1
|
Dwivedi J, Wal P, Dash B, Ovais M, Sachan P, Verma V. Diabetic Pneumopathy- A Novel Diabetes-associated Complication: Pathophysiology, the Underlying Mechanism and Combination Medication. Endocr Metab Immune Disord Drug Targets 2024; 24:1027-1052. [PMID: 37817659 DOI: 10.2174/0118715303265960230926113201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND The "diabetic lung" has been identified as a possible target organ in diabetes, with abnormalities in ventilation control, bronchomotor tone, lung volume, pulmonary diffusing capacity, and neuroadrenergic bronchial innervation. OBJECTIVE This review summarizes studies related to diabetic pneumopathy, pathophysiology and a number of pulmonary disorders including type 1 and type 2 diabetes. METHODS Electronic searches were conducted on databases such as Pub Med, Wiley Online Library (WOL), Scopus, Elsevier, ScienceDirect, and Google Scholar using standard keywords "diabetes," "diabetes Pneumopathy," "Pathophysiology," "Lung diseases," "lung infection" for review articles published between 1978 to 2023 very few previous review articles based their focus on diabetic pneumopathy and its pathophysiology. RESULTS Globally, the incidence of diabetes mellitus has been rising. It is a chronic, progressive metabolic disease. The "diabetic lung" may serve as a model of accelerated ageing since diabetics' rate of respiratory function deterioration is two to three-times higher than that of normal, non-smoking people. CONCLUSION Diabetes-induced pulmonary dysfunction has not gained the attention it deserves due to a lack of proven causality and changes in cellular properties. The mechanism underlying a particular lung illness can still only be partially activated by diabetes but there is evidence that hyperglycemia is linked to pulmonary fibrosis in diabetic people.
Collapse
Affiliation(s)
- Jyotsana Dwivedi
- PSIT- Pranveer Singh Institute of Technology (Pharmacy), Kanpur, India
| | - Pranay Wal
- PSIT- Pranveer Singh Institute of Technology (Pharmacy), Kanpur, India
| | - Biswajit Dash
- Department of Pharmaceutical Technology, ADAMAS University, West Bengal, India
| | | | - Pranjal Sachan
- PSIT- Pranveer Singh Institute of Technology (Pharmacy), Kanpur, India
| | | |
Collapse
|
2
|
Jlali I, Heyman E, Matran R, Marais G, Descatoire A, Rabasa-Lhoret R, Touil I, Pawlak-Chaouch M, Mucci P, Fontaine P, Baquet G, Tagougui S. Respiratory function in uncomplicated type 1 diabetes: Blunted during exercise even though normal at rest! Diabet Med 2022; 40:e15036. [PMID: 36585956 DOI: 10.1111/dme.15036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
AIMS Type 1 diabetes is associated with a substantially increased risk of impaired lung function, which may impair aerobic fitness. We therefore aimed to examine the ventilatory response during maximal exercise and the pulmonary diffusion capacity function at rest in individuals with uncomplicated type 1 diabetes. METHODS In all, 17 adults with type 1 diabetes free from micro-macrovascular complications (glycated haemoglobin: 8.0 ± 1.3%), and 17 non-diabetic adults, carefully matched to the type 1 diabetes group according to gender, age, level of physical activity and body composition, participated in our study. Lung function was assessed by spirometry and measurements of the combined diffusing capacity for nitric oxide (DLNO) and carbon monoxide (DLCO) at rest. Subjects performed a maximal exercise test during which the respiratory parameters were measured. RESULTS At rest, DLCO (30.4 ± 6.1 ml min-1 mmHg-1 vs. 31.4 ± 5.7 ml min-1 mmHg-1 , respectively, p = 0.2), its determinants Dm (membrane diffusion capacity) and Vc (pulmonary capillary volume) were comparable among type 1 diabetes and control groups, respectively. Nevertheless, spirometry parameters (forced vital capacity = 4.9 ± 1.0 L vs. 5.5 ± 1.0 L, p < 0.05; forced expiratory volume 1 = 4.0 ± 0.7 L vs. 4.3 ± 0.7 L, p < 0.05) were lower in individuals with type 1 diabetes, although in the predicted normal range. During exercise, ventilatory response to exercise was different between the two groups: tidal volume was lower in type 1 diabetes vs. individuals without diabetes (p < 0.05). Type 1 diabetes showed a reduced VO2max (34.7 ± 6.8 vs. 37.9 ± 6.3, respectively, p = 0.04) in comparison to healthy subjects. CONCLUSIONS Individuals with uncomplicated type 1 diabetes display normal alveolar-capillary diffusion capacity and at rest, while their forced vital capacity, tidal volumes and VO2 are reduced during maximal exercise.
