1
|
Adugna C, Wang K, Du J, Li C. Deoxynivalenol mycotoxin dietary exposure on broiler performance and small intestine health: A comprehensive meta-analysis. Poult Sci 2024; 103:104412. [PMID: 39461271 PMCID: PMC11544052 DOI: 10.1016/j.psj.2024.104412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/27/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024] Open
Abstract
The effect of DON mycotoxins on broiler production performance and the small intestine is a critical factor in the health and well-being of broilers. Several studies have been conducted on this topic and have reported varying results and conclusions. Therefore, it is necessary to conduct systematic reviews and meta-analyses to thoroughly examine and draw unique conclusions. In this meta-analysis, we conducted a systematic review of multiple studies on the effects of DON mycotoxins in broilers. The analysis comprised 26 articles from reputable journals, and 14 parameters were identified based on the predetermined criteria. The forest plot results showed that DON treatment significantly reduced the ADFI and ADWG (SMD-1.50, 95 %CI [-1.68, -1.18]; I2= 51 %; p < 0.00001) and affected FCR (SMD 0.95, 95 %CI [ 0.62, 1.28]; I2= 77; p < 0.00001). In addition, it affects the small intestine structure duodenum (SMD -3.46, 95 %CI [-3.88, -3.05]; I2= 48 %; p < 0.00001), Jejunum (SMD -5.35, 95 %CI [-5.86, -4.83]; I2= 62 %; p < 0.00001), Ileum (SMD -2.6, 95 % CI [-3.12, -2.08]; I2= 82 %; p < 0.00001). Furthermore, DON exposure affects immunoglobulin (SMD -1.92, 95 % CI [ -2.39, -1.46]; I2 = 54 %; p < 0.00001) and antioxidant activities (SMD -2.1, 95 % CI [ -2.45, -1.75]; I2= 47 %; p < 0.00001). The overall effect of DON treatment was statistically significant compared with that of the control group. Furthermore, funnel plot analysis for publication bias did not reveal any significant asymmetry in most included studies. The results of this meta-analysis indicate that DON mycotoxins have a significant impact on both production performance and small intestine health and require strategic intervention.
Collapse
Affiliation(s)
- Chala Adugna
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Ambo University College of Agriculture and Veterinary Science, Ethiopia
| | - Kai Wang
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Du
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunmei Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
An J, Chen Y, Zhou S, Gao Y, Yang C, Zhang J, Ou X, Wang Y, Jiang W, Zhou T, Yuan QS. Identification and characterization of Morganella morganii strain YC12-C3 and Enterococcus faecalis strain YC12-C10 and elucidation of its deoxynivalenol-degrading potential. Mycotoxin Res 2024:10.1007/s12550-024-00568-9. [PMID: 39446283 DOI: 10.1007/s12550-024-00568-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 09/25/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
Deoxynivalenol ( DON) is one of the most harmful mycotoxins in food or feed or Traditional Chinese Medicine. An efficient and applicable method for the detoxification of DON is urgently developed. 1152 strains were isolated from the intestinal contents of crucian. Morganella morganii YC12-C3 and Enterococcus faecalis YC12-C10 were screened with the highest degradation rate of DON via HPLC methods. The optimal degradation condition of YC12-C3 and YC12-C10 is co-cultured 24 h and 36 h at 28 ℃ in LB medium with pH 7 and 1.0% inoculation dosage, respectively. LC-MS/MS and 1H NMR results show that YC12-C10 and YC12-C3 can transform DON to 3-deoxy-6-demethanol-DON, a new metabolite biotransformed from DON, by deoxidization at C3 hydroxy and de-methanal reaction at methanol moiety of C6. In addition, the DON-degradation in agricultural material assay showed that YC12-C10 and YC12-C3 can degrade 150 μg·kg-1 DON in Coix lacryma-jobi, with a degradation rate of 68.89% and 59.94%, respectively. This result shows that YC12-C10 and YC12-C3 have a sound efficiency in removing DON ability in Coix lacryma-jobi, providing a new strain resource and application technique for biological detoxification of DON in food or feed or TCM industry.
