1
|
Rykova EY, Klimontov VV, Shmakova E, Korbut AI, Merkulova TI, Kzhyshkowska J. Anti-Inflammatory Effects of SGLT2 Inhibitors: Focus on Macrophages. Int J Mol Sci 2025; 26:1670. [DOI: 10.3390/ijms26041670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025] Open
Abstract
A growing body of evidence indicates that nonglycemic effects of sodium–glucose cotransporter 2 (SGLT2) inhibitors play an important role in the protective effects of these drugs in diabetes, chronic kidney disease, and heart failure. In recent years, the anti-inflammatory potential of SGLT2 inhibitors has been actively studied. This review summarizes results of clinical and experimental studies on the anti-inflammatory activity of SGLT2 inhibitors, with a special focus on their effects on macrophages, key drivers of metabolic inflammation. In patients with type 2 diabetes, therapy with SGLT2 inhibitors reduces levels of inflammatory mediators. In diabetic and non-diabetic animal models, SGLT2 inhibitors control low-grade inflammation by suppressing inflammatory activation of tissue macrophages, recruitment of monocytes from the bloodstream, and macrophage polarization towards the M1 phenotype. The molecular mechanisms of the effects of SGLT2 inhibitors on macrophages include an attenuation of inflammasome activity and inhibition of the TLR4/NF-κB pathway, as well as modulation of other signaling pathways (AMPK, PI3K/Akt, ERK 1/2-MAPK, and JAKs/STAT). The review discusses the state-of-the-art concepts and prospects of further investigations that are needed to obtain a deeper insight into the mechanisms underlying the effects of SGLT2 inhibitors on the molecular, cellular, and physiological levels.
Collapse
Affiliation(s)
- Elena Y. Rykova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (IC&G SB RAS), Lavrentjev Prospect 10, 630090 Novosibirsk, Russia
| | - Vadim V. Klimontov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (IC&G SB RAS), Lavrentjev Prospect 10, 630090 Novosibirsk, Russia
- Research Institute of Clinical and Experimental Lymphology, Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), Timakov Str. 2, 630060 Novosibirsk, Russia
| | - Elena Shmakova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (IC&G SB RAS), Lavrentjev Prospect 10, 630090 Novosibirsk, Russia
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia
| | - Anton I. Korbut
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (IC&G SB RAS), Lavrentjev Prospect 10, 630090 Novosibirsk, Russia
- Research Institute of Clinical and Experimental Lymphology, Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), Timakov Str. 2, 630060 Novosibirsk, Russia
| | - Tatyana I. Merkulova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (IC&G SB RAS), Lavrentjev Prospect 10, 630090 Novosibirsk, Russia
| | - Julia Kzhyshkowska
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (IC&G SB RAS), Lavrentjev Prospect 10, 630090 Novosibirsk, Russia
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
2
|
Sundra T, Knowles E, Rendle D, Kelty E, Lester G, Rossi G. Short-term clinical and biochemical responses following treatment with dapagliflozin or ertugliflozin in horses with hyperinsulinemia: A retrospective case series. Domest Anim Endocrinol 2025; 90:106894. [PMID: 39581155 DOI: 10.1016/j.domaniend.2024.106894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024]
Abstract
The metabolic and lipid profiles of horses treated with sodium-glucose cotransporter 2 inhibitors are not well understood. This retrospective study evaluated blood parameters in hyperinsulinemic horses treated with either ertugliflozin (0.05 mg/kg) or dapagliflozin (0.02 mg/kg) orally once daily. Blood samples were collected at baseline (day 0) and after 7 and/or 30 days of treatment. Statistical analyses were conducted using Wilcoxon signed-rank, Mann-Whitney and Spearman's rank correlation tests. Thirty-four horses received dapagliflozin and 24 received ertugliflozin. Significant (p<0.05) within-horse changes between day 0 and day 30 included [median, inter-quartile range (IQR)]: basal serum [Insulin] (uU/ml) reduced 170 (92-280) to 28.7 (14.5-90); [triglycerides] (mmol/l) increased 0.5 (0.3-0.6) to 1.0 (0.6-1.56), [β-hydroxybutyrate] (umol/l) increased 0.22 (0.17-2.7) to 0.30 (0.24-0.35); [total cholesterol] (mmol/l) increased 2.36 (2-2.6) to 2.84 (2.4-3.7); and GGT (IU/ml) increased 21 (16-32) to 25 (18-38). As a percentage of total serum lipids, high-density lipoprotein (HDL) reduced 52.4 % (47.9 %-61.0 %) to 50 % (41 %-54.8 %) and very-low density lipoprotein (VLDL) increased 10.4 % (6.4 %-14.4 %) to 12.3 % (9.9 %-16.8 %) (all p<0.05). Differences between ertugliflozin and dapagliflozin groups were not significant in any of these parameters at days 0, 7 or 30. At day 30, 10/48 (21 %) cases had [triglycerides] > 2.0 mmol/l (maximum = 10.8mmol/l). Day 30 [triglyceride] correlated with day 0: basal insulin (rho=0.47); [triglyceride] (rho=0.42); %VLDL (rho=0.34) day 30: [total cholesterol] (rho=0.67), %HDL (rho=-0.432) and %VLDL (rho=0.708). Our findings suggest that SGLT2 inhibitors induce minor changes in lipid profiles, with occasional cases of marked hypertriglyceridemia, and that dapagliflozin and ertugliflozin exhibit similar biochemical effects.
