1
|
Huang J, Liu M, Furey A, Rahman P, Zhai G. Transcriptomic analysis of human cartilage identified potential therapeutic targets for hip osteoarthritis. Hum Mol Genet 2025:ddae200. [PMID: 39777501 DOI: 10.1093/hmg/ddae200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/14/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Cartilage degradation is the hallmark of osteoarthritis (OA). The purpose of this study was to identify and validate differentially expressed genes (DEGs) in human articular cartilage that could serve as potential therapeutic targets for hip OA. We performed transcriptomic profiling in a discovery cohort (12 OA-free and 72 hip OA-affected cartilage) and identified 179 DEGs between OA-free and OA-affected cartilage after correcting for multiple testing (P < 2.97 × 10-6). Pathway and network analyses found eight hub genes to be associated with hip OA (ASPN, COL1A2, MXRA5, P3H1, PCOLCE, SDC1, SPARC, and TLR2), which were all confirmed using qPCR in a validation cohort (36 OA-free and 62 hip OA-affected cartilage) (P < 6.25 × 10-3). Our data showed that dysregulation of extracellular matrix formation and imbalance in the proportion of collagen chains may contribute to the development of hip OA, and SDC1 could be a promising potential therapeutic target. These findings provided a better understanding of the molecular mechanisms for hip OA and may assist in developing targeted treatment strategies.
Collapse
Affiliation(s)
- Jingyi Huang
- Human Genetics & Genomics, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, Newfoundland & Labrador, A1B 3V6, Canada
| | - Ming Liu
- Human Genetics & Genomics, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, Newfoundland & Labrador, A1B 3V6, Canada
| | - Andrew Furey
- Discipline of Orthopaedic Surgery, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, Newfoundland & Labrador, Canada A1B 3V6 & Office of the Premier, Government of Newfoundland & Labrador, 100 Prince Philip Drive, St. John's, Newfoundland & Labrador, A1B 4J6, Canada
| | - Proton Rahman
- Discipline of Medicine, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, Newfoundland & Labrador, A1B 3V6, Canada
| | - Guangju Zhai
- Human Genetics & Genomics, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, Newfoundland & Labrador, A1B 3V6, Canada
| |
Collapse
|
2
|
Danceanu-Zara CM, Petrovici A, Labusca L, Minuti AE, Stavila C, Plamadeala P, Tiron CE, Aniţă D, Aniţă A, Lupu N. Collection, Establishment and Assessment of Complex Human Osteocartilaginous Explants for Modeling Osteoarthritis. Biomedicines 2024; 12:2406. [PMID: 39457719 PMCID: PMC11504061 DOI: 10.3390/biomedicines12102406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
With the increasing burden of osteoarthritis worldwide, cost efficient and reliable models are needed to enable the development of innovative therapies or therapeutic interventions. Ex vivo models have been identified as valuable modalities in translational research, bridging the gap between in vitro and in vivo models. Osteocartilaginous explants from Osteoarthritis (OA) patients offer an exquisite opportunity for studying OA progression and testing novel therapies. We describe the protocol for establishing human osteocartilaginous explants with or without co-culture of homologous synovial tissue. Furthermore, a detailed protocol for the assessment of explanted tissue in terms of protein content using Western blot and immunohistochemistry is provided. Commentaries regarding the technique of choice, possible variations and expected results are inserted.
Collapse
Affiliation(s)
- Camelia-Mihaela Danceanu-Zara
- National Institute of Research and Development in Technical Physics, 700050 Iasi, Romania; (C.-M.D.-Z.); (A.E.M.); (C.S.); (N.L.)
- Transcend Center Regional Oncology Institute, 700483 Iasi, Romania;
| | - Adriana Petrovici
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety, Faculty of Veterinary Medicine, Iași University of Life Sciences (IULS), 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania; (A.P.); (D.A.); (A.A.)
| | - Luminita Labusca
- National Institute of Research and Development in Technical Physics, 700050 Iasi, Romania; (C.-M.D.-Z.); (A.E.M.); (C.S.); (N.L.)
- Orthopedics and Trauma Clinic, County Emergency Hospital, 700111 Iasi, Romania
| | - Anca Emanuela Minuti
- National Institute of Research and Development in Technical Physics, 700050 Iasi, Romania; (C.-M.D.-Z.); (A.E.M.); (C.S.); (N.L.)
| | - Cristina Stavila
- National Institute of Research and Development in Technical Physics, 700050 Iasi, Romania; (C.-M.D.-Z.); (A.E.M.); (C.S.); (N.L.)
| | - Petru Plamadeala
- Pathology Department, Saint Mary‘s Children Hospital, 700309 Iasi, Romania;
| | | | - Dragoş Aniţă
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety, Faculty of Veterinary Medicine, Iași University of Life Sciences (IULS), 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania; (A.P.); (D.A.); (A.A.)