Collapse
Affiliation(s)
- Jiuchun An
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Yefei Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Shihua Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Yanping Gao
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Changgui Yang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Jinqiang Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Xiaohong Ou
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Yanhong Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Weike Jiang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Tao Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Qing-Song Yuan
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
- National Resource Center for Chinese Meteria Medica, State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Beijing, 100700, China.
| |
Collapse
|
3
|
Awad WA, Grenier B, Ruhnau D, Hess C, Schatzmayr D, Hess M. Diametral influence of deoxynivalenol (DON) and deepoxy-deoxynivalenol (DOM-1) on the growth of Campylobacter jejuni with consequences on the bacterial transcriptome. BMC Microbiol 2024; 24:306. [PMID: 39152378 PMCID: PMC11328440 DOI: 10.1186/s12866-024-03452-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 08/02/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Deoxynivalenol (DON) is a type B trichothecene mycotoxin that is commonly found in cereals and grains worldwide. The presence of this fungal secondary-metabolite raises public-health concerns at both the agriculture and food industry level. Recently, we have shown that DON has a negative impact on gut integrity, a feature also noticed for Campylobacter (C.) jejuni. We further demonstrated that DON increased the load of C. jejuni in the gut and inner organs. In contrast, feeding the less toxic DON metabolite deepoxy-deoxynivalenol (DOM-1) to broilers reduced the Campylobacter load in vivo. Consequently, it can be hypothesized that DON and DOM-1 have a direct effect on the growth profile of C. jejuni. The aim of the present study was to further resolve the nature of this interaction in vitro by co-incubation and RNA-sequencing. RESULTS The co-incubation of C. jejuni with DON resulted in significantly higher bacterial growth rates from 30 h of incubation onwards. On the contrary, the co-incubation of C. jejuni with DOM-1 reduced the CFU counts, indicating that this DON metabolite might contribute to reduce the burden of C. jejuni in birds, altogether confirming in vivo data. Furthermore, the transcriptomic profile of C. jejuni following incubation with either DON or DOM-1 differed. Co-incubation of C. jejuni with DON significantly increased the expression of multiple genes which are critical for Campylobacter growth, particularly members of the Flagella gene family, frr (ribosome-recycling factor), PBP2 futA-like (Fe3+ periplasmic binding family) and PotA (ATP-binding subunit). Flagella are responsible for motility, biofilm formation and host colonization, which may explain the high Campylobacter load in the gut of DON-fed broiler chickens. On the contrary, DOM-1 downregulated the Flagella gene family and upregulated ribosomal proteins. CONCLUSION The results highlight the adaptive mechanisms involved in the transcriptional response of C. jejuni to DON and its metabolite DOM-1, based on the following effects: (a) ribosomal proteins; (b) flagellar proteins; (c) engagement of different metabolic pathways. The results provide insight into the response of an important intestinal microbial pathogen against DON and lead to a better understanding of the luminal or environmental acclimation mechanisms in chickens.
Collapse
Affiliation(s)
- Wageha A Awad
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, Vienna, A-1210, Austria.
| | - Bertrand Grenier
- DSM Animal Nutrition and Health, Research Center Tulln, Technopark 1, Tulln, Austria
| | - Daniel Ruhnau
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, Vienna, A-1210, Austria
| | - Claudia Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, Vienna, A-1210, Austria
| | - Dian Schatzmayr
- DSM Animal Nutrition and Health, Research Center Tulln, Technopark 1, Tulln, Austria
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, Vienna, A-1210, Austria
| |
Collapse
|
4
|
Fan S, Chen J, Tian H, Yang X, Zhou L, Zhao Q, Qin Y, Zhang J, Tang C. Selenium maintains intestinal epithelial cells to activate M2 macrophages against deoxynivalenol injury. Free Radic Biol Med 2024; 219:215-230. [PMID: 38636715 DOI: 10.1016/j.freeradbiomed.2024.04.228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/20/2024]
Abstract
Selenium (Se) is indispensable in alleviating various types of intestinal injuries. Here, we thoroughly investigated the protective effect of Se on the regulation of the epithelial cell-M2 macrophages pathway in deoxynivalenol (DON)-induced intestinal damage. In the present study, Se has positive impacts on gut health by improving gut barrier function and reducing the levels of serum DON in vivo. Furthermore, our study revealed that Se supplementation increased the abundances of GPX4, p-PI3K, and AKT, decreased the levels of 4-HNE and inhibited ferroptosis. Moreover, when mice were treated with DON and Fer-1(ferroptosis inhibitor), ferroptosis was suppressed and PI3K/AKT pathway was activated. These results indicated that GPX4-PI3K/AKT-ferroptosis was a predominant pathway in DON-induced intestinal inflammation. Interestingly, we discovered that both the number of M2 anti-inflammatory macrophages and the levels of CSF-1 decreased while the pro-inflammatory cytokine IL-6 increased in the intestine and MODE-K cells supernatant. Therefore, Se supplementation activated the CSF-1-M2 macrophages axis, resulting in a decrease in IL-6 expression and an enhancement of the intestinal anti-inflammatory capacity. This study provides novel insights into how intestinal epithelial cells regulate the CSF-1-M2 macrophage pathway, which is essential in maintaining intestinal homeostasis confer to environmental hazardous stimuli.