Collapse
Affiliation(s)
- Islem Jlali
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
| | - Elsa Heyman
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
- Institut Universitaire de France (IUF), Paris, France
| | - Régis Matran
- Department of Physiology, EA 2689 & IFR 22, Lille, France
| | - Gaelle Marais
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
| | | | - Rémi Rabasa-Lhoret
- Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
- Département de Nutrition, Faculté de Médicine, Université de Montréal, Montréal, Québec, Canada
- Département des Sciences Biomédicales, Faculté de Médicine, Université de Montréal, Montréal, Québec, Canada
- Endocrinology Division, Montreal Diabetes Research Center, Montréal, Québec, Canada
- Division of Endocrinology, McGill University, Montréal, Québec, Canada
| | - Imen Touil
- Pulmonology Department, Taher Sfar Hospital, Mahdia, Tunisia
| | - Mehdi Pawlak-Chaouch
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
| | - Patrick Mucci
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
| | - Pierre Fontaine
- Department of Diabetology, University Hospital, EA 4489, Lille, France
| | - Georges Baquet
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
| | - Sémah Tagougui
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
- Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
| |
Collapse
|
3
|
Association of HbA1c with VO 2max in Individuals with Type 1 Diabetes: A Systematic Review and Meta-Analysis. Metabolites 2022; 12:metabo12111017. [PMID: 36355100 PMCID: PMC9697838 DOI: 10.3390/metabo12111017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this systematic review and meta-analysis was to evaluate the association between glycemic control (HbA1c) and functional capacity (VO2max) in individuals with type 1 diabetes (T1DM). A systematic literature search was conducted in EMBASE, PubMed, Cochrane Central Register of Controlled Trials, and ISI Web of Knowledge for publications from January 1950 until July 2020. Randomized and observational controlled trials with a minimum number of three participants were included if cardio-pulmonary exercise tests to determine VO2max and HbA1c measurement has been performed. Pooled mean values were estimated for VO2max and HbA1c and weighted Pearson correlation and meta-regression were performed to assess the association between these parameters. We included 187 studies with a total of 3278 individuals with T1DM. The pooled mean HbA1c value was 8.1% (95%CI; 7.9−8.3%), and relative VO2max was 38.5 mL/min/kg (37.3−39.6). The pooled mean VO2max was significantly lower (36.9 vs. 40.7, p = 0.001) in studies reporting a mean HbA1c > 7.5% compared to studies with a mean HbA1c ≤ 7.5%. Weighted Pearson correlation coefficient was r = −0.19 (p < 0.001) between VO2max and HbA1c. Meta-regression adjusted for age and sex showed a significant decrease of −0.94 mL/min/kg in VO2max per HbA1c increase of 1% (p = 0.024). In conclusion, we were able to determine a statistically significant correlation between HbA1c and VO2max in individuals with T1DM. However, as the correlation was only weak, the association of HbA1c and VO2max might not be of clinical relevance in individuals with T1DM.
