the effect of anti-rheumatic drugs or dietary intervention on the lipid profile of RA patients to better understand RA.
Collapse
Affiliation(s)
- Qian Lei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Jie Yang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ning Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Shanghai GuangHua Hospital of Integrated Traditional Chinese and Western Medicine, Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Eltay EG, Van Dyke T. Resolution of inflammation in oral diseases. Pharmacol Ther 2023:108453. [PMID: 37244405 DOI: 10.1016/j.pharmthera.2023.108453] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
The resolution of inflammation is an essential endogenous process that protects host tissues from an exaggerated chronic inflammatory response. Multiple interactions between host cells and resident oral microbiome regulate the protective functions that lead to inflammation in the oral cavity. Failure of appropriate regulation of inflammation can lead to chronic inflammatory diseases that result from an imbalance between pro-inflammatory and pro-resolution mediators. Thus, failure of the host to resolve inflammation can be considered an essential pathological mechanism for progression from the late stages of acute inflammation to a chronic inflammatory response. Specialized pro-resolving mediators (SPMs), which are essential polyunsaturated fatty acid (PUFA)-derived autacoid mediators, aid in regulating the endogenous inflammation resolving process by stimulating immune cell-mediated clearance of apoptotic polymorphonuclear neutrophils, cellular debris, and microbes, restricting further neutrophil tissue infiltration, and counter-regulating pro-inflammatory cytokine production. The SPM superfamily contains four specialized lipid mediator families: lipoxins, resolvins, protectins, and maresins that can activate resolution pathways. Understanding the crosstalk between resolution signals in the tissue response to injury has therapeutic application potential for preventing, maintaining, and regenerating chronically damaged tissues. Here, we discuss the fundamental concepts of resolution as an active biochemical process, novel concepts demonstrating the role of resolution mediators in tissue regeneration in periodontal and pulpal diseases, and future directions for therapeutic applications with particular emphasis on periodontal therapy.
Collapse
Affiliation(s)
- Eiba G Eltay
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, United States; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Thomas Van Dyke
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, United States; Center for Clinical and Translational Research, The Forsyth Institute, Cambridge, MA, United States; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, United States.
| |
Collapse
|
10
|
Zhao X, Li X, Guo H, Liu P, Ma M, Wang Y. Resolvin D1 attenuates mechanical allodynia after burn injury: Involvement of spinal glia, p38 mitogen-activated protein kinase, and brain-derived neurotrophic factor/tropomyosin-related kinase B signaling. Mol Pain 2023; 19:17448069231159970. [PMID: 36765459 PMCID: PMC9986910 DOI: 10.1177/17448069231159970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Resolvin D1 (RvD1) suppresses inflammatory, postoperative, and neuropathic pain. The present study assessed the roles and mechanisms of RvD1 in mechanical allodynia after burn injury. A rat model of burn injury was established for analyses, and RvD1 was injected intraperitoneally. Pain behavior and the expression levels of spinal dorsal horn Iba-1 (microglia marker), GFAP (astrocyte marker), p-p38 mitogen-activated protein kinase (MAPK), brain-derived neurotrophic factor (BDNF), and tropomyosin-related kinase B (TrkB) were detected by behavioral and immunocytochemical assays. The results showed that RvD1 attenuated mechanical allodynia after burn injury, prevented microglial and astroglial activation, and downregulated p-p38 MAPK in microglia and BDNF/TrkB following burn injury. Similarly, inhibition of p38 MAPK and BDNF/TrkB signaling attenuated mechanical allodynia after burn injury. In addition, inhibition of p38 MAPK prevented spinal microglial activation and downregulated BDNF/TrkB following burn injury. Furthermore, inhibition of BDNF/TrkB signaling prevented spinal microglial activation and downregulated p-p38 MAPK within spinal microglia. Taken together, this study demonstrated that RvD1 might attenuate mechanical allodynia after burn injury by inhibiting spinal cord glial activation, microglial p38 MAPK, and BDNF/TrkB signaling in the spinal dorsal horn.
Collapse
Affiliation(s)
- Xiaona Zhao
- Department of Anesthesiology, Pain and Perioperative Medicine, 191599The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinxin Li
- Department of Anesthesiology, Pain and Perioperative Medicine, 191599The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huiling Guo
- Department of Anesthesiology, Pain and Perioperative Medicine, 191599The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Panmei Liu
- Department of Anesthesiology, Pain and Perioperative Medicine, 191599The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Minyu Ma
- Department of Anesthesiology, Pain and Perioperative Medicine, 191599The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanping Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, 191599The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Pinto N, Klein Y, David E, Polak D, Steinberg D, Mizrahi G, Khoury Y, Barenholz Y, Chaushu S. Resolvin D1 improves allograft osteointegration and directly enhances osteoblasts differentiation. Front Immunol 2023; 14:1086930. [PMID: 36923414 PMCID: PMC10008843 DOI: 10.3389/fimmu.2023.1086930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/03/2023] [Indexed: 03/02/2023] Open
Abstract
Introduction Allografts are the most common bone grafts for repairing osseous defects. However, their use is associated with an increased risk for infections, donor disease transmission and osteointegration deficiency. Resolvin D1 (RvD1) is an endogenous lipid with a scientifically proven pivotal role in inflammation resolution and osteoclastogenesis inhibition. Yet, its biological relevance as a potential bone regenerative drug has been scarcely studied. Here, we aim to investigate the RvD1 effect on allograft osteointegration in the alveolar bone regeneration (ABR) murine model. Methods ABR model consisted of osseous defects that were generated by the extraction of the maxillary first molar in C57BL/6 mice. The sockets were filled with allograft and analyzed via RNA sequencing. Then they were locally injected with either RvD1 or saline via single or repeated administrations. The mice were sacrificed 2W after the procedure, and regenerated sites were analyzed using µCT and histology. First, MC3T3-E1 preosteoblasts were plated with IL-17 pro-inflammatory medium, and RANKL/OPG ratio was measured. Secondly, the MC3T3-E1 were cultured w/o RvD1, for 3W. Osteoblasts' markers were evaluated in different days, using qRT-PCR and Alizarin Red staining for calcified matrix. Results In vivo, neither allograft alone nor single RvD1 administration promote bone regeneration in comparison to the control of spontaneous healing and even triggered an elevation in NR1D1 and IL1RL1 expression, markers associated with inflammation and inhibition of bone cell differentiation. However, repeated RvD1 treatment increased bone content by 135.92% ± 45.98% compared to its specific control, repeated sham, and by 39.12% ± 26.3% when compared to the spontaneous healing control group (n=7/group). Histologically, repeated RvD1 reduced the number of TRAP-positive cells, and enhanced allograft osteointegration with new bone formation. In vitro, RvD1 rescued OPG expression and decreased RANKL/OPG ratio in IL-17 pro-inflammatory conditions. Furthermore, RvD1 increased the expression of RUNX2, OSX, BSP and OC/BGLAP2 and the mineralized extracellular matrix during MC3T3-E1 osteoblasts differentiation. Conclusions Repeated administrations of RvD1 promote bone regeneration via a dual mechanism: directly, via enhancement of osteoblasts' differentiation and indirectly, through reduction of osteoclastogenesis and RANKL/OPG ratio. This suggests that RvD1 may be a potential therapeutic bioagent for osseous regeneration following allograft implantation.