| | - Adriana Aniţă
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety, Faculty of Veterinary Medicine, Iași University of Life Sciences (IULS), 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania; (A.P.); (D.A.); (A.A.)
| | - Nicoleta Lupu
- National Institute of Research and Development in Technical Physics, 700050 Iasi, Romania; (C.-M.D.-Z.); (A.E.M.); (C.S.); (N.L.)
| |
Collapse
|
3
|
Ren Q, Liu Z, Wu L, Yin G, Xie X, Kong W, Zhou J, Liu S. C/EBPβ: The structure, regulation, and its roles in inflammation-related diseases. Biomed Pharmacother 2023; 169:115938. [PMID: 38000353 DOI: 10.1016/j.biopha.2023.115938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023] Open
Abstract
Inflammation, a mechanism of the human body, has been implicated in many diseases. Inflammatory responses include the release of inflammatory mediators by activating various signaling pathways. CCAAT/enhancer binding protein β (C/EBPβ), a transcription factor in the C/EBP family, contains the leucine zipper (bZIP) domain. The expression of C/EBPβ is mediated at the transcriptional and post-translational levels, such as phosphorylation, acetylation, methylation, and SUMOylation. C/EBPβ has been involved in inflammatory responses by mediating several signaling pathways, such as MAPK/NF-κB and IL-6/JAK/STAT3 pathways. C/EBPβ plays an important role in the pathological development of inflammation-related diseases, such as osteoarthritis, pneumonia, hepatitis, inflammatory bowel diseases, and rheumatoid arthritis. Here, we comprehensively discuss the structure and biological effects of C/EBPβ and its role in inflammatory diseases.
Collapse
Affiliation(s)
- Qun Ren
- Department of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Zhaowen Liu
- Department of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Longhuo Wu
- Department of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Guoqiang Yin
- Ganzhou People's Hospital Affiliated to Nanchang University, Ganzhou 341000, China
| | - Xunlu Xie
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Weihao Kong
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Jianguo Zhou
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Shiwei Liu
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China.
| |
Collapse
|
4
|
Lato-Kariakin E, Kuźnik-Trocha K, Gruenpeter A, Komosińska-Vassev K, Olczyk K, Winsz-Szczotka K. Investigation of Glycosaminoglycans in Urine and Their Alteration in Patients with Juvenile Idiopathic Arthritis. Biomolecules 2023; 13:1737. [PMID: 38136608 PMCID: PMC10742273 DOI: 10.3390/biom13121737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: In this study, we evaluated the modulation of urine glycosaminoglycans (GAGs), which resulted from etanercept (ETA) therapy in patients with juvenile idiopathic arthritis (JIA) in whom methotrexate therapy failed to improve their clinical condition. (2) Methods: The sulfated GAGs (sGAGs, by complexation with blue 1,9-dimethylmethylene), including chondroitin-dermatan sulfate (CS/DS) and heparan sulfate (HS), as well as non-sulfated hyaluronic acid (HA, using the immunoenzymatic method), were determined in the blood of 89 children, i.e., 30 healthy children and 59 patients with JIA both before and during two years of ETA treatment. (3) Results: We confirmed the remodeling of the urinary glycan profile of JIA patients. The decrease in the excretion of sGAGs (p < 0.05), resulting from a decrease in the concentration of the dominant fraction in the urine, i.e., CS/DS (p < 0.05), not compensated by an increase in the concentration of HS (p < 0.000005) and HA (p < 0.0005) in the urine of patients with the active disease, was found. The applied biological therapy, leading to clinical improvement in patients, at the same time, did not contribute to normalization of the concentration of sGAGs (p < 0.01) in the urine of patients, as well as CS/DS (p < 0.05) in the urine of sick girls, while it promoted equalization of HS and HA concentrations. These results indicate an inhibition of the destruction of connective tissue structures but do not indicate their complete regeneration. (4) Conclusions: The metabolisms of glycans during JIA, reflected in their urine profile, depend on the patient's sex and the severity of the inflammatory process. The remodeling pattern of urinary glycans observed in patients with JIA indicates the different roles of individual types of GAGs in the pathogenesis of osteoarticular disorders in sick children. Furthermore, the lack of normalization of urinary GAG levels in treated patients suggests the need for continued therapy and continuous monitoring of its effectiveness, which will contribute to the complete regeneration of the ECM components of the connective tissue and thus protect the patient against possible disability.