Collapse
|
4
|
Murillo S, Brugnara L, Servitja JM, Novials A. High Intensity Interval Training reduces hypoglycemic events compared with continuous aerobic training in individuals with type 1 diabetes: HIIT and hypoglycemia in type 1 diabetes. DIABETES & METABOLISM 2022; 48:101361. [PMID: 35714884 DOI: 10.1016/j.diabet.2022.101361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/17/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022]
Abstract
AIMS to investigate if a High Intensity Interval Training (HIIT) protocol improves glycemic control and fitness capacity, compared to traditional moderate Intensity Continuous Training (MICT) exercise. METHODS 30 sedentary individuals with type 1 diabetes (T1D) and 26 healthy controls were assigned to a 3-week HIIT or MICT protocol. Blood glucose levels by continuous glucose monitoring system and fitness status were compared before and after the study period. RESULTS During workouts, blood glucose levels remained stable in HIIT exercise (+3.2 ± 16.2 mg/dl (p = 0.43)), while decreased in MICT (-27.1 ± 17.5 mg/dl (p < 0.0001)) exercise. In addition, out of the 9 training sessions, HIIT volunteers needed to take carbohydrate supplements to avoid hypoglycemia in 0.56 ± 0.9 sessions, compared to 1.83 ± 0.5 sessions (p < 0.04) in MICT individuals. In the analysis of blood glucose levels between rest and training days (24h-period), training significantly reduced mean glycemic levels in both groups, but the MICT exercise results in an increase in the frequency of hypoglycemic episodes. The response to exercise seems to be attenuated in individuals with T1D, especially in HIIT group. CONCLUSION HIIT training results in a greater glycemic stability, with reduction of hypoglycemic episodes.
Collapse
Affiliation(s)
- Serafin Murillo
- IDIBAPS, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain; CIBERDEM, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Barcelona, Spain; Hospital Clinic de Barcelona, Barcelona, Spain; Sant Joan de Déu Hospital, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Laura Brugnara
- IDIBAPS, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain; CIBERDEM, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Barcelona, Spain; Hospital Clinic de Barcelona, Barcelona, Spain
| | - Joan-Marc Servitja
- IDIBAPS, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain; CIBERDEM, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Barcelona, Spain
| | - Anna Novials
- IDIBAPS, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain; CIBERDEM, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Barcelona, Spain; Hospital Clinic de Barcelona, Barcelona, Spain.
| |
Collapse
|
5
|
Daskalaki E, Parkinson A, Brew-Sam N, Hossain MZ, O'Neal D, Nolan CJ, Suominen H. The Potential of Current Noninvasive Wearable Technology for the Monitoring of Physiological Signals in the Management of Type 1 Diabetes: Literature Survey. J Med Internet Res 2022; 24:e28901. [PMID: 35394448 PMCID: PMC9034434 DOI: 10.2196/28901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 12/06/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Background Monitoring glucose and other parameters in persons with type 1 diabetes (T1D) can enhance acute glycemic management and the diagnosis of long-term complications of the disease. For most persons living with T1D, the determination of insulin delivery is based on a single measured parameter—glucose. To date, wearable sensors exist that enable the seamless, noninvasive, and low-cost monitoring of multiple physiological parameters. Objective The objective of this literature survey is to explore whether some of the physiological parameters that can be monitored with noninvasive, wearable sensors may be used to enhance T1D management. Methods A list of physiological parameters, which can be monitored by using wearable sensors available in 2020, was compiled by a thorough review of the devices available in the market. A literature survey was performed using search terms related to T1D combined with the identified physiological parameters. The selected publications were restricted to human studies, which had at least their abstracts available. The PubMed and Scopus databases were interrogated. In total, 77 articles were retained and analyzed based on the following two axes: the reported relations between these parameters and T1D, which were found by comparing persons with T1D and healthy control participants, and the potential areas for T1D enhancement via the further analysis of the found relationships in studies working within T1D cohorts. Results On the basis of our search methodology, 626 articles were returned, and after applying our exclusion criteria, 77 (12.3%) articles were retained. Physiological parameters with potential for monitoring by using noninvasive wearable devices in persons with T1D included those related to cardiac autonomic function, cardiorespiratory control balance and fitness, sudomotor function, and skin temperature. Cardiac autonomic function measures, particularly the indices of heart rate and heart rate variability, have been shown to be valuable in diagnosing and monitoring cardiac autonomic neuropathy and, potentially, predicting and detecting hypoglycemia. All identified physiological parameters were shown to be associated with some aspects of diabetes complications, such as retinopathy, neuropathy, and nephropathy, as well as macrovascular disease, with capacity for early risk prediction. However, although they can be monitored by available wearable sensors, most studies have yet to adopt them, as opposed to using more conventional devices. Conclusions Wearable sensors have the potential to augment T1D sensing with additional, informative biomarkers, which can be monitored noninvasively, seamlessly, and continuously. However, significant challenges associated with measurement accuracy, removal of noise and motion artifacts, and smart decision-making exist. Consequently, research should focus on harvesting the information hidden in the complex data generated by wearable sensors and on developing models and smart decision strategies to optimize the incorporation of these novel inputs into T1D interventions.