Collapse
Affiliation(s)
- Noy Pinto
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yehuda Klein
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Orthodontics, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eilon David
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Polak
- Department of Periodontics, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel Steinberg
- The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-Medical Research, Israel-Canada (IMRIC), Jerusalem, Israel.,Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gilad Mizrahi
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Orthodontics, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yasmin Khoury
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yechezkel Barenholz
- Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Stella Chaushu
- Department of Orthodontics, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
12
|
Liu C, Fan D, Lei Q, Lu A, He X. Roles of Resolvins in Chronic Inflammatory Response. Int J Mol Sci 2022; 23:ijms232314883. [PMID: 36499209 PMCID: PMC9738788 DOI: 10.3390/ijms232314883] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
An inflammatory response is beneficial to the organism, while an excessive uncontrolled inflammatory response can lead to the nonspecific killing of tissue cells. Therefore, promoting the resolution of inflammation is an important mechanism for protecting an organism suffering from chronic inflammatory diseases. Resolvins are a series of endogenous lipid mediums and have the functions of inhibiting a leukocyte infiltration, increasing macrophagocyte phagocytosis, regulating cytokines, and alleviating inflammatory pain. By promoting the inflammation resolution, resolvins play an irreplaceable role throughout the pathological process of some joint inflammation, neuroinflammation, vascular inflammation, and tissue inflammation. Although a large number of experiments have been conducted to study different subtypes of resolvins in different directions, the differences in the action targets between the different subtypes are rarely compared. Hence, this paper reviews the generation of resolvins, the characteristics of resolvins, and the actions of resolvins under a chronic inflammatory response and clinical translation of resolvins for the treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Chang Liu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Dancai Fan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qian Lei
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai 200052, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510120, China
- Correspondence: (A.L.); (X.H.)
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Correspondence: (A.L.); (X.H.)
| |
Collapse
|
13
|
Klein Y, Levin-Talmor O, Berkstein JG, Wald S, Meirow Y, Maimon A, Leibovich A, Barenholz Y, Polak D, Chaushu S. Resolvin D1 shows osseous-protection via RANK reduction on monocytes during orthodontic tooth movement. Front Immunol 2022; 13:928132. [PMID: 36275768 PMCID: PMC9585452 DOI: 10.3389/fimmu.2022.928132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
The study aimed to investigate the role of RvD1 in acute and prolonged sterile inflammation and bone remodeling. A mouse model of sterile inflammation that involves bone resorption was used to examine endogenous RvD1 kinetics during inflammation. Application of exogenous RvD1 significantly inhibited bone remodeling via osteoclast reduction, alongside an anti-inflammatory secretome shift, increased macrophages recruitment and reduction of T-cytotoxic cells. In vitro and in vivo, RvD1 led to significant reduction in RANK expression which reduce osteoclastogenesis in a dose-dependent manner. Taken together, the data shows a dual role for RvD1, as a potent immunoresolvent agent alongside an osteoresolvent role, showing a potential therapeutic agent in bone resorption associated inflammatory conditions.
Collapse
Affiliation(s)
- Yehuda Klein
- Department of Orthodontics, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Biochemistry, Israel–Canada Medical Research Institute, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- The Institute of Dental Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Offir Levin-Talmor
- Department of Orthodontics, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jaime Garber Berkstein
- Department of Orthodontics, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sharon Wald
- Department of Orthodontics, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yaron Meirow
- Lautenberg Center for General and Tumor Immunology, Israel–Canada Medical Research Institute, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avi Maimon
- The Institute of Dental Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avi Leibovich
- Department of Orthodontics, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yechezkel Barenholz
- Department of Biochemistry, Israel–Canada Medical Research Institute, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Polak
- Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Periodontics, Hadassah Medical Center, Jerusalem, Israel
| | - Stella Chaushu
- Department of Orthodontics, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
14
|
Xu B, Li M, Cheng T, Xia J, Deng X, Hou J. Resolvin D1 protects against sepsis-associated encephalopathy in mice by inhibiting neuro-inflammation induced by microglia. Am J Transl Res 2022; 14:6737-6750. [PMID: 36247289 PMCID: PMC9556482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/29/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVES Neuro-inflammation induced by microglia is crucial in the pathogenesis of sepsis-associated encephalopathy (SAE). The endogenous lipid mediator, Resolvin D1 (RvD1), which is synthesized from docosahexaenoic acid, has been extensively reported to attenuate inflammation in various diseases by its anti-inflammation and pro-resolving functions. However, the effect of RvD1 on SAE remains unclear. In this study, we aimed to ex the function and mechanism of RvD1 on SAE mice. METHODS In our study, the SAE mice model was established by the method of cecal ligation and perforation (CLP). C57BL/6J mice were randomly divided into three groups: the Sham group, the CLP group and the CLP+RvD1 group. Cognitive impairment of the mice was assessed by Morris water maze. Iba1 immunohistochemistry was conducted to observe the activation of microglia in hippocampus of the mice from different groups. The production of cytokines, including TNF-α, IL-6 and IL-1β, and their mRNA levels were evaluated by ELISA and Q-PCR. The expression of the molecules from inflammatory signaling pathways was assessed by Western blot. RESULTS xaRvD1 treatment significantly improved the learning and cognitive ability of SAE mice. The activation of microglia and the production of inflammatory cytokines in hippocampal tissues were inhibited in CLP+RvD1 group. We also found that the inflammation of microglia was attenuated by RvD1 treatment both in vivo and in vitro. Moreover, the activation of NF-κB, MAPK and STAT signaling pathways were inhibited by RvD1 treatment, which partly explained the anti-inflammation function of RvD1 on SAE mice. CONCLUSIONS RvD1 could improve the learning and cognitive ability of SAE mice by inhibiting the systemic and local inflammation. It could attenuate the inflammation in microglia by inhibiting the activation of inflammatory signaling pathways and then decreasing the production of cytokines. These findings are helpful to better understand the pathophysiology of SAE, which also provide a novel therapeutic method in clinic.
Collapse
Affiliation(s)
- Bing Xu
- Department of Anesthesiology, Changhai Hospital, Naval Medical UniversityShanghai 200433, China
| | - Mi Li
- School of Anesthesiology, Naval Medical UniversityShanghai 200433, China
| | - Tingting Cheng
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of MedicineShanghai 200025, China
| | - Jun Xia
- Department of Anesthesiology, Changhai Hospital, Naval Medical UniversityShanghai 200433, China
| | - Xiaoming Deng
- Department of Anesthesiology, Changhai Hospital, Naval Medical UniversityShanghai 200433, China
| | - Jiong Hou
- Department of Anesthesiology, Changhai Hospital, Naval Medical UniversityShanghai 200433, China
| |
Collapse
|
15
|
Król M, Kupnicka P, Bosiacki M, Chlubek D. Mechanisms Underlying Anti-Inflammatory and Anti-Cancer Properties of Stretching-A Review. Int J Mol Sci 2022; 23:ijms231710127. [PMID: 36077525 PMCID: PMC9456560 DOI: 10.3390/ijms231710127] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 02/07/2023] Open
Abstract
Stretching is one of the popular elements in physiotherapy and rehabilitation. When correctly guided, it can help minimize or slow down the disabling effects of chronic health conditions. Most likely, the benefits are associated with reducing inflammation; recent studies demonstrate that this effect from stretching is not just systemic but also local. In this review, we present the current body of knowledge on the anti-inflammatory properties of stretching at a molecular level. A total of 22 papers, focusing on anti-inflammatory and anti-cancer properties of stretching, have been selected and reviewed. We show the regulation of oxidative stress, the expression of pro- and anti-inflammatory genes and mediators, and remodeling of the extracellular matrix, expressed by changes in collagen and matrix metalloproteinases levels, in tissues subjected to stretching. We point out that a better understanding of the anti-inflammatory properties of stretching may result in increasing its importance in treatment and recovery from diseases such as osteoarthritis, systemic sclerosis, and cancer.