Collapse
Affiliation(s)
- Tania Sundra
- Avon Ridge Equine Veterinary Services, Brigadoon, Western Australia, Australia; School of Veterinary Medicine, Murdoch University, Murdoch, Western Australia, Australia.
| | - Edd Knowles
- The Royal Veterinary College, Hatfield, UK; Bell Equine Veterinary Clinic, Mereworth UK
| | | | - Erin Kelty
- School of Population and Global Health, The University of Western Australia, Crawley, Western Australia, Australia
| | - Guy Lester
- School of Veterinary Medicine, Murdoch University, Murdoch, Western Australia, Australia; Equiimed, Perth, Western Australia, Australia
| | - Gabriele Rossi
- School of Veterinary Medicine, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
3
|
Batinac T, Batičić L, Kršek A, Knežević D, Marcucci E, Sotošek V, Ćurko-Cofek B. Endothelial Dysfunction and Cardiovascular Disease: Hyperbaric Oxygen Therapy as an Emerging Therapeutic Modality? J Cardiovasc Dev Dis 2024; 11:408. [PMID: 39728298 DOI: 10.3390/jcdd11120408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Maintaining the physiological function of the vascular endothelium and endothelial glycocalyx is crucial for the prevention of cardiovascular disease, which is one of the leading causes of morbidity and mortality worldwide. Damage to these structures can lead to atherosclerosis, hypertension, and other cardiovascular problems, especially in individuals with risk factors such as diabetes and obesity. Endothelial dysfunction is associated with ischemic disease and has a negative impact on overall cardiovascular health. The aim of this review was to comprehensively summarize the crucial role of the vascular endothelium and glycocalyx in cardiovascular health and associated thrombo-inflammatory conditions. It highlights how endothelial dysfunction, influenced by factors such as diabetes, chronic kidney disease, and obesity, leads to adverse cardiovascular outcomes, including heart failure. Recent evidence suggests that hyperbaric oxygen therapy (HBOT) may offer therapeutic benefits in the treatment of cardiovascular risk factors and disease. This review presents the current evidence on the mechanisms by which HBOT promotes angiogenesis, shows antimicrobial and immunomodulatory effects, enhances antioxidant defenses, and stimulates stem cell activity. The latest findings on important topics will be presented, including the effects of HBOT on endothelial dysfunction, cardiac function, atherosclerosis, plaque stability, and endothelial integrity. In addition, the role of HBOT in alleviating cardiovascular risk factors such as hypertension, aging, obesity, and glucose metabolism regulation is discussed, along with its impact on inflammation in cardiovascular disease and its potential benefit in ischemia-reperfusion injury. While HBOT demonstrates significant therapeutic potential, the review also addresses potential risks associated with excessive oxidative stress and oxygen toxicity. By combining information on the molecular mechanisms of HBOT and its effects on the maintenance of vascular homeostasis, this review provides valuable insights into the development of innovative therapeutic strategies aimed at protecting and restoring endothelial function to prevent and treat cardiovascular diseases.
Collapse
Affiliation(s)
- Tanja Batinac
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia
- Department of Underwater and Hyperbaric Medicine, Clinical Hospital Center Rijeka, Tome Strižića 3, 51000 Rijeka, Croatia
| | - Lara Batičić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Antea Kršek
- Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Danijel Knežević
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Emanuela Marcucci
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia
- Department of Underwater and Hyperbaric Medicine, Clinical Hospital Center Rijeka, Tome Strižića 3, 51000 Rijeka, Croatia
| | - Vlatka Sotošek
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Božena Ćurko-Cofek
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| |
Collapse
|
4
|
Lu X, Xie Q, Pan X, Zhang R, Zhang X, Peng G, Zhang Y, Shen S, Tong N. Type 2 diabetes mellitus in adults: pathogenesis, prevention and therapy. Signal Transduct Target Ther 2024; 9:262. [PMID: 39353925 PMCID: PMC11445387 DOI: 10.1038/s41392-024-01951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/21/2024] [Accepted: 08/06/2024] [Indexed: 10/03/2024] Open
Abstract
Type 2 diabetes (T2D) is a disease characterized by heterogeneously progressive loss of islet β cell insulin secretion usually occurring after the presence of insulin resistance (IR) and it is one component of metabolic syndrome (MS), and we named it metabolic dysfunction syndrome (MDS). The pathogenesis of T2D is not fully understood, with IR and β cell dysfunction playing central roles in its pathophysiology. Dyslipidemia, hyperglycemia, along with other metabolic disorders, results in IR and/or islet β cell dysfunction via some shared pathways, such as inflammation, endoplasmic reticulum stress (ERS), oxidative stress, and ectopic lipid deposition. There is currently no cure for T2D, but it can be prevented or in remission by lifestyle intervention and/or some medication. If prevention fails, holistic and personalized management should be taken as soon as possible through timely detection and diagnosis, considering target organ protection, comorbidities, treatment goals, and other factors in reality. T2D is often accompanied by other components of MDS, such as preobesity/obesity, metabolic dysfunction associated steatotic liver disease, dyslipidemia, which usually occurs before it, and they are considered as the upstream diseases of T2D. It is more appropriate to call "diabetic complications" as "MDS-related target organ damage (TOD)", since their development involves not only hyperglycemia but also other metabolic disorders of MDS, promoting an up-to-date management philosophy. In this review, we aim to summarize the underlying mechanism, screening, diagnosis, prevention, and treatment of T2D, especially regarding the personalized selection of hypoglycemic agents and holistic management based on the concept of "MDS-related TOD".
Collapse
Affiliation(s)
- Xi Lu
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Qingxing Xie
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohui Pan
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Ruining Zhang
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyi Zhang
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Ge Peng
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Yuwei Zhang
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Sumin Shen
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Nanwei Tong
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|