Collapse
Affiliation(s)
- Elżbieta Lato-Kariakin
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, ul. Jedności 8, 41-200 Sosnowiec, Poland; (E.L.-K.); (K.K.-T.); (K.K.-V.); (K.O.)
| | - Kornelia Kuźnik-Trocha
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, ul. Jedności 8, 41-200 Sosnowiec, Poland; (E.L.-K.); (K.K.-T.); (K.K.-V.); (K.O.)
| | - Anna Gruenpeter
- Department of Rheumatology, The John Paul II Pediatric Center in Sosnowiec, ul. G. Zapolskiej 3, 41-218 Sosnowiec, Poland;
| | - Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, ul. Jedności 8, 41-200 Sosnowiec, Poland; (E.L.-K.); (K.K.-T.); (K.K.-V.); (K.O.)
| | - Krystyna Olczyk
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, ul. Jedności 8, 41-200 Sosnowiec, Poland; (E.L.-K.); (K.K.-T.); (K.K.-V.); (K.O.)
| | - Katarzyna Winsz-Szczotka
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, ul. Jedności 8, 41-200 Sosnowiec, Poland; (E.L.-K.); (K.K.-T.); (K.K.-V.); (K.O.)
| |
Collapse
|
5
|
Paz-González R, Turkiewicz A, Ali N, Ruiz-Romero C, Blanco FJ, Englund M, Önnerfjord P. Proteomic profiling of human menisci from mild joint degeneration and end-stage osteoarthritis versus healthy controls. OSTEOARTHRITIS AND CARTILAGE OPEN 2023; 5:100417. [PMID: 38098679 PMCID: PMC10720269 DOI: 10.1016/j.ocarto.2023.100417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Objective To gain new insight into the molecular changes of the meniscus by comparing the proteome profiles of healthy controls with mild degeneration and end-stage osteoarthritis (OA). Method We obtained tissue plugs from lateral and medial menisci of 37 individuals (central part of the posterior horn) classified as healthy (n = 12), mild signs of joint damage (n = 13) and end-stage OA (n = 12). The protein profile was analysed by nano-liquid chromatography-mass spectrometry using data-independent acquisition and quantified by Spectronaut. Linear-mixed effects modelling was applied to extract the between-group comparisons. Results A similar protein profile was observed for the mild group as compared to healthy controls while the most different group was end-stage OA mainly for the medial compartment. When a pattern of gradual change in protein levels from healthy to end-stage OA was required, a 42-proteins panel was identified, suggesting a potential role in OA development. The levels of QSOX1 were lower and G6PD higher in the mild group following the proposed protein abundance pattern. Qualitative protein changes suggest lower levels of CYTL1 as a potential biomarker of early joint degradation. Conclusion For future targeted proteomic approaches, we propose a candidate panel of 42 proteins based on gradually altered meniscal posterior horn protein abundance patterns associated with joint degradation.
Collapse
Affiliation(s)
- Rocío Paz-González
- Grupo de Investigación de Reumatología (GIR), Unidad de Proteómica. INIBIC-Hospital Universitario A Coruña, SERGAS, 15006, A Coruña, Spain
| | - Aleksandra Turkiewicz
- Clinical Epidemiology Unit, Orthopedics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Neserin Ali
- Clinical Epidemiology Unit, Orthopedics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Cristina Ruiz-Romero
- Grupo de Investigación de Reumatología (GIR), Unidad de Proteómica. INIBIC-Hospital Universitario A Coruña, SERGAS, 15006, A Coruña, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Francisco J. Blanco
- Grupo de Investigación de Reumatología (GIR), Unidad de Proteómica. INIBIC-Hospital Universitario A Coruña, SERGAS, 15006, A Coruña, Spain
- Grupo de Reumatología y Salud, Departamento de Fisioterapia y Medicina. Centro de investigaciones Avanzadas (CICA), Universidad de A Coruña, A Coruña, Spain
| | - Martin Englund
- Clinical Epidemiology Unit, Orthopedics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Patrik Önnerfjord
- Rheumatology and Molecular Skeletal Biology, Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Godefroy W, Faivre L, Sansac C, Thierry B, Allain JM, Bruneval P, Agniel R, Kellouche S, Monasson O, Peroni E, Jarraya M, Setterblad N, Braik M, Even B, Cheverry S, Domet T, Albanese P, Larghero J, Cattan P, Arakelian L. Development and qualification of clinical grade decellularized and cryopreserved human esophagi. Sci Rep 2023; 13:18283. [PMID: 37880340 PMCID: PMC10600094 DOI: 10.1038/s41598-023-45610-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023] Open
Abstract
Tissue engineering is a promising alternative to current full thickness circumferential esophageal replacement methods. The aim of our study was to develop a clinical grade Decellularized Human Esophagus (DHE) for future clinical applications. After decontamination, human esophagi from deceased donors were placed in a bioreactor and decellularized with sodium dodecyl sulfate (SDS) and ethylendiaminetetraacetic acid (EDTA) for 3 days. The esophagi were then rinsed in sterile water and SDS was eliminated by filtration on an activated charcoal cartridge for 3 days. DNA was removed by a 3-hour incubation with DNase. A cryopreservation protocol was evaluated at the end of the process to create a DHE cryobank. The decellularization was efficient as no cells and nuclei were observed in the DHE. Sterility of the esophagi was obtained at the end of the process. The general structure of the DHE was preserved according to immunohistochemical and scanning electron microscopy images. SDS was efficiently removed, confirmed by a colorimetric dosage, lack of cytotoxicity on Balb/3T3 cells and mesenchymal stromal cell long term culture. Furthermore, DHE did not induce lymphocyte proliferation in-vitro. The cryopreservation protocol was safe and did not affect the tissue, preserving the biomechanical properties of the DHE. Our decellularization protocol allowed to develop the first clinical grade human decellularized and cryopreserved esophagus.