Collapse
Affiliation(s)
- Małgorzata Król
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Correspondence:
| | - Mateusz Bosiacki
- Chair and Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University, Żołnierska 54, 71-210 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
16
|
Livshits G, Kalinkovich A. Targeting chronic inflammation as a potential adjuvant therapy for osteoporosis. Life Sci 2022; 306:120847. [PMID: 35908619 DOI: 10.1016/j.lfs.2022.120847] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/07/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022]
Abstract
Systemic, chronic, low-grade inflammation (SCLGI) underlies the pathogenesis of various widespread diseases. It is often associated with bone loss, thus connecting chronic inflammation to the pathogenesis of osteoporosis. In postmenopausal women, osteoporosis is accompanied by SCLGI development, likely owing to estrogen deficiency. We propose that SCGLI persistence in osteoporosis results from failed inflammation resolution, which is mainly mediated by specialized, pro-resolving mediators (SPMs). In corroboration, SPMs demonstrate encouraging therapeutic effects in various preclinical models of inflammatory disorders, including bone pathology. Since numerous data implicate gut dysbiosis in osteoporosis-associated chronic inflammation, restoring balanced microbiota by supplementing probiotics and prebiotics could contribute to the efficient resolution of SCGLI. In the present review, we provide evidence for this hypothesis and argue that efficient SCGLI resolution may serve as a novel approach for treating osteoporosis, complementary to traditional anti-osteoporotic medications.
Collapse
Affiliation(s)
- Gregory Livshits
- Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel.
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel
| |
Collapse
|
17
|
Gokmenoglu C, Turkmen E, Öngöz Dede F, Erbak Yilmaz H, Kara MC, Çanakçi V. The resolvin D1 levels before and after periodontal therapy in periodontitis patients. Clin Oral Investig 2022; 26:6379-6385. [DOI: 10.1007/s00784-022-04593-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/21/2022] [Indexed: 11/30/2022]
|
18
|
Zaninelli TH, Fattori V, Saraiva-Santos T, Badaro-Garcia S, Staurengo-Ferrari L, Andrade KC, Artero NA, Ferraz CR, Bertozzi MM, Rasquel-Oliveira F, Manchope MF, Amaral FA, Teixeira MM, Borghi SM, Rogers MS, Casagrande R, Verri WA. RvD1 disrupts nociceptor neuron and macrophage activation, and neuroimmune communication reducing pain and inflammation in gouty arthritis in mice. Br J Pharmacol 2022; 179:4500-4515. [PMID: 35716378 DOI: 10.1111/bph.15897] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 04/27/2022] [Accepted: 05/25/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Gouty arthritis is characterised by an intense inflammatory response to monosodium urate crystals (MSU), which induces severe pain. Current therapies are often ineffective in reducing gout-related pain. Resolvin D1 (RvD1) is a specialised pro-resolving lipid mediator with anti-inflammatory and analgesic proprieties. In this study, we evaluated the effects and mechanisms of action of RvD1 in an experimental mouse model of gouty arthritis, an aim that was not pursued previously in the literature. EXPERIMENTAL APPROACH Male mice were treated with RvD1 (intrathecally or intraperitoneally) before or after intraarticular stimulation with MSU. Mechanical hyperalgesia was assessed using an electronic von Frey aesthesiometer. Leukocyte recruitment was determined by knee joint wash cell counting and immunofluorescence. IL-1β production was measured by ELISA. Phosphorylated NF-kB and apoptosis-associated speck-like protein containing CARD (ASC) were detected by immunofluorescence, and mRNA expression was determined by RT-qPCR. CGRP release was determined by EIA and immunofluorescence. MSU crystal phagocytosis was evaluated by confocal microscopy. KEY RESULTS RvD1 inhibited MSU-induced mechanical hyperalgesia in a dose- and time-dependent manner by reducing leukocyte recruitment and IL-1β production in the knee joint. Intrathecal RvD1 reduced the activation of peptidergic neurons and macrophages as well as silenced nociceptor to macrophage communication and macrophage function. CGRP stimulated MSU phagocytosis and IL-1β production by macrophages. RvD1 downmodulated this phenomenon directly by acting on macrophages, and indirectly by inhibiting CGRP release and CGRP-dependent activation of macrophages. CONCLUSIONS AND IMPLICATIONS This study reveals a hitherto unknown neuro-immune axis in gouty arthritis that is targeted by RvD1.
Collapse
Affiliation(s)
- Tiago H Zaninelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Victor Fattori
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil.,Vascular Biology Program, Department of Surgery, Boston Children's Hospital-Harvard Medical School, Karp Research Building, Boston, Massachusetts, United States
| | - Telma Saraiva-Santos
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Stephanie Badaro-Garcia
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Larissa Staurengo-Ferrari
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Ketlem C Andrade
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Nayara A Artero
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Camila R Ferraz
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Mariana M Bertozzi
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Fernanda Rasquel-Oliveira
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Marilia F Manchope
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Flávio A Amaral
- Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mauro M Teixeira
- Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Sergio M Borghi
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Michael S Rogers
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital-Harvard Medical School, Karp Research Building, Boston, Massachusetts, United States
| | - Rubia Casagrande
- Laboratory of Antioxidants and Inflammation, Department of Pharmaceutical Sciences, Centre of Health Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| |
Collapse
|
19
|
Jiang X, Xue Y, Mustafa M, Xing Z. An updated review of the effects of eicosapentaenoic acid- and docosahexaenoic acid-derived resolvins on bone preservation. Prostaglandins Other Lipid Mediat 2022; 160:106630. [PMID: 35263670 DOI: 10.1016/j.prostaglandins.2022.106630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/29/2022]
Abstract
Resolvins are biosynthesized from omega-3 eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in vivo by means of enzymatic activities, and these factors can attenuate inflammation and promote tissue regeneration. Inflammatory bone disorders can lead to bone loss and thereby be harmful to human health. The link between bone preservation and resolvins has been discussed in some experimental studies. Significant evidence has shown that resolvins benefit bone health and bone preservation by promoting the resolution of inflammation and directly regulating osteoclasts and osteoblasts. Therefore, this review highlights the role and beneficial impact of resolvins derived from EPA and DHA on inflammatory bone disorders, such as rheumatoid arthritis and periodontitis. In addition, the mechanisms by which resolvins exert their beneficial effects on bone preservation have also been summarized based on the available literature.
