1
|
Zhang H, Jin C, Hua J, Chen Z, Gao W, Xu W, Zhou L, Shan L. Roles of Microenvironment on Mesenchymal Stem Cells Therapy for Osteoarthritis. J Inflamm Res 2024; 17:7069-7079. [PMID: 39377043 PMCID: PMC11457791 DOI: 10.2147/jir.s475617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/21/2024] [Indexed: 10/09/2024] Open
Abstract
Osteoarthritis (OA) induced microenvironmental alterations are a common and unavoidable phenomenon that greatly exacerbate the pathologic process of OA. Imbalances in the synthesis and degradation of cartilage extracellular matrix (ECM) have been reported to be associated with an adverse microenvironment. Stem cell therapy is a promising treatment for OA, and mesenchymal stem cells (MSCs) are the main cell sources for this therapy. With multispectral differentiation and immunomodulation, MSCs can effectively regulate the microenvironment of articular cartilage, ameliorate inflammation, promote regeneration of damaged cartilage, and ultimately alleviate OA symptoms. However, the efficacy of MSCs in the treatment of OA is greatly influenced by articular cavity microenvironments. This article reviews the five microenvironments of OA articular cavity, including inflammatory microenvironment, senescence microenvironment, hypoxic microenvironment, high glucose microenvironment and high lipid environment, focus on the positive and negative effects of OA microenvironments on the fate of MSCs. In this regard, we emphasize the mechanisms of the current use of MSCs in OA treatment, as well as its limitations and challenges.
Collapse
Affiliation(s)
- Haiyan Zhang
- The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Chaoying Jin
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Jiaqing Hua
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Zuxiang Chen
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Wenxin Gao
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Wenting Xu
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Letian Shan
- The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
2
|
Macias SL, Palmer O, Simonovich JA, Clark RA, Hudalla GA, Keselowsky BG. Immunometabolic Approaches Mitigating Foreign Body Response and Transcriptome Characterization of the Foreign Body Capsule. Adv Healthc Mater 2024:e2400602. [PMID: 39148172 DOI: 10.1002/adhm.202400602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/08/2024] [Indexed: 08/17/2024]
Abstract
Directing immunometabolism presents new opportunities to modulate key cell types associated with the formation of foreign body response (FBR) capsule. Contrasting approaches directing immunometabolism are investigated to mitigate FBR: a broadly suppressive metabolic inhibitor (MI) cocktail comprised of 2-deoxyglucose (2-DG), metformin, and 6-diazo-5-oxo-l-norleucine (DON) with daily systemic dosing regimen, and local weekly injection of the more narrowly focused tryptophan catabolizing IDO-Gal3 fusion protein. Treatments significantly decrease FBR capsule formed around subcutaneously implanted cellulose disks. MI cocktail results in a substantially thinner FBR capsule (40% of control), while weekly local injection of IDO-Gal3 also results in a thinner FBR capsule (69% of control). RNA-sequencing capsule transcripts reveal MI cocktail promotes quiescence, with decreased antigen processing and presentation, T helper subset differentiation, and cytokine-cytokine receptor pathway. IDO-Gal3 promotes pro-regenerative, alternatively activated M2-like macrophages and T helper 2 cells, with increased expression of type 2 response-associated genes (Il4, Il13, Arg1, Mrc1, Chil3, Gata3). IDO-Gal3 decreases pro-inflammatory innate sensing pathways, and C-type lectin receptor, NOD-like receptor, RIG-I-like receptor, and Toll-like receptor signaling. This work helps define key gene targets and pathways concomitantly regulated in the FBR capsule during immunometabolic modulation compared to control FBR capsule.