Collapse
Affiliation(s)
- William Godefroy
- Service de Chirurgie Viscérale, Cancérologique et Endocrinienne, Hôpital Saint-Louis - Université Paris Cité, Paris, France.
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France.
- CIC de Biothérapies CBT 501, Paris, France.
- Human Immunology, Pathophysiology, Immunotherapy / HIPI / INSERM UMR976, Laboratoire de Biotechnologies de Cellules Souches, Université Paris Cité, 75010, Paris, France.
| | - Lionel Faivre
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France
- CIC de Biothérapies CBT 501, Paris, France
- Human Immunology, Pathophysiology, Immunotherapy / HIPI / INSERM UMR976, Laboratoire de Biotechnologies de Cellules Souches, Université Paris Cité, 75010, Paris, France
| | - Caroline Sansac
- Banque de Tissus Humains, Hôpital St-Louis, AP-HP, Paris, France
| | - Briac Thierry
- Human Immunology, Pathophysiology, Immunotherapy / HIPI / INSERM UMR976, Laboratoire de Biotechnologies de Cellules Souches, Université Paris Cité, 75010, Paris, France
- Service d'ORL Pédiatrique, AP-HP, Hôpital Universitaire Necker, 75015, Paris, France
| | - Jean-Marc Allain
- LMS, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
- Inria, Paris, France
| | - Patrick Bruneval
- Service d'Anatomie Pathologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Rémy Agniel
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des Matériaux, I-MAT (FD4122), CY Cergy Paris Université, Cergy-Pontoise, France
| | - Sabrina Kellouche
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des Matériaux, I-MAT (FD4122), CY Cergy Paris Université, Cergy-Pontoise, France
| | - Olivier Monasson
- CNRS, BioCIS, CY Cergy Paris Université, 95000, Cergy Pontoise, France
- CNRS, BioCIS, Université Paris-Saclay, 92290, Châtenay-Malabry, France
| | - Elisa Peroni
- CNRS, BioCIS, CY Cergy Paris Université, 95000, Cergy Pontoise, France
- CNRS, BioCIS, Université Paris-Saclay, 92290, Châtenay-Malabry, France
| | - Mohamed Jarraya
- Banque de Tissus Humains, Hôpital St-Louis, AP-HP, Paris, France
| | - Niclas Setterblad
- UMS Saint-Louis US53 / UAR2030, Institut de Recherche Saint-Louis Plateforme Technologique Centre, Université Paris Cité - Inserm - CNRS, Paris, France
| | - Massymissa Braik
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Benjamin Even
- Laboratoire Gly-CRRET, Université Paris Est Créteil, Université Paris Est, EA 4397 ERL CNRS 9215, Créteil, France
| | - Sophie Cheverry
- Laboratoire Gly-CRRET, Université Paris Est Créteil, Université Paris Est, EA 4397 ERL CNRS 9215, Créteil, France
| | - Thomas Domet
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France
- CIC de Biothérapies CBT 501, Paris, France
| | - Patricia Albanese
- Laboratoire Gly-CRRET, Université Paris Est Créteil, Université Paris Est, EA 4397 ERL CNRS 9215, Créteil, France
| | - Jérôme Larghero
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France
- CIC de Biothérapies CBT 501, Paris, France
- Human Immunology, Pathophysiology, Immunotherapy / HIPI / INSERM UMR976, Laboratoire de Biotechnologies de Cellules Souches, Université Paris Cité, 75010, Paris, France
- Centre MEARY de Thérapie Cellulaire Et Génique, AP-HP, Hôpital Saint-Louis, 75010, Paris, France
| | - Pierre Cattan
- Service de Chirurgie Viscérale, Cancérologique et Endocrinienne, Hôpital Saint-Louis - Université Paris Cité, Paris, France
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France
- CIC de Biothérapies CBT 501, Paris, France
- Human Immunology, Pathophysiology, Immunotherapy / HIPI / INSERM UMR976, Laboratoire de Biotechnologies de Cellules Souches, Université Paris Cité, 75010, Paris, France
| | - Lousineh Arakelian
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France.
- CIC de Biothérapies CBT 501, Paris, France.