Collapse
Affiliation(s)
- Xiaofeng Jiang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, PR China
| | - Ying Xue
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway.
| | - Manal Mustafa
- Oral Health Centre of Expertise in Western Norway, 5009 Bergen, Norway
| | - Zhe Xing
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
20
|
Coras R, Murillo-Saich JD, Singh AG, Kavanaugh A, Guma M. Lipidomic Profiling in Synovial Tissue. Front Med (Lausanne) 2022; 9:857135. [PMID: 35492314 PMCID: PMC9051397 DOI: 10.3389/fmed.2022.857135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
The analysis of synovial tissue offers the potential for the comprehensive characterization of cell types involved in arthritis pathogenesis. The studies performed to date in synovial tissue have made it possible to define synovial pathotypes, which relate to disease severity and response to treatment. Lipidomics is the branch of metabolomics that allows the quantification and identification of lipids in different biological samples. Studies in animal models of arthritis and in serum/plasma from patients with arthritis suggest the involvement of different types of lipids (glycerophospholipids, glycerolipids, sphingolipids, oxylipins, fatty acids) in the pathogenesis of arthritis. We reviewed studies that quantified lipids in different types of tissues and their relationship with inflammation. We propose that combining lipidomics with currently used “omics” techniques can improve the information obtained from the analysis of synovial tissue, for a better understanding of pathogenesis and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Roxana Coras
- Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Jessica D. Murillo-Saich
- Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Abha G. Singh
- Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Arthur Kavanaugh
- Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Monica Guma
- Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
- San Diego VA Healthcare Service, San Diego, CA, United States
- *Correspondence: Monica Guma
| |
Collapse
|
21
|
Su S, Jiang W, Wang X, Du S, Qi J, Jia Q, Song H. Resolvin D1 inhibits the proliferation of osteoarthritis fibroblast-like synoviocytes through the Hippo-YAP signaling pathway. BMC Musculoskelet Disord 2022; 23:149. [PMID: 35168589 PMCID: PMC8845241 DOI: 10.1186/s12891-022-05095-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/07/2022] [Indexed: 01/15/2023] Open
Abstract
Objective Osteoarthritis (OA) is a disease characterized by cartilage degradation and structural destruction. Resolvin D1 (RvD1), a specialized proresolving mediator (SPM) derived from omega-3 fatty acids, has been preliminarily proven to show anti-inflammatory and antiapoptotic effects in OA. However, the mechanisms of RvD1 in osteoarthritis fibroblast-like synoviocytes (OA-FLSs) need to be clarified. Methods Synovial and fibroblast-like synoviocytes were obtained from OA patients and healthy individuals. MTT and EdU assays were performed to determine cell cytotoxicity and proliferation. The protein expression levels of cyclin D1, cyclin B1, PCNA, p53, MMP-13, YAP, p-YAP, and LATS1 were detected by western blot analysis. The release levels of IL-1β were detected by ELISA. The cell cycle was assessed by flow cytometry. Immunofluorescence was used to detect the levels of YAP in OA-FLSs. Results RvD1 inhibited OA-FLS proliferation and reduced MMP-13 and IL-1β secretion in the concentrations of 20 nM and 200 nM. Furthermore, RvD1 induced G2 cell cycle arrest in OA-FLSs via the Hippo-YAP signaling pathway and promoted YAP phosphorylation. However, RvD1 had no effects on normal FLSs. Conclusions RvD1 inhibits OA-FLS proliferation by promoting YAP phosphorylation and protects chondrocytes by inhibiting the secretion of MMP-13 and IL-1β, providing an experimental basis for RvD1 treatment of OA. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-022-05095-1.
Collapse
Affiliation(s)
- Siwei Su
- Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, Shandong, China
| | - Wenjun Jiang
- Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, Shandong, China
| | - Xiaoying Wang
- Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, Shandong, China
| | - Sen Du
- Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, Shandong, China
| | - Jianhong Qi
- Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, Shandong, China
| | - Qingwei Jia
- Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, Shandong, China
| | - Hongqiang Song
- Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, Shandong, China.
| |
Collapse
|
22
|
Sueda Y, Okazaki R, Funaki Y, Hasegawa Y, Ishikawa H, Hirayama Y, Inui G, Harada T, Takata M, Morita M, Yamasaki A. Specialized Pro-Resolving Mediators Do Not Inhibit the Synthesis of Inflammatory Mediators Induced by Tumor Necrosis Factor-α in Synovial Fibroblasts. Yonago Acta Med 2022; 65:111-125. [DOI: 10.33160/yam.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 03/04/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Yuriko Sueda
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Ryota Okazaki
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Yoshihiro Funaki
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Yasuyuki Hasegawa
- Rheumatology/ Collagen Disease Medicine, Tottori Prefectural Central Hospital, Tottori 680-0901, Japan
| | - Hiroki Ishikawa
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Yuki Hirayama
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Genki Inui
- Respiratory Medicine, National Hospital Organization Yonago Medical Center, Yonago 683-0006, Japan
| | - Tomoya Harada
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Miki Takata
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Masato Morita
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Akira Yamasaki
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| |
Collapse
|
23
|
Zaninelli TH, Fattori V, Verri WA. Harnessing Inflammation Resolution in Arthritis: Current Understanding of Specialized Pro-resolving Lipid Mediators' Contribution to Arthritis Physiopathology and Future Perspectives. Front Physiol 2021; 12:729134. [PMID: 34539449 PMCID: PMC8440959 DOI: 10.3389/fphys.2021.729134] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/12/2021] [Indexed: 12/26/2022] Open
Abstract
The concept behind the resolution of inflammation has changed in the past decades from a passive to an active process, which reflects in novel avenues to understand and control inflammation-driven diseases. The time-dependent and active process of resolution phase is orchestrated by the endogenous biosynthesis of specialized pro-resolving lipid mediators (SPMs). Inflammation and its resolution are two forces in rheumatic diseases that affect millions of people worldwide with pain as the most common experienced symptom. The pathophysiological role of SPMs in arthritis has been demonstrated in pre-clinical and clinical studies (no clinical trials yet), which highlight their active orchestration of disease control. The endogenous roles of SPMs also give rise to the opportunity of envisaging these molecules as novel candidates to improve the life quality of rhematic diseases patients. Herein, we discuss the current understanding of SPMs endogenous roles in arthritis as pro-resolutive, protective, and immunoresolvent lipids.
Collapse
Affiliation(s)
- Tiago H Zaninelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Victor Fattori
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| |
Collapse
|
24
|
Yamada H, Saegusa J, Sendo S, Ueda Y, Okano T, Shinohara M, Morinobu A. Effect of resolvin D5 on T cell differentiation and osteoclastogenesis analyzed by lipid mediator profiling in the experimental arthritis. Sci Rep 2021; 11:17312. [PMID: 34453072 PMCID: PMC8397777 DOI: 10.1038/s41598-021-96530-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022] Open
Abstract
Resolvins, are specialized pro-resolving mediators (SPMs) derived from n-3 polyunsaturated fatty acids. They contribute actively to the resolution of inflammation, but little is known concerning their role in chronic inflammation, such as in rheumatoid arthritis (RA). Here, we performed lipid mediator (LM) profiling in tissues from the paws of SKG arthritic mice using lipid chromatography (LC)/mass spectrometry (MS)/MS-based LM metabololipidomics. We found elevated levels of SPMs including resolvin D5 (RvD5) in these tissues. Moreover, RvD5 levels were significantly correlated with arthritis disease activity. From experiments to assess the role of RvD5 in the pathology of RA, we concluded that RvD5 suppressed Th17 cell differentiation and facilitated regulatory T cell differentiation, as well as inhibiting CD4+ T cell proliferation. Furthermore, RvD5 attenuated osteoclast differentiation and interfered with osteoclastogenesis. Targeting the resolution of inflammation could be promising as a novel treatment for RA.