Collapse
Affiliation(s)
- Elena Daskalaki
- School of Computing, College of Engineering and Computer Science, The Australian National University, Canberra, Australia
| | - Anne Parkinson
- Department of Health Services Research and Policy, Research School of Population Health, College of Health and Medicine, The Australian National University, Canberra, Australia
| | - Nicola Brew-Sam
- Department of Health Services Research and Policy, Research School of Population Health, College of Health and Medicine, The Australian National University, Canberra, Australia
| | - Md Zakir Hossain
- School of Computing, College of Engineering and Computer Science, The Australian National University, Canberra, Australia.,School of Biology, College of Science, The Australian National University, Canberra, Australia.,Bioprediction Activity, Commonwealth Industrial and Scientific Research Organisation, Canberra, Australia
| | - David O'Neal
- Department of Medicine, University of Melbourne, Melbourne, Australia.,Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Melbourne, Australia
| | - Christopher J Nolan
- Australian National University Medical School and John Curtin School of Medical Research, College of Health and Medicine, The Autralian National University, Canberra, Australia.,Department of Diabetes and Endocrinology, The Canberra Hospital, Canberra, Australia
| | - Hanna Suominen
- School of Computing, College of Engineering and Computer Science, The Australian National University, Canberra, Australia.,Data61, Commonwealth Industrial and Scientific Research Organisation, Canberra, Australia.,Department of Computing, University of Turku, Turku, Finland
| |
Collapse
|
6
|
McCarthy O, Pitt J, Wellman B, Eckstein ML, Moser O, Bain SC, Bracken RM. Blood Glucose Responses during Cardiopulmonary Incremental Exercise Testing in Type 1 Diabetes: A Pooled Analysis. Med Sci Sports Exerc 2021; 53:1142-1150. [PMID: 33315813 DOI: 10.1249/mss.0000000000002584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE This study aimed to determine the glycemic responses to cardiopulmonary exercise testing (CPET) in individuals with type 1 diabetes (T1D) and to explore the influence of starting blood glucose (BG) concentrations on subsequent CPET outcomes. METHODS This study was a retrospective, secondary analysis of pooled data from three randomized crossover trials using identical CPET protocols. During cycling, cardiopulmonary variables were measured continuously, with BG and lactate values obtained minutely via capillary earlobe sampling. Anaerobic threshold was determined using ventilatory parameters. Participants were split into (i) euglycemic ([Eu] >3.9 to ≤10.0 mmol·L-1, n = 26) and (ii) hyperglycemic ([Hyper] >10.0 mmol·L-1, n = 10) groups based on preexercise BG concentrations. Data were assessed via general linear modeling techniques and regression analyses. P values of ≤0.05 were accepted as significant. RESULTS Data from 36 individuals with T1D (HbA1c, 7.3% ± 1.1% [56.0 ± 11.5 mmol·mol-1]) were included. BG remained equivalent to preexercise concentrations throughout CPET, with an overall change in BG of -0.32 ± 1.43 mmol·L-1. Hyper had higher HR at peak (+10 ± 2 bpm, P = 0.04) and during recovery (+9 ± 2 bpm, P = 0.038) as well as lower O2 pulse during the cool down period (-1.6 ± 0.04 mL per beat, P = 0.021). BG responses were comparable between glycemic groups. Higher preexercise BG led to greater lactate formation during exercise. HbA1c was inversely related to time to exhaustion (r = -0.388, P = 0.04) as well as peak power output (r = -0.355, P = 0.006) and O2 pulse (r = -0.308, P = 0.015). CONCLUSIONS This study demonstrated 1) stable BG responses to CPET in patients with T1D; 2) although preexercise hyperglycemia did not influence subsequent glycemic dynamics, it did potentiate alterations in various cardiac and metabolic responses to CPET; and 3) HbA1c was a significant factor in the determination of peak performance outcomes during CPET.