- Human Immunology, Pathophysiology, Immunotherapy / HIPI / INSERM UMR976, Laboratoire de Biotechnologies de Cellules Souches, Université Paris Cité, 75010, Paris, France.
| |
Collapse
|
7
|
Fusi G, Constantinides M, Fissoun C, Pichard L, Pers YM, Ferreira-Lopez R, Pantesco V, Poulet C, Malaise O, De Seny D, Lemaitre JM, Jorgensen C, Brondello JM. Senescence-Driven Inflammatory and Trophic Microenvironment Imprints Mesenchymal Stromal/Stem Cells in Osteoarthritic Patients. Biomedicines 2023; 11:1994. [PMID: 37509633 PMCID: PMC10377055 DOI: 10.3390/biomedicines11071994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Senescent cells promote progressive tissue degeneration through the establishment of a combined inflammatory and trophic microenvironment. The cellular senescence state has therefore emerged as a central driving mechanism of numerous age-related diseases, including osteoarthritis (OA), the most common rheumatic disease. Senescence hallmarks are detectable in chondrocytes, synoviocytes and sub-chondral bone cells. This study investigates how the senescence-driven microenvironment could impact the cell fate of resident osteoarticular mesenchymal stromal/stem cells (MSCs) that are hence contributing to OA disease progression. For that purpose, we performed a comparative gene expression analysis of MSCs isolated from healthy donors that were in vitro chronically exposed either to interferon-gamma (IFN-γ) or Transforming Growth Factor beta 1 (TGFβ1), two archetypical factors produced by senescent cells. Both treatments reduced MSC self-renewal capacities by upregulating different senescence-driven cycle-dependent kinase inhibitors. Furthermore, a common set of differentially expressed genes was identified in both treated MSCs that was also found enriched in MSCs isolated from OA patients. These findings highlight an imprinting of OA MSCs by the senescent joint microenvironment that changes their matrisome gene expression. Altogether, this research gives new insights into OA etiology and points to new innovative therapeutic opportunities to treat OA patients.
Collapse
Affiliation(s)
- Giuseppe Fusi
- IRMB, University Montpellier, INSERM, 34295 Montpellier, France
| | | | | | - Lydiane Pichard
- SAFE-iPSC Facility INGESTEM, Montpellier University Hospital, 34298 Montpellier, France
| | - Yves-Marie Pers
- IRMB, University Montpellier, INSERM, 34295 Montpellier, France
- Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Montpellier University Hospital, 34298 Montpellier, France
| | - Rosanna Ferreira-Lopez
- IRMB, University Montpellier, INSERM, 34295 Montpellier, France
- Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Montpellier University Hospital, 34298 Montpellier, France
| | | | - Christophe Poulet
- Laboratory and Service of Rheumatology, GIGA-I3, Université de Liège, 4000 Liege, Belgium
| | - Olivier Malaise
- Laboratory and Service of Rheumatology, GIGA-I3, Université de Liège, 4000 Liege, Belgium
| | - Dominique De Seny
- Laboratory and Service of Rheumatology, GIGA-I3, Université de Liège, 4000 Liege, Belgium
| | - Jean-Marc Lemaitre
- IRMB, University Montpellier, INSERM, 34295 Montpellier, France
- SAFE-iPSC Facility INGESTEM, Montpellier University Hospital, 34298 Montpellier, France
| | - Christian Jorgensen
- IRMB, University Montpellier, INSERM, 34295 Montpellier, France
- Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Montpellier University Hospital, 34298 Montpellier, France
| | | |
Collapse
|
8
|
Heide F, Koch M, Stetefeld J. Heparin Mimetics and Their Impact on Extracellular Matrix Protein Assemblies. Pharmaceuticals (Basel) 2023; 16:ph16030471. [PMID: 36986571 PMCID: PMC10059586 DOI: 10.3390/ph16030471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/08/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Heparan sulfate is a crucial extracellular matrix component that organizes structural features and functional protein processes. This occurs through the formation of protein-heparan sulfate assemblies around cell surfaces, which allow for the deliberate local and temporal control of cellular signaling. As such, heparin-mimicking drugs can directly affect these processes by competing with naturally occurring heparan sulfate and heparin chains that then disturb protein assemblies and decrease regulatory capacities. The high number of heparan-sulfate-binding proteins that are present in the extracellular matrix can cause obscure pathological effects that should be considered and examined in more detail, especially when developing novel mimetics for clinical use. The objective of this article is to investigate recent studies that present heparan-sulfate-mediated protein assemblies and the impact of heparin mimetics on the assembly and function of these protein complexes.