Collapse
Affiliation(s)
- Hirotaka Yamada
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Jun Saegusa
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan. .,Department of Clinical Laboratory, Kobe University Hospital, Kobe, Japan.
| | - Sho Sendo
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yo Ueda
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takaichi Okano
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan.,Department of Clinical Laboratory, Kobe University Hospital, Kobe, Japan
| | - Masakazu Shinohara
- Division of Epidemiology, Kobe University Graduate School of Medicine, Kobe, Japan.,The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akio Morinobu
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
25
|
Olivares-Silva F, De Gregorio N, Espitia-Corredor J, Espinoza C, Vivar R, Silva D, Osorio JM, Lavandero S, Peiró C, Sánchez-Ferrer C, Díaz-Araya G. Resolvin-D1 attenuation of angiotensin II-induced cardiac inflammation in mice is associated with prevention of cardiac remodeling and hypertension. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166241. [PMID: 34400298 DOI: 10.1016/j.bbadis.2021.166241] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/20/2021] [Accepted: 08/02/2021] [Indexed: 12/27/2022]
Abstract
AIMS Despite the broad pharmacological arsenal to treat hypertension, chronic patients may develop irreversible cardiac remodeling and fibrosis. Angiotensin II, the main peptide responsible for the Renin-Angiotensin-Aldosterone-System, has been closely linked to cardiac remodeling, hypertrophy, fibrosis, and hypertension, and some of these effects are induced by inflammatory mediators. Resolvin-D1 (RvD1) elicits potent anti-inflammatory and pro-resolving effects in various pathological models. In this study, we aimed to examine whether RvD1 ameliorates cardiac remodeling and hypertension triggered by angiotensin II. METHODS AND RESULTS Alzet® osmotic mini-pumps filled with angiotensin II (1.5 mg/kg/day) were implanted in male C57BL/6 J mice for 7 or 14 days. RvD1 (3 μg/kg/day, i.p) was administered one day after the surgery and during the complete infusion period. Blood pressure and myocardial functional parameters were assessed by echocardiography. At the end of the experimental procedure, blood and heart tissue were harvested, and plasma and histological parameters were studied. After 7 and 14 days, RvD1 reduced the increase of neutrophil and macrophage infiltration triggered by angiotensin II, and also reduced ICAM-1 and VCAM-1 expression levels. RvD1 also reduced cytokine plasma levels (IL-1β, TNF-α, IL-6, KC, MCP-1), cardiac hypertrophy, interstitial and perivascular fibrosis, and hypertension. CONCLUSIONS This study unveils novel cardioprotective effects of RvD1 in angiotensin II-induced hypertension and cardiac remodeling by attenuating inflammation and provides insights into a potential clinical application.
Collapse
Affiliation(s)
- Francisco Olivares-Silva
- Department of Chemical Pharmacology and Toxicology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Nicole De Gregorio
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Jenaro Espitia-Corredor
- Department of Chemical Pharmacology and Toxicology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile; Department of Pharmacology, Faculty of Medicine, Universidad Autónoma de Madrid and Instituto de Investigación Sanitaria Hospital Universitario La Paz (IdiPAZ), Spain
| | - Claudio Espinoza
- Department of Chemical Pharmacology and Toxicology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Raúl Vivar
- Pharmacology Program, Biomedical Sciences Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - David Silva
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - José Miguel Osorio
- Department of Chemical Pharmacology and Toxicology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile; Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Concepción Peiró
- Department of Pharmacology, Faculty of Medicine, Universidad Autónoma de Madrid and Instituto de Investigación Sanitaria Hospital Universitario La Paz (IdiPAZ), Spain
| | - Carlos Sánchez-Ferrer
- Department of Pharmacology, Faculty of Medicine, Universidad Autónoma de Madrid and Instituto de Investigación Sanitaria Hospital Universitario La Paz (IdiPAZ), Spain
| | - Guillermo Díaz-Araya
- Department of Chemical Pharmacology and Toxicology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
26
|
A Study on COMP and CTX-II as Molecular Markers for the Diagnosis of Intervertebral Disc Degeneration. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3371091. [PMID: 34395611 PMCID: PMC8357479 DOI: 10.1155/2021/3371091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/07/2021] [Accepted: 07/24/2021] [Indexed: 12/19/2022]
Abstract
Background Diagnosis of intervertebral disc degeneration (IVDD) is challenging at the early stage. The cartilage oligomeric matrix protein (COMP) and extracellular matrix degradation products of C-telopeptide of type II collagen (CTX-II) serve as markers for the serological diagnosis of IVDD. Oxidative stress might cause IVDD and matrix degeneration. Methods A total of 128 male adult Sprague–Dawley (SD) rats were randomly and equally assigned to the experimental and control groups. The experimental group was used to construct IVDD models by acupuncture, while the control group underwent sham operation. The animals were executed every week for 8 weeks after intervertebral disc acupuncture, and serum samples were collected for the estimation of CTX-II and COMP concentrations by enzyme-linked immunosorbent assay (ELISA). Also, the histological changes and caudal magnetic resonance imaging (MRI) changes were examined in the intervertebral disc. Results IVDD in rats worsened with prolonged follow-up after acupuncture. At all the time points, the experimental group showed altered histological and caudal vertebra MRI signals, and serum CTX-II and COMP concentrations were significantly greater than those of the control group. These levels increase with the process of IVDD. Conclusion Serum CTX-II and COMP estimation is a reliable method to diagnose IVDD, and their concentrations show a positive correlation with the process of IVDD.
Collapse
|
27
|
The pathophysiology of immunoporosis: innovative therapeutic targets. Inflamm Res 2021; 70:859-875. [PMID: 34272579 DOI: 10.1007/s00011-021-01484-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/14/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The physiological balance between bone resorption and bone formation is now known to be mediated by a cascade of events parallel to the classic osteoblast-osteoclast interaction. Thus, osteoimmunology now encompasses the role played by other cell types, such as cytokines, lymphocytes and chemokines, in immunological responses and how they help modulate bone metabolism. All these factors have an impact on the RANK/RANKL/OPG pathway, which is the major pathway for the maturation and resorption activity of osteoclast precursor cells, responsible for osteoporosis development. Recently, immunoporosis has emerged as a new research area in osteoimmunology dedicated to the immune system's role in osteoporosis. METHODS The first part of this review presents theoretical concepts on the factors involved in the skeletal system and osteoimmunology. Secondly, existing treatments and novel therapeutic approaches to treat osteoporosis are summarized. These were selected from to the most recent studies published on PubMed containing the term osteoporosis. All data relate to the results of in vitro and in vivo studies on the osteoimmunological system of humans, mice and rats. FINDINGS Treatments for osteoporosis can be classified into two categories. They either target osteoclastogenesis inhibition (denosumab, bisphosphonates), or they aim to restore the number and function of osteoblasts (romozumab, abaloparatide). Even novel therapies, such as resolvins, gene therapy, and mesenchymal stem cell transplantation, fall within this classification system. CONCLUSION This review presents alternative pathways in the pathophysiology of osteoporosis, along with some recent therapeutic breakthroughs to restore bone homeostasis.