Collapse
Affiliation(s)
- Sabrina L Macias
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Olivia Palmer
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Jennifer A Simonovich
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Ryan A Clark
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Gregory A Hudalla
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Benjamin G Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
3
|
Zhang X, Liu T, Ran C, Wang W, Piao F, Yang J, Tian S, Li L, Zhao D. Immunoregulatory paracrine effect of mesenchymal stem cells and mechanism in the treatment of osteoarthritis. Front Cell Dev Biol 2024; 12:1411507. [PMID: 39129785 PMCID: PMC11310049 DOI: 10.3389/fcell.2024.1411507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease caused by chronic inflammation that damages articular cartilage. At present, the treatment of OA includes drug therapy to relieve symptoms and joint replacement therapy for advanced OA. However, these palliatives cannot truly block the progression of the disease from the immunological pathogenesis of OA. In recent years, bone marrow mesenchymal stem cell (BMSC) transplantation has shown great potential in tissue engineering repair. In addition, many studies have shown that BMSC paracrine signals play an important role in the treatment of OA through immune regulation and suppressing inflammation. At present, the mechanism of inflammation-induced OA and the use of BMSC transplantation in joint repair have been reviewed, but the mechanism and significance of BMSC paracrine signals in the treatment of OA have not been fully reviewed. Therefore, this article focused on the latest research progress on the paracrine effects of BMSCs in the treatment of OA and the related mechanisms by which BMSCs secrete cytokines to inhibit the inflammatory response, regulate immune balance, and promote cell proliferation and differentiation. In addition, the application potential of BMSC-Exos as a new type of cell-free therapy for OA is described. This review aimed to provide systematic theoretical support for the clinical application of BMSC transplantation in the treatment of OA.
Collapse
Affiliation(s)
- Xiuzhi Zhang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Tianhao Liu
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Chunxiao Ran
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Weidan Wang
- Orthopaedic Medical Research Center, Dalian University, Dalian, Liaoning, China
| | - Fengyuan Piao
- Orthopaedic Medical Research Center, Dalian University, Dalian, Liaoning, China
| | - Jiahui Yang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Simiao Tian
- Orthopaedic Medical Research Center, Dalian University, Dalian, Liaoning, China
| | - Lu Li
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Dewei Zhao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| |
Collapse
|
4
|
D’Elia A, Jones OL, Canziani G, Sarkar B, Chaiken I, Rodell CB. Injectable Granular Hydrogels Enable Avidity-Controlled Biotherapeutic Delivery. ACS Biomater Sci Eng 2024; 10:1577-1588. [PMID: 38357739 PMCID: PMC10934254 DOI: 10.1021/acsbiomaterials.3c01906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Protein therapeutics represent a rapidly growing class of pharmaceutical agents that hold great promise for the treatment of various diseases such as cancer and autoimmune dysfunction. Conventional systemic delivery approaches, however, result in off-target drug exposure and a short therapeutic half-life, highlighting the need for more localized and controlled delivery. We have developed an affinity-based protein delivery system that uses guest-host complexation between β-cyclodextrin (CD, host) and adamantane (Ad, guest) to enable sustained localized biomolecule presentation. Hydrogels were formed by the copolymerization of methacrylated CD and methacrylated dextran. Extrusion fragmentation of bulk hydrogels yielded shear-thinning and self-healing granular hydrogels (particle diameter = 32.4 ± 16.4 μm) suitable for minimally invasive delivery and with a high host capacity for the retention of guest-modified proteins. Bovine serum albumin (BSA) was controllably conjugated to Ad via EDC chemistry without affecting the affinity of the Ad moiety for CD (KD = 12.0 ± 1.81 μM; isothermal titration calorimetry). The avidity of Ad-BSA conjugates was directly tunable through the number of guest groups attached, resulting in a fourfold increase in the complex half-life (t1/2 = 5.07 ± 1.23 h, surface plasmon resonance) that enabled a fivefold reduction in protein release at 28 days. Furthermore, we demonstrated that the conjugation of Ad to immunomodulatory cytokines (IL-4, IL-10, and IFNγ) did not detrimentally affect cytokine bioactivity and enabled their sustained release. Our strategy of avidity-controlled delivery of protein-based therapeutics is a promising approach for the sustained local presentation of protein therapeutics and can be applied to numerous biomedical applications.
Collapse
Affiliation(s)
- Arielle
M. D’Elia
- School
of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Olivia L. Jones
- School
of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Gabriela Canziani
- Department
of Biochemistry and Molecular Biology, Drexel
University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Biplab Sarkar
- School
of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Irwin Chaiken
- Department
of Biochemistry and Molecular Biology, Drexel
University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Christopher B. Rodell
- School
of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|