Collapse
Affiliation(s)
- Fabian Heide
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Manuel Koch
- Institute for Experimental Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Jörg Stetefeld
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
9
|
Cheng M, Zhao Y, Cui Y, Zhong C, Zha Y, Li S, Cao G, Li M, Zhang L, Ning K, Han J. Stage-specific roles of microbial dysbiosis and metabolic disorders in rheumatoid arthritis. Ann Rheum Dis 2022; 81:1669-1677. [PMID: 35985811 PMCID: PMC9664099 DOI: 10.1136/ard-2022-222871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/07/2022] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is a progressive disease including four stages, where gut microbiome is associated with pathogenesis. We aimed to investigate stage-specific roles of microbial dysbiosis and metabolic disorders in RA. METHODS We investigated stage-based profiles of faecal metagenome and plasma metabolome of 76 individuals with RA grouped into four stages (stages I-IV) according to 2010 RA classification criteria, 19 individuals with osteroarthritis and 27 healthy individuals. To verify bacterial invasion of joint synovial fluid, 16S rRNA gene sequencing, bacterial isolation and scanning electron microscopy were conducted on another validation cohort of 271 patients from four RA stages. RESULTS First, depletion of Bacteroides uniformis and Bacteroides plebeius weakened glycosaminoglycan metabolism (p<0.001), continuously hurting articular cartilage across four stages. Second, elevation of Escherichia coli enhanced arginine succinyltransferase pathway in the stage II and stage III (p<0.001), which was correlated with the increase of the rheumatoid factor (p=1.35×10-3) and could induce bone loss. Third, abnormally high levels of methoxyacetic acid (p=1.28×10-8) and cysteine-S-sulfate (p=4.66×10-12) inhibited osteoblasts in the stage II and enhanced osteoclasts in the stage III, respectively, promoting bone erosion. Fourth, continuous increase of gut permeability may induce gut microbial invasion of the joint synovial fluid in the stage IV. CONCLUSIONS Clinical microbial intervention should consider the RA stage, where microbial dysbiosis and metabolic disorders present distinct patterns and played stage-specific roles. Our work provides a new insight in understanding gut-joint axis from a perspective of stages, which opens up new avenues for RA prognosis and therapy.
Collapse
Affiliation(s)
- Mingyue Cheng
- First Affiliated Hospital of Shandong First Medical University, Institute of Medical Genomics, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Zhao
- First Affiliated Hospital of Shandong First Medical University, Institute of Medical Genomics, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yazhou Cui
- First Affiliated Hospital of Shandong First Medical University, Institute of Medical Genomics, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Chaofang Zhong
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuguo Zha
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shufeng Li
- First Affiliated Hospital of Shandong First Medical University, Institute of Medical Genomics, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Guangxiang Cao
- First Affiliated Hospital of Shandong First Medical University, Institute of Medical Genomics, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mian Li
- First Affiliated Hospital of Shandong First Medical University, Institute of Medical Genomics, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Lei Zhang
- Microbiome-X, National Institute of Health Data Science of China & Institute for Medical Dataology, Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Kang Ning
- First Affiliated Hospital of Shandong First Medical University, Institute of Medical Genomics, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinxiang Han
- First Affiliated Hospital of Shandong First Medical University, Institute of Medical Genomics, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
10
|
Zhou H, Shen X, Yan C, Xiong W, Ma Z, Tan Z, Wang J, Li Y, Liu J, Duan A, Liu F. Extracellular vesicles derived from human umbilical cord mesenchymal stem cells alleviate osteoarthritis of the knee in mice model by interacting with METTL3 to reduce m6A of NLRP3 in macrophage. Stem Cell Res Ther 2022; 13:322. [PMID: 35842714 PMCID: PMC9288728 DOI: 10.1186/s13287-022-03005-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/04/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a prevalent degenerative joint disease that not only significantly impairs the quality of life of middle-aged and elderly individuals but also imposes a significant financial burden on patients and society. Due to their significant biological properties, extracellular vesicles (EVs) have steadily received great attention in OA treatment. This study aimed to investigate the influence of EVs on chondrocyte proliferation, migration, and apoptosis and their protective efficacy against OA in mice. METHODS The protective impact of EVs derived from human umbilical cord mesenchymal stem cells (hucMSCs-EVs) on OA in mice was investigated by establishing a mouse OA model by surgically destabilizing the medial meniscus (DMM). Human chondrocytes were isolated from the cartilage of patients undergoing total knee arthroplasty (TKA) and cultured with THP-1 cells to mimic the in vivo inflammatory environment. Levels of inflammatory factors were then determined in different groups, and the impacts of EVs on chondrocyte proliferation, migration, apoptosis, and cartilage extracellular matrix (ECM) metabolism were explored. N6-methyladenosine (m6A) level of mRNA and methyltransferase-like 3 (METTL3) protein expression in the cells was also measured in addition to microRNA analysis to elucidate the molecular mechanism of exosomal therapy. RESULTS The results indicated that hucMSCs-EVs slowed OA progression, decreased