Collapse
|
28
|
Lee CT, Li R, Zhu L, Tribble GD, Zheng WJ, Ferguson B, Maddipati KR, Angelov N, Van Dyke TE. Subgingival Microbiome and Specialized Pro-Resolving Lipid Mediator Pathway Profiles Are Correlated in Periodontal Inflammation. Front Immunol 2021; 12:691216. [PMID: 34177951 PMCID: PMC8222734 DOI: 10.3389/fimmu.2021.691216] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022] Open
Abstract
Failure of resolution pathways in periodontitis is reflected in levels of specialized pro-resolving lipid mediators (SPMs) and SPM pathway markers but their relationship with the subgingival microbiome is unclear. This study aimed to analyze and integrate lipid mediator level, SPM receptor gene expression and subgingival microbiome data in subjects with periodontitis vs. healthy controls. The study included 13 periodontally healthy and 15 periodontitis subjects that were evaluated prior to or after non-surgical periodontal therapy. Samples of gingival tissue and subgingival plaque were collected prior to and 8 weeks after non-surgical treatment; only once in the healthy group. Metabololipidomic analysis was performed to measure levels of SPMs and other relevant lipid mediators in gingiva. qRT-PCR assessed relative gene expression (2-ΔΔCT) of known SPM receptors. 16S rRNA sequencing evaluated the relative abundance of bacterial species in subgingival plaque. Correlations between lipid mediator levels, receptor gene expression and bacterial abundance were analyzed using the Data Integration Analysis for Biomarker discovery using Latent cOmponents (DIABLO) and Sparse Partial Least Squares (SPLS) methods. Profiles of lipid mediators, receptor genes and the subgingival microbiome were distinct in the three groups. The strongest correlation existed between lipid mediator profile and subgingival microbiome profile. Multiple lipid mediators and bacterial species were highly correlated (correlation coefficient ≥0.6) in different periodontal conditions. Comparing individual correlated lipid mediators and bacterial species in periodontitis before treatment to healthy controls revealed that one bacterial species, Corynebacterium durum, and five lipid mediators, 5(S)6(R)-DiHETE, 15(S)-HEPE, 7-HDHA, 13-HDHA and 14-HDHA, were identified in both conditions. Comparing individual correlated lipid mediators and bacterial species in periodontitis before treatment to after treatment revealed that one bacterial species, Anaeroglobus geminatus, and four lipid mediators, 5(S)12(S)-DiHETE, RvD1, Maresin 1 and LTB4, were identified in both conditions. Four Selenomonas species were highly correlated with RvD1, RvE3, 5(S)12(S)-DiHETE and proinflammatory mediators in the periodontitis after treatment group. Profiles of lipid mediators, receptor gene and subgingival microbiome are associated with periodontal inflammation and correlated with each other, suggesting inflammation mediated by lipid mediators influences microbial composition in periodontitis. The role of correlated individual lipid mediators and bacterial species in periodontal inflammation have to be further studied.
Collapse
Affiliation(s)
- Chun-Teh Lee
- Department of Periodontics and Dental Hygiene, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Ruoxing Li
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Lisha Zhu
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Gena D. Tribble
- Department of Periodontics and Dental Hygiene, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - W. Jim Zheng
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Brittney Ferguson
- Department of Periodontics and Dental Hygiene, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | | | - Nikola Angelov
- Department of Periodontics and Dental Hygiene, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Thomas E. Van Dyke
- Center for Clinical and Translational Research, The Forsyth Institute, Cambridge, MA, United States
- Department of Oral Medicine, Infection, and Immunity, Faculty of Medicine, Harvard University, Boston, MA, United States
| |
Collapse
|
29
|
Torres W, Chávez-Castillo M, Peréz-Vicuña JL, Carrasquero R, Díaz MP, Gomez Y, Ramírez P, Cano C, Rojas-Quintero J, Chacín M, Velasco M, de Sanctis JB, Bermudez V. Potential role of bioactive lipids in rheumatoid arthritis. Curr Pharm Des 2021; 27:4434-4451. [PMID: 34036919 DOI: 10.2174/1381612827666210525164734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/08/2021] [Indexed: 11/22/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease, which involves a pathological inflammatory response against articular cartilage in multiple joints throughout the body. It is a complex disorder associated with comorbidities such as depression, lymphoma, osteoporosis and cardiovascular disease (CVD), which significantly deteriorate patients' quality of life and prognosis. This has ignited a large initiative to elucidate the physiopathology of RA, aiming to identify new therapeutic targets and approaches in its multidisciplinary management. Recently, various lipid bioactive products have been proposed to have an essential role in this process; including eicosanoids, specialized pro-resolving mediators, phospholipids/sphingolipids, and endocannabinoids. Dietary interventions using omega-3 polyunsaturated fatty acids or treatment with synthetic endocannabinoids agonists have been shown to significantly ameliorate RA symptoms. Indeed, the modulation of lipid metabolism may be crucial in the pathophysiology and treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Wheeler Torres
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Mervin Chávez-Castillo
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - José L Peréz-Vicuña
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Rubén Carrasquero
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - María P Díaz
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Yosselin Gomez
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Paola Ramírez
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Joselyn Rojas-Quintero
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston. 0
| | - Maricarmen Chacín
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla. Colombia
| | - Manuel Velasco
- Universidad Central de Venezuela, Escuela de Medicina José María Vargas, Caracas. Venezuela
| | - Juan Bautista de Sanctis
- Institute of Molecular and Translational Medicine. Faculty of Medicine and Dentistry. Palacky University. Czech Republic
| | - Valmore Bermudez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla. Colombia
| |
Collapse
|
30
|
Fatty Acids and Oxylipins in Osteoarthritis and Rheumatoid Arthritis-a Complex Field with Significant Potential for Future Treatments. Curr Rheumatol Rep 2021; 23:41. [PMID: 33913032 PMCID: PMC8081702 DOI: 10.1007/s11926-021-01007-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 02/08/2023]
Abstract
Purpose of Review Osteoarthritis (OA) and rheumatoid arthritis (RA) are characterized by abnormal lipid metabolism manifested as altered fatty acid (FA) profiles of synovial fluid and tissues and in the way dietary FA supplements can influence the symptoms of especially RA. In addition to classic eicosanoids, the potential roles of polyunsaturated FA (PUFA)-derived specialized pro-resolving lipid mediators (SPM) have become the focus of intensive research. Here, we summarize the current state of knowledge of the roles of FA and oxylipins in the degradation or protection of synovial joints. Recent Findings There exists discordance between the large body of literature from cell culture and animal experiments on the adverse and beneficial effects of individual FA and the lack of effective treatments for joint destruction in OA and RA patients. Saturated 16:0 and 18:0 induce mostly deleterious effects, while long-chain n-3 PUFA, especially 20:5n-3, have positive influence on joint health. The situation can be more complex for n-6 PUFA, such as 18:2n-6, 20:4n-6, and its derivative prostaglandin E2, with a combination of potentially adverse and beneficial effects. SPM analogs have future potential as analgesics for arthritic pain. Summary Alterations in FA profiles and their potential implications in SPM production may affect joint lubrication, synovial inflammation, pannus formation, as well as cartilage and bone degradation and contribute to the pathogeneses of inflammatory joint diseases. Further research directions include high-quality randomized controlled trials on dietary FA supplements and investigations on the significance of lipid composition of microvesicle membrane and cargo in joint diseases.