Collapse
Affiliation(s)
- Olivia McCarthy
- Applied Sport, Technology, Exercise and Medicine Research Centre (A-STEM), College of Engineering, Swansea University, Swansea, UNITED KINGDOM
| | - Jason Pitt
- Applied Sport, Technology, Exercise and Medicine Research Centre (A-STEM), College of Engineering, Swansea University, Swansea, UNITED KINGDOM
| | - Ben Wellman
- Applied Sport, Technology, Exercise and Medicine Research Centre (A-STEM), College of Engineering, Swansea University, Swansea, UNITED KINGDOM
| | | | | | - Stephen C Bain
- Diabetes Research Group, Medical School, Swansea University, Swansea, UNITED KINGDOM
| | | |
Collapse
|
7
|
Bilak JM, Gulsin GS, McCann GP. Cardiovascular and systemic determinants of exercise capacity in people with type 2 diabetes mellitus. Ther Adv Endocrinol Metab 2021; 12:2042018820980235. [PMID: 33552463 PMCID: PMC7844448 DOI: 10.1177/2042018820980235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022] Open
Abstract
The global burden of heart failure (HF) is on the rise owing to an increasing incidence of lifestyle related diseases, predominantly type 2 diabetes mellitus (T2D). Diabetes is an independent risk factor for cardiovascular disease, and up to 75% of those with T2D develop HF in their lifetime. T2D leads to pathological alterations within the cardiovascular system, which can progress insidiously and asymptomatically in the absence of conventional risk factors. Reduced exercise tolerance is consistently reported, even in otherwise asymptomatic individuals with T2D, and is the first sign of a failing heart. Because aggressive modification of cardiovascular risk factors does not eliminate the risk of HF in T2D, it is likely that other factors play a role in the pathogenesis of HF. Early identification of individuals at risk of HF is advantageous, as it allows for modification of the reversible risk factors and early initiation of treatment with the aim of improving clinical outcomes. In this review, cardiac and extra-cardiac contributors to reduced exercise tolerance in people with T2D are explored.