osteophyte production, increased COL2A1 and Aggrecan expression, and inhibited ADAMTS5 and MMP13 overexpression in the knee joint of mice via decreasing pro-inflammatory factor secretion. The in vitro cell line analysis revealed that EVs enhanced chondrocyte proliferation and migration while inhibiting apoptosis. METTL3 is responsible for these protective effects. Further investigations revealed that EVs decreased the m6A level of NLRP3 mRNA following miR-1208 targeted binding to METTL3, resulting in decreased inflammatory factor release and preventing OA progression. CONCLUSION This study concluded that hucMSCs-EVs inhibited the secretion of pro-inflammatory factors and the degradation of cartilage ECM after lowering the m6A level of NLRP3 mRNA with miR-1208 targeting combined with METTL3, thereby alleviating OA progression in mice and providing a novel therapy for clinical OA treatment.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xun Shen
- Department of Orthopedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Chen Yan
- Department of Orthopedics, the First People's Hospital of Lianyungang, Nanjing Medical University, Lianyungang,, 222002, Jiangsu, China
| | - Wu Xiong
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Zemeng Ma
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology, Nanjing Medical University, Nanjing, 211100, China
| | - Zhenggang Tan
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jinwen Wang
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yao Li
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jiuxiang Liu
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Ao Duan
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Feng Liu
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
11
|
Tseng KY, Tzeng ZH, Cheng TJR, Liang PH, Hung SC. Design and Synthesis of 1-O- and 6′-C-Modified Heparan Sulfate Trisaccharides as Human Endo-6-O-Sulfatase 1 Inhibitors. Front Chem 2022; 10:947475. [PMID: 35910734 PMCID: PMC9326219 DOI: 10.3389/fchem.2022.947475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022] Open
Abstract
The extracellular human endo-6-O-sulfatases (Sulf-1 and Sulf-2) are responsible for the endolytic cleavage of the 6-sulfate groups from the internal D-glucosamine residues in the highly sulfated subdomains of heparan sulfate proteoglycans. A trisaccharide sulfate, IdoA2OS-GlcNS6S-IdoA2OS, was identified as the minimal size of substrate for Sulf-1. In order to study the complex structure with Sulf-1 for developing potential drugs, two trisaccharide analogs, IdoA2OS-GlcNS6OSO2NH2-IdoA2OS-OMe and IdoA2OS-GlcNS6NS-IdoA2OS-OMe, were rationally designed and synthesized as the Sulf-1 inhibitors with IC50 values at 0.27 and 4.6 μM, respectively.
Collapse
Affiliation(s)
- Kuei-Yao Tseng
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | | | - Pi-Hui Liang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- *Correspondence: Pi-Hui Liang, ; Shang-Cheng Hung,
| | - Shang-Cheng Hung
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Department of Applied Science, National Taitung University, Taitung, Taiwan
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
- *Correspondence: Pi-Hui Liang, ; Shang-Cheng Hung,
| |
Collapse
|
12
|
Krull CM, Rife J, Klamer B, Purmessur D, Walter BA. Pericellular heparan sulfate proteoglycans: Role in regulating the biosynthetic response of nucleus pulposus cells to osmotic loading. JOR Spine 2022; 5:e1209. [PMID: 35783912 PMCID: PMC9238280 DOI: 10.1002/jsp2.1209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/26/2022] [Accepted: 05/12/2022] [Indexed: 12/04/2022] Open
Abstract
Background Daily physiologic loading causes fluctuations in hydration of the intervertebral disc (IVD); thus, the embedded cells experience cyclic alterations to their osmotic environment. These osmotic fluctuations have been described as a mechanism linking mechanics and biology, and have previously been shown to promote biosynthesis in chondrocytes. However, this phenomenon has yet to be fully interrogated in the IVD. Additionally, the specialized extracellular matrix surrounding the cells, the pericellular matrix (PCM), transduces the biophysical signals that cells ultimately experience. While it is known that the PCM is altered in disc degeneration, whether it disrupts normal osmotic mechanotransduction has yet to be determined. Thus, our objectives were to assess: (1) whether dynamic osmotic conditions stimulate biosynthesis in nucleus pulposus cells, and (2) whether pericellular heparan sulfate proteoglycans (HSPGs) modulate the biosynthetic response to osmotic loading. Methods Bovine nucleus pulposus cells isolated with retained PCM were encapsulated in 1.5% alginate beads and treated with or without heparinase III, an enzyme that degrades the pericellular HSPGs. Beads were subjected to 1 h of daily iso-osmotic, hyper-osmotic, or hypo-osmotic loading for 1, 2, or 4 weeks. At each timepoint the total amount of extracellular and pericellular sGAG/DNA were quantified. Additionally, whether osmotic loading triggered alterations to HSPG sulfation was assessed via immunohistochemistry for the heparan sulfate 6-O-sulfertransferase 1 (HS6ST1) enzyme. Results Osmotic loading significantly influenced sGAG/DNA accumulation with a hyper-osmotic change promoting the greatest sGAG/DNA accumulation in the pericellular region compared with iso-osmotic conditions. Heparanase-III treatment significantly reduced extracellular sGAG/DNA but pericellular sGAG was not affected. HS6ST1 expression was not affected by osmotic loading. Conclusion Results suggest that hyper-osmotic loading promotes matrix synthesis and that modifications to HSPGs directly influence the metabolic responses of cells to osmotic fluctuations. Collectively, results suggest degeneration-associated modifications to pericellular HSPGs may contribute to the altered mechanobiology observed in disease.