Collapse
Affiliation(s)
- Shijie Fan
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiaying Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huihui Tian
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xinting Yang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Longzhu Zhou
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
5
|
Miao C, Wu Z, Sun Y, Cao Z. Deoxynivalenol Induces Intestinal Epithelial Barrier Damage through RhoA/ROCK Pathway-Mediated Apoptosis and F-Actin-Associated Tight Junction Disruption. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38595054 DOI: 10.1021/acs.jafc.4c02091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Deoxynivalenol (DON) poses a serious global food safety risk due to its high toxicity and contamination rate. It disrupts the intestinal epithelial barrier, allowing exogenous toxins to enter the circulation and resulting in sepsis and systemic toxicity. In this research, 32 male Kunming mice and Porcine Small Intestinal Epithelial (IPEC-J2) cells were treated with DON at 0-4.8 mg/kg (7 d) and 0-12 μM (24 h), respectively. Histopathological results revealed that DON disrupted the intestinal epithelial barrier, causing apoptosis and tight junction (TJ) injury. Immunofluorescence and protein expression results showed that DON-induced p53-dependent mitochondrial pathway apoptosis and fibrillar actin (F-actin)-associated TJ injury and that the RhoA/ROCK pathway were activated in mice jejunal tissue and IPEC-J2 cells. Pretreatment with RhoA or ROCK inhibitors (Rosin or Y-27632) maintained DON-induced apoptosis and F-actin-associated TJ injury in IPEC-J2 cells. Thus, DON induces damage to the intestinal epithelial barrier through the RhoA/ROCK pathway-mediated apoptosis and F-actin-associated TJ disruption.
Collapse
Affiliation(s)
- Chenjiao Miao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zuoyao Wu
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yafei Sun
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zheng Cao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
6
|
Pierron A, Kleber A, Mayer E, Gerner W. Effect of DON and ZEN and their metabolites DOM-1 and HZEN on B cell proliferation and antibody production. Front Immunol 2024; 15:1338937. [PMID: 38449861 PMCID: PMC10915041 DOI: 10.3389/fimmu.2024.1338937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/24/2024] [Indexed: 03/08/2024] Open
Abstract
Introduction The mycotoxins deoxynivalenol (DON) and zearalenone (ZEN), produced by Fusarium fungi, are frequently found in the cereal-rich diet of pigs and can modulate the immune system. Some enzymes or bacteria present in the digestive tract can de-epoxydize DON to deepoxy-deoxynivalenol (DOM-1) and biotransform ZEN into hydrolyzed ZEN (HZEN). The effects of these metabolites on immune cells, particularly with respect to the vaccine responses, are poorly documented. The aim of this study was to address the impact of DON and ZEN and their respective derivatives, on proliferation, and antibody production of porcine B cells in vitro. Methods Peripheral blood mononuclear cells (PBMCs), isolated from healthy pigs, were stimulated with the Toll-like receptor (TLR) 7/8-agonist Resiquimod (R848) or the TLR/1/2-agonist Pam3Cys-SKKKK in combination with DON [0.1-1.6 µM] or DOM-1 [1.6 µM and 16 µM] and ZEN [2.5-40 µM] or HZEN [40 µM]. Results A strong decrease in B-cell proliferation was observed at DON concentrations equal to or exceeding 0.8 µM and at ZEN concentrations equal to or exceeding 20 µM. Treatment with 1.6 µM DON or 40 µM ZEN led to almost a complete loss of live CD79α+ B cells. Moreover, CD21 expression of proliferating IgG+ and IgM+ B-cell subsets was decreased at DON concentrations equal to and exceeding 0.4 µM and at ZEN concentrations equal to or exceeding 10 µM. ELISpot assays revealed a decrease of IgG-secreting B cells at concentrations of and exceeding 0.4 µM and at ZEN concentrations equal to and exceeding 10 µM. ELISA assays showed a decrease of IgM, IgG, and IgA secretion at concentrations equal to or exceeding 0.4 µM DON. ZEN reduced IgM secretion at 20-40 µM (both R848 and Pam3Cys-SKKKK), IgG secretion at 40 µM (both R848 and Pam3Cys-SKKKK) and IgA secretion at 20-40 µM. Discussion Our in vitro experiments show that while DON and ZEN impair immunoglobulin production and B-cell proliferation, this effect is abrogated by HZEN and DOM-1.