Collapse
Affiliation(s)
- Joanna M. Bilak
- Department of Cardiovascular Sciences, University of Leicester and The National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, Leicester, UK
| | - Gaurav S. Gulsin
- Department of Cardiovascular Sciences, University of Leicester and The National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, Leicester, UK
| | - Gerry P. McCann
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Groby Road, Leicester LE39QP, UK
| |
Collapse
|
8
|
Eckstein ML, Farinha JB, McCarthy O, West DJ, Yardley JE, Bally L, Zueger T, Stettler C, Boff W, Reischak-Oliveira A, Riddell MC, Zaharieva DP, Pieber TR, Müller A, Birnbaumer P, Aziz F, Brugnara L, Haahr H, Zijlstra E, Heise T, Sourij H, Roden M, Hofmann P, Bracken RM, Pesta D, Moser O. Differences in Physiological Responses to Cardiopulmonary Exercise Testing in Adults With and Without Type 1 Diabetes: A Pooled Analysis. Diabetes Care 2021; 44:240-247. [PMID: 33184152 DOI: 10.2337/dc20-1496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/14/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To investigate physiological responses to cardiopulmonary exercise (CPX) testing in adults with type 1 diabetes compared with age-, sex-, and BMI-matched control participants without type 1 diabetes. RESEARCH DESIGN AND METHODS We compared results from CPX tests on a cycle ergometer in individuals with type 1 diabetes and control participants without type 1 diabetes. Parameters were peak and threshold variables of VO2, heart rate, and power output. Differences between groups were investigated through restricted maximum likelihood modeling and post hoc tests. Differences between groups were explained by stepwise linear regressions (P < 0.05). RESULTS Among 303 individuals with type 1 diabetes (age 33 [interquartile range 22; 43] years, 93 females, BMI 23.6 [22; 26] kg/m2, HbA1c 6.9% [6.2; 7.7%] [52 (44; 61) mmol/mol]), VO2peak (32.55 [26.49; 38.72] vs. 42.67 ± 10.44 mL/kg/min), peak heart rate (179 [170; 187] vs. 184 [175; 191] beats/min), and peak power (216 [171; 253] vs. 245 [200; 300] W) were lower compared with 308 control participants without type 1 diabetes (all P < 0.001). Individuals with type 1 diabetes displayed an impaired degree and direction of the heart rate-to-performance curve compared with control participants without type 1 diabetes (0.07 [-0.75; 1.09] vs. 0.66 [-0.28; 1.45]; P < 0.001). None of the exercise physiological responses were associated with HbA1c in individuals with type 1 diabetes. CONCLUSIONS Individuals with type 1 diabetes show altered responses to CPX testing, which cannot be explained by HbA1c. Intriguingly, the participants in our cohort were people with recent-onset type 1 diabetes; heart rate dynamics were altered during CPX testing.
Collapse
Affiliation(s)
- Max L Eckstein
- Cardiovascular Diabetology Research Group, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Division of Exercise Physiology and Metabolism, Department of Sport Science, University of Bayreuth, Bayreuth, Germany
| | - Juliano Boufleur Farinha
- School of Physical Education, Physiotherapy and Dance, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Olivia McCarthy
- Applied Sport, Technology, Exercise and Medicine Research Centre, College of Engineering, Swansea University, Swansea, U.K
| | - Daniel J West
- Population Health Science Institute, Faculty of Medical Science, Newcastle University, Newcastle upon Tyne, U.K
| | - Jane E Yardley
- Alberta Diabetes Institute, Edmonton, Alberta, Canada
- Augustana Faculty, University of Alberta, Camrose, Alberta, Canada
| | - Lia Bally
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Thomas Zueger
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Christoph Stettler
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Winston Boff
- Institute for Children with Diabetes, Conceição Hospital Group, Porto Alegre, Brazil
| | - Alvaro Reischak-Oliveira
- School of Physical Education, Physiotherapy and Dance, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Michael C Riddell
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Dessi P Zaharieva
- Department of Pediatric Endocrinology and Diabetes, Stanford University School of Medicine, Stanford, CA
| | - Thomas R Pieber
- Cardiovascular Diabetology Research Group, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Alexander Müller
- Cardiovascular Diabetology Research Group, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Exercise Physiology, Training & Training Therapy Research Group, Institute of Sports Science, University of Graz, Graz, Austria
| | - Philipp Birnbaumer
- Exercise Physiology, Training & Training Therapy Research Group, Institute of Sports Science, University of Graz, Graz, Austria
| | - Faisal Aziz
- Cardiovascular Diabetology Research Group, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Laura Brugnara
- CIBERDEM-Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders and IDIBAPS-August Pi i Sunyer Biomedical Research Institute/Hospital Clínic de Barcelona, Barcelona, Spain
| | | | | | | | - Harald Sourij
- Cardiovascular Diabetology Research Group, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Institute for Diabetes Research, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter Hofmann
- Exercise Physiology, Training & Training Therapy Research Group, Institute of Sports Science, University of Graz, Graz, Austria
| | - Richard M Bracken
- Applied Sport, Technology, Exercise and Medicine Research Centre, College of Engineering, Swansea University, Swansea, U.K
| | - Dominik Pesta
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Institute for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Othmar Moser
- Cardiovascular Diabetology Research Group, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Division of Exercise Physiology and Metabolism, Department of Sport Science, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
9
|
Kosinski C, Besson C, Amati F. Exercise Testing in Individuals With Diabetes, Practical Considerations for Exercise Physiologists. Front Physiol 2019; 10:1257. [PMID: 31611821 PMCID: PMC6777138 DOI: 10.3389/fphys.2019.01257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/17/2019] [Indexed: 12/19/2022] Open
Abstract
Exercise and sports activities are crucial for individuals with diabetes. Diabetic patients are often referred to sports clinics for cardiopulmonary exercise testing to evaluate physical capacity, exercise-related symptoms, or to obtain medical clearance. While there is an abundance of literature on cardiopulmonary testing, practical recommendations for exercise physiologists and sports clinic specialists performing exercise testing for this specific population are lacking. The goal of this report is to provide a practical framework to understand, prepare, and perform exercise testing in patients with diabetes, maximizing exercise physiology outcomes, diagnostic value, and ensuring safety.