Collapse
|
31
|
Ali M, Yang F, Plachokova AS, Jansen JA, Walboomers XF. Application of specialized pro-resolving mediators in periodontitis and peri-implantitis: a review. Eur J Oral Sci 2021; 129:e12759. [PMID: 33565133 PMCID: PMC7986752 DOI: 10.1111/eos.12759] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Scaling and root planning is a key element in the mechanical therapy used for the eradication of biofilm, which is the major etiological factor for periodontitis and peri‐implantitis. However, periodontitis is also a host mediated disease, therefore, removal of the biofilm without adjunctive therapy may not achieve the desired clinical outcome due to persistent activation of the innate and adaptive immune cells. Most recently, even the resident cells of the periodontium, including periodontal ligament fibroblasts, have been shown to produce several inflammatory factors in response to bacterial challenge. With increased understanding of the pathophysiology of periodontitis, more research is focusing on opposing excessive inflammation with specialized pro‐resolving mediators (SPMs). This review article covers the major limitations of current standards of care for periodontitis and peri‐implantitis, and it highlights recent advances and prospects of SPMs in the context of tissue reconstruction and regeneration. Here, we focus primarily on the role of SPMs in restoring tissue homeostasis after periodontal infection.
Collapse
Affiliation(s)
- Muhanad Ali
- Department of Dentistry, Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Fang Yang
- Department of Dentistry, Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Adelina S Plachokova
- Department of Dentistry, Implantology and Periodontology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - John A Jansen
- Department of Dentistry, Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - X Frank Walboomers
- Department of Dentistry, Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
32
|
Calder PC. Eicosapentaenoic and docosahexaenoic acid derived specialised pro-resolving mediators: Concentrations in humans and the effects of age, sex, disease and increased omega-3 fatty acid intake. Biochimie 2020; 178:105-123. [PMID: 32860894 DOI: 10.1016/j.biochi.2020.08.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/02/2020] [Accepted: 08/20/2020] [Indexed: 12/27/2022]
Abstract
Although inflammation has a physiological role, unrestrained inflammation can be detrimental, causing tissue damage and disease. Under normal circumstances inflammation is self-limiting with induction of active resolution processes. Central to these is the generation of specialised pro-resolving lipid mediators (SPMs) from eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). These include resolvins, protectins and maresins whose activities have been well described in cell and animal models. A number of SPMs have been reported in plasma or serum in infants, children, healthy adults and individuals with various diseases, as well as in human sputum, saliva, tears, breast milk, urine, synovial fluid and cerebrospinal fluid and in human adipose tissue, skeletal muscle, hippocampus, skin, placenta, lymphoid tissues and atherosclerotic plaques. Differences in SPM concentrations have been reported between health and disease, as would be expected. However, sometimes SPM concentrations are lower in disease and sometimes they are higher. Human studies report that plasma or serum concentrations of some SPMs can be increased by increasing intake of EPA and DHA. However, the relationship of specific intakes of EPA and DHA to enhancement in the appearance of specific SPMs is not clear and needs a more thorough investigation. This is important because of the potential for EPA and DHA to be used more effectively in prevention and treatment of inflammatory conditions. If generation of SPMs represents an important mechanism of action of EPA and DHA, then more needs to be known about the most effective strategies by which EPA and DHA can increase SPM concentrations.
Collapse
Affiliation(s)
- Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
33
|
Abstract
Inflammation is a normal part of the immune response and should be self-limiting. Excessive or unresolved inflammation is linked to tissue damage, pathology and ill health. Prostaglandins and leukotrienes produced from the n-6 fatty acid arachidonic acid are involved in inflammation. Fatty acids may also influence inflammatory processes through mechanisms not necessarily involving lipid mediators. The n-3 fatty acids EPA and DHA possess a range of anti-inflammatory actions. Increased content of EPA and DHA in the membranes of cells involved in inflammation has effects on the physical nature of the membranes and on the formation of signalling platforms called lipid rafts. EPA and DHA interfere with arachidonic acid metabolism which yields prostaglandins and leukotrienes involved in inflammation. EPA gives rise to weak (e.g. less inflammatory) analogues and both EPA and DHA are substrates for the synthesis of specialised pro-resolving mediators. Through their effects on early signalling events in membranes and on the profile of lipid mediators produced, EPA and DHA alter both intracellular and intercellular signals. Within cells, this leads to altered patterns of gene expression and of protein production. The net result is decreased production of inflammatory cytokines, chemokines, adhesion molecules, proteases and enzymes. The anti-inflammatory and inflammation-resolving effects of EPA and DHA are relevant to both prevention and treatment of human diseases that have an inflammatory component. This has been widely studied in rheumatoid arthritis where there is good evidence that high doses of EPA + DHA reduce pain and other symptoms.
Collapse
Affiliation(s)
- Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| |
Collapse
|
34
|
Zahoor I, Giri S. Specialized Pro-Resolving Lipid Mediators: Emerging Therapeutic Candidates for Multiple Sclerosis. Clin Rev Allergy Immunol 2020; 60:147-163. [PMID: 32495237 DOI: 10.1007/s12016-020-08796-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multiple sclerosis (MS) is a neuroinflammatory disease in which unresolved and uncontrolled inflammation disrupts normal cellular homeostasis and leads to a pathological disease state. It has long been recognized that endogenously derived metabolic by-products of omega fatty acids, known as specialized pro-resolving lipid mediators (SPMs), are instrumental in resolving the pathologic inflammation. However, there is minimal data available on the functional status of SPMs in MS, despite the fact that MS presents a classical model of chronic inflammation. Studies to date indicate that dysfunction of the SPM biosynthetic pathway is responsible for their altered levels in patient-derived biofluids, which contributes to heightened inflammation and disease severity. Collectively, current findings suggest the contentious role of SPMs in MS due to variable outcomes in biological matrices across studies conducted so far, which could, in part, also be attributed to differences in population characteristics. It seems that SPMs have neuroprotective action on MS by exerting proresolving effects on brain microglia in its preclinical model; however, there are no reports demonstrating the direct effect of SPMs on oligodendrocytes or neurons. This reveals that "one size does not fit all" notion holds significance for MS in terms of the status of SPMs in other inflammatory conditions. The lack of clarity served as the impetus for this review, which is the first of its kind to summarize the relevant data regarding the role of SPMs in MS and the potential to target them for biomarker development and future alternative therapies for this disease. Understanding the mechanisms behind biological actions of SPMs as resolution mediators may prevent or even cure MS and other neurodegenerative pathologies.