Collapse
Affiliation(s)
- Carly M. Krull
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Jordan Rife
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Brett Klamer
- Department of Biomedical Informatics, Center for BiostatisticsThe Ohio State UniversityColumbusOhioUSA
| | - Devina Purmessur
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOhioUSA
- Department of OrthopedicsThe Ohio State University Wexner Medical CenterColumbusOhioUSA
- Spine Research InstituteThe Ohio State UniversityColumbusOhioUSA
| | - Benjamin A. Walter
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOhioUSA
- Department of OrthopedicsThe Ohio State University Wexner Medical CenterColumbusOhioUSA
- Spine Research InstituteThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
13
|
Zhang M, Zhang R, Zheng T, Chen Z, Ji G, Peng F, Wang W. Xanthohumol Attenuated Inflammation and ECM Degradation by Mediating HO-1/C/EBPβ Pathway in Osteoarthritis Chondrocytes. Front Pharmacol 2021; 12:680585. [PMID: 34017261 PMCID: PMC8129538 DOI: 10.3389/fphar.2021.680585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/23/2021] [Indexed: 12/24/2022] Open
Abstract
Osteoarthritis (OA) is the most frequent and disabling disease in developed countries. The progressive degeneration of articular cartilage characterized as thinner and erosive. Inflammation is well-known to be involved in OA development. However, there are no effective therapeutic strategies to cure it. Xanthohumol (XH) is a natural prenylflavonoid isolated from hops and beer. The protective activity of XH against OA chondrocytes inflammation and ECM degradation is unclear. In this article, we found that XH significantly inhibited inflammatory responses, attenuated catabolic enzymes expression, and ameliorated ECM degradation, as showed by decreased production of NO, PGE2, TNFα, and IL-6, decreased expression of MMP-3/-13 and ADAMTS-4/-5, and increased expression of collagen-II and aggrecan. In addition, XH activated HO-1 signaling and attenuated IL-1β-induced C/EBPβ. XH promoted the interaction between HO-1 and C/EBPβ, inhibiting the nuclear translocation of C/EBPβ. HO-1 knockdown could abrogate the protective effects of XH in IL-1β-treated chondrocytes. Collectively, XH attenuated inflammatory responses and ECM degradation by mediating HO-1 and C/EBPβ signaling pathways in osteoarthritis chondrocytes.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Orthopedics, Taizhou People's Hospital, Taizhou, China
| | - Rui Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Tiansheng Zheng
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhixi Chen
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Guanglin Ji
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Fang Peng
- Department of Pathology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China
| | - Wei Wang
- Department of Hepatology, Taizhou People's Hospital, Taizhou, China
| |
Collapse
|
14
|
Serpins in cartilage and osteoarthritis: what do we know? Biochem Soc Trans 2021; 49:1013-1026. [PMID: 33843993 PMCID: PMC8106492 DOI: 10.1042/bst20201231] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/17/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022]
Abstract
Serpins (serine proteinase inhibitors) are an ancient superfamily of structurally similar proteins, the majority of which use an elegant suicide inhibition mechanism to target serine proteinases. Despite likely evolving from a single common ancestor, the 36 human serpins have established roles regulating diverse biological processes, such as blood coagulation, embryonic development and extracellular matrix (ECM) turnover. Genetic mutations in serpin genes underpin a host of monogenic disorders — collectively termed the ‘serpinopathies’ — but serpin dysregulation has also been shown to drive pathological mechanisms in many common diseases. Osteoarthritis is a degenerative joint disorder, characterised by the progressive destruction of articular cartilage. This breakdown of the cartilage is driven by the metalloproteinases, and it has long been established that an imbalance of metalloproteinases to their inhibitors is of critical importance. More recently, a role for serine proteinases in cartilage destruction is emerging; including the activation of latent matrix metalloproteinases and cell-surface receptors, or direct proteolysis of the ECM. Serpins likely regulate these processes, as well as having roles beyond serine proteinase inhibition. Indeed, serpins are routinely observed to be highly modulated in osteoarthritic tissues and fluids by ‘omic analysis, but despite this, they are largely ignored. Confusing nomenclature and an underappreciation for the role of serine proteinases in osteoarthritis (OA) being the likely causes. In this narrative review, serpin structure, biochemistry and nomenclature are introduced, and for the first time, their putative importance in maintaining joint tissues — as well as their dysregulation in OA — are explored.
Collapse
|