Collapse
Affiliation(s)
- Alix Pierron
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine, Vienna, Austria
| | - Alexandra Kleber
- dsm-firmenich, Animal Nutrition and Health R&D Center, Tulln, Austria
| | - Elisabeth Mayer
- dsm-firmenich, Animal Nutrition and Health R&D Center, Tulln, Austria
| | - Wilhelm Gerner
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
7
|
Zheng Y, Gao B, Wu J, Wang X, Han B, Tao H, Liu J, Wang Z, Wang J. Degradation of deoxynivalenol by a microbial consortia C1 from duck intestine. Mycotoxin Res 2024; 40:147-158. [PMID: 38064000 DOI: 10.1007/s12550-023-00511-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 02/02/2024]
Abstract
Deoxynivalenol (DON), one of the most widespread mycotoxins in food and feed, poses a persistent health threat to humans and farm animals, and is difficult to eliminate. The utilization of the biotransformation mechanism by microorganisms to detoxify DON is a promising strategy. Although individual strains are capable of DON degradation, their isolation and purification are challenging and time-consuming. Recently, the microbial consortia concept has been proposed, owing to their ability to perform more complex tasks and are more tolerant to environmental changes than individual strains or species. In this study, the novel microbial consortia C1 that could efficiently convert DON to de-epoxy DON (DOM-1) was screened from the cecum contents of ducks. After 24 h anaerobic incubation, 100 μg/ml DON was completely degraded by C1. In vitro, C1 can effectively degrade DON in corn steep liquor (CSL) with an efficiency of 49.44% within 14 days. Furthermore, C1 effectively alleviated the DON poisoning in mice. After C1 treatment, the serum DON level decreased by 40.39%, and the reduction in serum total protein and albumin levels were mitigated. Additionally, C1 is effective in protecting the mouse liver against 5 mg/kg DON. These findings suggest that C1 could be a promising DON biological detoxifier and provide novel microbial resources for preventing DON contamination.
Collapse
Affiliation(s)
- Yunduo Zheng
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
| | - Boquan Gao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
| | - Jianwen Wu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xiumin Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
| | - Bing Han
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
| | - Hui Tao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
| | - Jie Liu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
| | - Zhenlong Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China.
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China.
| | - Jinquan Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China.
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
8
|
Sun H, He Z, Xiong D, Long M. Mechanisms by which microbial enzymes degrade four mycotoxins and application in animal production: A review. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:256-274. [PMID: 38033608 PMCID: PMC10685049 DOI: 10.1016/j.aninu.2023.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 12/02/2023]
Abstract
Mycotoxins are toxic compounds that pose a serious threat to animal health and food safety. Therefore, there is an urgent need for safe and efficient methods of detoxifying mycotoxins. As biotechnology has continued to develop, methods involving biological enzymes have shown great promise. Biological enzymatic methods, which can fundamentally destroy the structures of mycotoxins and produce degradation products whose toxicity is greatly reduced, are generally more specific, efficient, and environmentally friendly. Mycotoxin-degrading enzymes can thus facilitate the safe and effective detoxification of mycotoxins which gives them a huge advantage over other methods. This article summarizes the newly discovered degrading enzymes that can degrade four common mycotoxins (aflatoxins, zearalenone, deoxynivalenol, and ochratoxin A) in the past five years, and reveals the degradation mechanism of degrading enzymes on four mycotoxins, as well as their positive effects on animal production. This review will provide a theoretical basis for the safe treatment of mycotoxins by using biological enzyme technology.