Collapse
Affiliation(s)
- Insha Zahoor
- Department of Neurology, Research Division, Education & Research Building, Henry Ford Hospital, Room 4023, 2799 W Grand Blvd, Detroit, MI, 48202, USA.
| | - Shailendra Giri
- Department of Neurology, Research Division, Education & Research Building, Henry Ford Hospital, Room 4051, 2799 W Grand Blvd, Detroit, MI, 48202, USA.
| |
Collapse
|
35
|
Jeevan BGC, Szlenk CT, Gao J, Dong X, Wang Z, Natesan S. Molecular Dynamics Simulations Provide Insight into the Loading Efficiency of Proresolving Lipid Mediators Resolvin D1 and D2 in Cell Membrane-Derived Nanovesicles. Mol Pharm 2020; 17:2155-2164. [PMID: 32374613 PMCID: PMC7313724 DOI: 10.1021/acs.molpharmaceut.0c00299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Resolvins D1 and D2 (RvDs) are structural isomers and metabolites of docosahexaenoic acid, an omega-3 fatty acid, enzymatically produced in our body in response to acute inflammation or microbial invasion. Resolvins have been shown to play an essential role in the resolution of inflammation, tissue repair, and return to homeostasis and thus are actively pursued as potential therapeutics in treating inflammatory disorders and infectious diseases. However, effective in vivo delivery of RvDs continues to be a challenging task. Recent studies demonstrated that RvD1 or RvD2 loaded in cell membrane-derived nanovesicles significantly increased therapeutic efficacy in treating murine peritonitis and ischemic stroke, respectively. The mechanistic details of how the subtle structural difference between RvD1 and RvD2 alters their molecular interactions with the membrane lipids of the nanovesicles and thus affects the loading efficiency remain unknown. Here, we report the encapsulation profiles of the neutral and ionized species of both RvD1 and RvD2 determined with the cell membrane-derived nanovesicles at pH values 5.4 and 7.4, respectively. Also, we performed microsecond time-scale all-atom molecular dynamics (MD) simulations in explicit water to elucidate the molecular interactions of both neutral and ionized species of RvD1 and RvD2 with the lipid bilayer using a model membrane system, containing 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and cholesterol. We found that the differences in the position and chirality of hydroxyl groups in RvD1 and RvD2 affected their location, orientation, and conformations within the bilayer. Surprisingly, the deprotonation of their carboxyl group caused their orientation and conformation to change from a fully extended one that is oriented in parallel to the membrane plane to a J-shaped bent conformation that is oriented perpendicular to the bilayer plane. Our studies offer valuable insight into the molecular interactions of RvD1/D2 with the lipid bilayer in atomistic details and provide a mechanistic explanation for the observed differences in the encapsulation profiles of RvD1 and RvD2, which may facilitate the rational design of nanovesicle-based therapeutics for treating inflammatory diseases.
Collapse
Affiliation(s)
- B. GC Jeevan
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Christopher T. Szlenk
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Jin Gao
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Xinyue Dong
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Zhenjia Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Senthil Natesan
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| |
Collapse
|
36
|
Resolvin D1 Administration Is Beneficial in Trypanosoma cruzi Infection. Infect Immun 2020; 88:IAI.00052-20. [PMID: 32152197 DOI: 10.1128/iai.00052-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/02/2020] [Indexed: 12/14/2022] Open
Abstract
Chagas disease is a major public health issue, affecting ∼10 million people worldwide. Transmitted by a protozoan named Trypanosoma cruzi, this infection triggers a chronic inflammatory process that can lead to cardiomyopathy (Chagas disease). Resolvin D1 (RvD1) is a novel proresolution lipid mediator whose effects on inflammatory diseases dampens pathological inflammatory responses and can restore tissue homeostasis. Current therapies are not effective in altering the outcome of T. cruzi infection, and as RvD1 has been evaluated as a therapeutic agent in various inflammatory diseases, we examined if exogenous RvD1 could modulate the pathogenesis of Chagas disease in a murine model. CD-1 mice infected with the T. cruzi Brazil strain were treated with RvD1. Mice were administered 3 μg/kg of body weight RvD1 intraperitoneally on days 5, 10, and 15 to examine the effect of RvD1 on acute disease or administered the same dose on days 60, 65, and 70 to examine its effects on chronic infection. RvD1 therapy increased the survival rate and controlled parasite replication in mice with acute infection and reduced the levels of interferon gamma and transforming growth factor β (TGF-β) in mice with chronic infection. In addition, there was an increase in interleukin-10 levels with RvD1 therapy in both mice with acute infection and mice with chronic infection and a decrease in TGF-β levels and collagen content in cardiac tissue. Together, these data indicate that RvD1 therapy can dampen the inflammatory response, promote the resolution of T. cruzi infection, and prevent cardiac fibrosis.
Collapse
|
37
|
Joffre C, Dinel AL, Chataigner M, Pallet V, Layé S. n-3 Polyunsaturated Fatty Acids and Their Derivates Reduce Neuroinflammation during Aging. Nutrients 2020; 12:nu12030647. [PMID: 32121189 PMCID: PMC7146513 DOI: 10.3390/nu12030647] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/15/2022] Open
Abstract
: Aging is associated to cognitive decline, which can lead to loss of life quality, personal suffering, and ultimately neurodegenerative diseases. Neuroinflammation is one of the mechanisms explaining the loss of cognitive functions. Indeed, aging is associated to the activation of inflammatory signaling pathways, which can be targeted by specific nutrients with anti-inflammatory effects. Dietary n-3 polyunsaturated fatty acids (PUFAs) are particularly attractive as they are present in the brain, possess immunomodulatory properties, and are precursors of lipid derivates named specialized pro-resolving mediators (SPM). SPMs are crucially involved in the resolution of inflammation that is modified during aging, resulting in chronic inflammation. In this review, we first examine the effect of aging on neuroinflammation and then evaluate the potential beneficial effect of n-3 PUFA as precursors of bioactive derivates, particularly during aging, on the resolution of inflammation. Lastly, we highlight evidence supporting a role of n-3 PUFA during aging.
Collapse
Affiliation(s)
- Corinne Joffre
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.C.); (V.P.); (S.L.)
- Correspondence:
| | - Anne-Laure Dinel
- NutriBrain Research and Technology Transfer, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Mathilde Chataigner
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.C.); (V.P.); (S.L.)
- Abyss Ingredients, 56850 Caudan, France
| | - Véronique Pallet
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.C.); (V.P.); (S.L.)
| | - Sophie Layé
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.C.); (V.P.); (S.L.)
| |
Collapse
|
38
|
Abstract
Our own studies and those of others have shown that defects in essential fatty acid (EFA) metabolism occurs in age-related disorders such as obesity, type 2 diabetes mellitus, hypertension, atherosclerosis, coronary heart disease, immune dysfunction and cancer. It has been noted that in all these disorders there could occur a defect in the activities of desaturases, cyclo-oxygenase (COX), and lipoxygenase (LOX) enzymes leading to a decrease in the formation of their long-chain products gamma-linolenic acid (GLA), arachidonic acid, eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA). This leads to an increase in the production of pro-inflammatory prostaglandin E2 (PGE2), thromboxanes (TXs), and leukotrienes (LTs) and a decrease in anti-inflammatory lipoxin A4, resolvins, protectins and maresins. All these bioactive molecules are termed as bioactive lipids (BALs). This imbalance in the metabolites of EFAs leads to low-grade systemic inflammation and at times acute inflammatory events at specific local sites that trigger the development of various age-related disorders such as obesity, type 2 diabetes mellitus, hypertension, coronary heart disease, atherosclerosis, and immune dysfunction as seen in rheumatoid arthritis, lupus, nephritis and other localized inflammatory conditions. This evidence implies that methods designed to restore BALs to normal can prevent age-related disorders and enhance longevity and health.
Collapse
|