Collapse
Affiliation(s)
- Christophe Kosinski
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Cyril Besson
- Sports Medicine Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Francesca Amati
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Sports Medicine Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Department of Physiology and Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
10
|
McCarthy O, Moser O, Eckstein ML, Deere R, Bain SC, Pitt J, Bracken RM. Resistance Isn't Futile: The Physiological Basis of the Health Effects of Resistance Exercise in Individuals With Type 1 Diabetes. Front Endocrinol (Lausanne) 2019; 10:507. [PMID: 31428047 PMCID: PMC6688119 DOI: 10.3389/fendo.2019.00507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 07/11/2019] [Indexed: 12/12/2022] Open
Abstract
The importance of regular exercise for glucose management in individuals with type 1 diabetes is magnified by its acknowledgment as a key adjunct to insulin therapy by several governmental, charitable, and healthcare organisations. However, although actively encouraged, exercise participation rates remain low, with glycaemic disturbances and poor cardiorespiratory fitness cited as barriers to long-term involvement. These fears are perhaps exacerbated by uncertainty in how different forms of exercise can considerably alter several acute and chronic physiological outcomes in those with type 1 diabetes. Thus, understanding the bodily responses to specific forms of exercise is important for the provision of practical guidelines that aim to overcome these exercise barriers. Currently, the majority of existing exercise research in type 1 diabetes has focused on moderate intensity continuous protocols with less work exploring predominately non-oxidative exercise modalities like resistance exercise. This is surprising, considering the known neuro-muscular, osteopathic, metabolic, and vascular benefits associated with resistance exercise in the wider population. Considering that individuals with type 1 diabetes have an elevated susceptibility for complications within these physiological systems, the wider health benefits associated with resistance exercise may help alleviate the prevalence and/or magnitude of pathological manifestation in this population group. This review outlines the health benefits of resistance exercise with reference to evidence in aiding some of the common complications associated with individuals with type 1 diabetes.