Collapse
Affiliation(s)
- Huiying Sun
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ziqi He
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Dongwei Xiong
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Miao Long
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| |
Collapse
|
9
|
Schrenk D, Bignami M, Bodin L, del Mazo JKCJ, Grasl‐Kraupp B, Hogstrand C, Leblanc J, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Dänicke S, Nebbia CS, Oswald IP, Rovesti E, Steinkellner H, Hoogenboom L(R. Assessment of information as regards the toxicity of deoxynivalenol for horses and poultry. EFSA J 2023; 21:e07806. [PMID: 36751491 PMCID: PMC9892893 DOI: 10.2903/j.efsa.2023.7806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In 2017, the EFSA Panel on Contaminants in the Food Chain (CONTAM) adopted a Scientific Opinion on the risks for animal health related to the presence of deoxynivalenol (DON) and its acetylated and modified forms in food and feed. No observed adverse effect levels (NOAELs) and lowest observed adverse effect levels (LOAELs) were derived for different animal species. For horses, an NOAEL of 36 mg DON/kg feed was established, the highest concentration tested and not showing adverse effects. For poultry, an NOAEL of 5 mg DON/kg feed for broiler chickens and laying hens, and an NOAEL of 7 mg DON/kg feed for ducks and turkeys was derived. The European Commission requested EFSA to review the information regarding the toxicity of DON for horses and poultry and to revise, if necessary, the established reference points (RPs). Adverse effect levels of 1.9 and 1.7 mg DON/kg feed for, respectively, broiler chickens and turkeys were derived from reassessment of existing studies and newly available literature, showing that DON causes effects on the intestines, in particular the jejunum, with a decreased villus height but also histological damage. An RP for adverse animal health effects of 0.6 mg/kg feed for broiler chickens and turkeys, respectively, was established. For horses, an adverse effect level of 5.6 mg DON/kg feed was established from studies showing reduced feed intake, with an RP for adverse animal health effects of 3.5 mg/kg feed. For ducks and laying hens, RPs remain unchanged. Based on mean and P95 (UB) exposure estimates performed in the previous Opinion, the risk of adverse health effects of feeds containing DON was considered a potential concern for broiler chickens and turkeys. For horses, the risk for adverse health effects from feed containing DON is low.
Collapse
|
10
|
Awad WA, Ruhnau D, Gavrău A, Dublecz K, Hess M. Comparing effects of natural betaine and betaine hydrochloride on gut physiology in broiler chickens. Poult Sci 2022; 101:102173. [PMID: 36228528 PMCID: PMC9573929 DOI: 10.1016/j.psj.2022.102173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
Betaine is a well-known component of poultry diets with various effects on nutritional physiology. For example, increased water retention due to the osmolytic effect of betaine increases the volume of the cell, thereby accelerating the anabolic activity, integrity of cell membrane, and overall performance of the bird. Betaine is a multifunctional component (trimethyl derivative) acting as the most efficient methyl group donor and as an organic osmolyte, which can directly influence the gastrointestinal tract integrity, functionality, and health. So far, nothing is known about the effect of betaine on the intestinal barrier in chickens. In addition, little is known about comparing natural betaine with its synthetic form. Therefore, an animal study was conducted to ascertain the effects of betaine supplementation (natural and synthetic) on performance and intestinal physiological responses of broilers. One hundred and five 1-day-old broiler chicks were randomly assigned into 3 groups with 35 birds each: control, natural betaine (1 kg active natural (n)-betaine/ton of feed) and synthetic (syn)-betaine‐HCL (1 kg active betaine /ton of feed). Histological assessment showed lower jejunal crypt depth and villi height/crypt depth ratio in syn-betaine-HCL group compared with natural n-betaine fed birds. Furthermore, it was found that syn-betaine-HCL negatively affects the integrity of the intestine by increasing the intestinal paracellular permeability in both jejunum and cecum as evidenced by a higher mannitol flux. Additionally, syn-betaine-HCl significantly upregulated the IFN-γ mRNA expression at certain time points, which could promote intestinal permeability, as it plays an important role in intestinal barrier dysfunction. Body weight (BW) and body weight gain (BWG) did not differ (P > 0.05) between the control birds and birds supplemented with syn-betaine‐HCL. However, the BW and BWG were significantly (P < 0.05) improved by the dietary inclusion of n-betaine compared with other treatments. Altogether, the dietary inclusion of n-betaine had a positive effect on performance and did not negatively affect gut paracellular permeability. Furthermore, our results show that syn-betaine-HCl induces changes in the intestine, indicating an alteration of the intestinal histology and permeability. Thus, natural or synthetic betaine has different effects, which needs to be considered when using them as a feed supplement.
Collapse
Affiliation(s)
- Wageha A Awad
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria.
| | - Daniel Ruhnau
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Ana Gavrău
- Agrana Sales & Marketing GmbH, Vienna, Austria
| | - Károly Dublecz
- Institute of Physiology and Nutrition, Georgikon Campus, Hungarian University of Agriculture and Life Science, Keszthely, Hungary
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|