Collapse
Affiliation(s)
- Olivia McCarthy
- Applied Sport, Technology, Exercise and Medicine Research Centre (A-STEM), College of Engineering, Swansea University, Swansea, United Kingdom
- Diabetes Research Group, Medical School, Swansea University, Swansea, United Kingdom
| | - Othmar Moser
- Applied Sport, Technology, Exercise and Medicine Research Centre (A-STEM), College of Engineering, Swansea University, Swansea, United Kingdom
- Cardiovascular Diabetology Research Group, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Max L. Eckstein
- Applied Sport, Technology, Exercise and Medicine Research Centre (A-STEM), College of Engineering, Swansea University, Swansea, United Kingdom
- Cardiovascular Diabetology Research Group, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Rachel Deere
- Applied Sport, Technology, Exercise and Medicine Research Centre (A-STEM), College of Engineering, Swansea University, Swansea, United Kingdom
- Diabetes Research Group, Medical School, Swansea University, Swansea, United Kingdom
| | - Steve C. Bain
- Diabetes Research Group, Medical School, Swansea University, Swansea, United Kingdom
| | - Jason Pitt
- Applied Sport, Technology, Exercise and Medicine Research Centre (A-STEM), College of Engineering, Swansea University, Swansea, United Kingdom
| | - Richard M. Bracken
- Applied Sport, Technology, Exercise and Medicine Research Centre (A-STEM), College of Engineering, Swansea University, Swansea, United Kingdom
- Diabetes Research Group, Medical School, Swansea University, Swansea, United Kingdom
| |
Collapse
|
11
|
Supplementary Nitric Oxide Donors and Exercise as Potential Means to Improve Vascular Health in People with Type 1 Diabetes: Yes to NO? Nutrients 2019; 11:nu11071571. [PMID: 31336832 PMCID: PMC6682901 DOI: 10.3390/nu11071571] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/26/2019] [Accepted: 07/10/2019] [Indexed: 12/16/2022] Open
Abstract
Type 1 diabetes (T1D) is associated with a greater occurrence of cardiovascular pathologies. Vascular dysfunction has been shown at the level of the endothelial layers and failure to maintain a continuous pool of circulating nitric oxide (NO) has been implicated in the progression of poor vascular health. Biochemically, NO can be produced via two distinct yet inter-related pathways that involve an upregulation in the enzymatic activity of nitric oxide synthase (NOS). These pathways can be split into an endogenous oxygen-dependent pathway i.e., the catabolism of the amino acid L-arginine to L-citrulline concurrently yielding NO in the process, and an exogenous oxygen-independent one i.e., the conversion of exogenous inorganic nitrate to nitrite and subsequently NO in a stepwise fashion. Although a body of research has explored the vascular responses to exercise and/or compounds known to stimulate NOS and subsequently NO production, there is little research applying these findings to individuals with T1D, for whom preventative strategies that alleviate or at least temper vascular pathologies are critical foci for long-term risk mitigation. This review addresses the proposed mechanisms responsible for vascular dysfunction, before exploring the potential mechanisms by which exercise, and two supplementary NO donors may provide vascular benefits in T1D.
Collapse
|
12
|
Pre-Exercise Blood Glucose Levels Determine the Amount of Orally Administered Carbohydrates during Physical Exercise in Individuals with Type 1 Diabetes-A Randomized Cross-Over Trial. Nutrients 2019; 11:nu11061287. [PMID: 31174360 PMCID: PMC6627914 DOI: 10.3390/nu11061287] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/27/2019] [Accepted: 03/04/2019] [Indexed: 12/21/2022] Open
Abstract
The aim of the study was to assess the amount of orally administered carbohydrates needed to maintain euglycemia during moderate-intensity exercise in individuals with type 1 diabetes. Nine participants with type 1 diabetes (four women, age 32.1 ± 9.0 years, BMI 25.5 ± 3.9 kg/m2, HbA1c 55 ± 7 mmol/mol (7.2 ± 0.6%)) on insulin Degludec were randomized to cycle for 55 min at moderate intensity (63 ± 7% VO2peak) for five consecutive days on either 75% or 100% of their regular basal insulin dose. The impact of pre-exercise blood glucose concentration on the carbohydrate requirement was analyzed by one-way ANOVA stratified for pre-exercise blood glucose quartiles. The effect of the basal insulin dose on the amount of orally administered carbohydrates was evaluated by Wilcoxon matched-pairs signed-rank test. The amount of orally administered carbohydrates during the continuous exercise sessions was similar for both trial arms (75% or 100% basal insulin) with median [IQR] of 36 g (9–62 g) and 36 g (9–66 g) (p = 0.78). The amount of orally administered carbohydrates was determined by pre-exercise blood glucose concentration for both trial arms (p = 0.03). Our study elucidated the importance of pre-exercise glucose concentration related orally administered carbohydrates to maintain euglycemia during exercise in individuals with type 1 diabetes.
Collapse
|