1
|
Chienwichai K, Phirom S, Wuttiputhanun T, Leelahavanichkul A, Townamchai N, Avihingsanon Y, Udomkarnjananun S. A systematic review and meta-analysis of factors contributing to post-kidney transplant anemia and the effect of erythropoietin-stimulating agents. Syst Rev 2024; 13:278. [PMID: 39533400 PMCID: PMC11556001 DOI: 10.1186/s13643-024-02709-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The effects of various risk and associated factors on post-kidney transplant anemia (PTA) have not been fully compared and estimated. This meta-analysis aims to elucidate factors contributing to PTA and determine the influence of erythropoietin-stimulating agents (ESAs) on renal outcomes, thus offering potential pathways for enhanced management strategies post-transplant. METHODS A systematic review was conducted in electronical database. Studies reporting on risk factors (with cause-effect relationships) and associated factors (without definite cause-effect relationships) of PTA, and the effects of ESAs on post-kidney transplant outcomes, were included. Pooled odds ratios (ORs) and weighted mean differences (WMDs) were analyzed using random-effects models. RESULTS This systematic review encompassed 38,233 patients from 85 studies. Factors increased PTA risk included African American, older donor age, human antigen leukocyte mismatches, and low pre-transplant hemoglobin levels. Poor allograft function, high interleukine-6, Cytomegalovirus, delayed graft function, allograft rejections, immunosuppressive medications, and renin-angiotensin system blockades were associated with PTA. Native autosomal dominant polycystic kidney disease was a protective factor against PTA. Administration of ESAs with the aim of normalizing hemoglobin levels in patients with chronic allograft dysfunction slowed the decline in eGFR and reduce the risk of death, with a pooled OR of 0.36 (95% CI: 0.14 to 0.89; p = 0.040). CONCLUSIONS The risks and associated factors for PTA have been elucidated, underscoring the need for individualized treatment approaches. Late ESA therapy, aimed at hemoglobin normalization, suggests a renal-protective effect and reduced mortality, which should be considered in the management of PTA. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42024545330.
Collapse
Affiliation(s)
| | - Supitchaya Phirom
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Thunyatorn Wuttiputhanun
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
- Excellence Center for Organ Transplantation (ECOT), King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Immunology Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Center of Excellence On Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Natavudh Townamchai
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
- Excellence Center for Organ Transplantation (ECOT), King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Renal Immunology and Renal Transplantation, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yingyos Avihingsanon
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
- Excellence Center for Organ Transplantation (ECOT), King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Renal Immunology and Renal Transplantation, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Suwasin Udomkarnjananun
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand.
- Excellence Center for Organ Transplantation (ECOT), King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand.
- Department of Microbiology, Immunology Unit, Chulalongkorn University, Bangkok, Thailand.
- Department of Microbiology, Center of Excellence On Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Center of Excellence in Renal Immunology and Renal Transplantation, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
2
|
Nishiwaki H, Abe Y, Suzuki T, Hasegawa T, Levack WM, Noma H, Ota E. Erythropoiesis-stimulating agents for preventing acute kidney injury. Cochrane Database Syst Rev 2024; 9:CD014820. [PMID: 39301879 PMCID: PMC11413981 DOI: 10.1002/14651858.cd014820.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
BACKGROUND Acute kidney injury (AKI) is characterised by a rapid decline in kidney function and is caused by a variety of clinical conditions. The incidence of AKI in hospitalised adults is high. In animal studies, erythropoiesis-stimulating agents (ESA) have been shown to act as a novel nephroprotective agent against ischaemic, toxic, and septic AKI by inhibiting apoptosis, promoting cell proliferation, and inducing antioxidant and anti-inflammatory responses. As a result, ESAs may reduce the incidence of AKI in humans. Randomised controlled trials (RCTs) have been conducted on the efficacy and safety of ESAs, but no prior systematic reviews exist that comprehensively examine ESAs with respect to AKI prevention, although the effectiveness of these agents has been examined for a range of other diseases and clinical situations. OBJECTIVES This review aimed to look at the benefits and harms of ESAs for preventing AKI in the context of any health condition. SEARCH METHODS We searched the Cochrane Kidney and Transplant Register of Studies up to 30 August 2024 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Registry Platform (ICTRP) Search Portal and ClinicalTrials.gov. SELECTION CRITERIA We included RCTs and quasi-RCTs (in which allocation to treatment was based on alternate assignment or order of medical records, admission dates, date of birth or other non-random methods) that compared ESAs with placebo or standard care in people at risk of AKI. DATA COLLECTION AND ANALYSIS Three authors independently extracted data and assessed the risk of bias for included studies. We used random-effects model meta-analyses to perform quantitative synthesis of the data. We used the I2 statistic to measure heterogeneity amongst the studies in each analysis. We indicated summary estimates as a risk ratio (RR) for dichotomous outcomes and mean difference (MD) for continuous outcomes with their 95% confidence interval (CI). We assessed the certainty of the evidence for each main outcome using the Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) approach. MAIN RESULTS A total of 20 studies (36 records, 5348 participants) were included. The number of participants ranged from 10 to 1302, and most studies were carried out in single centres (13/20). All the included studies compared ESAs to placebo or usual care. Many of the studies were judged to have unclear or high risk of reporting bias, but were at low risk for other types of bias. ESAs, when compared to control interventions, probably makes little or no difference to the risk of AKI (18 studies, 5314 participants: RR 0.97, 95% CI 0.85 to 1.10; I² = 19%; moderate-certainty evidence), or death (18 studies, 5263 participants: RR 0.92, 95% CI 0.80 to 1.06; I² = 0%; moderate-certainty evidence), and may make little or no difference to the initiation of dialysis (14 studies, 2059 participants: RR 1.16, 95% CI 0.90 to 1.51; I² = 0%; low-certainty evidence). Even with standardised measurement of AKI, the studies showed no difference in results between different routes of administration (subcutaneous or intravenous), background diseases (cardiac surgeries, children or neonates, other adults at risk of AKI), or duration or dose of ESA. ESAs may make little or no difference to the risk of thrombosis when compared to control interventions (8 studies, 3484 participants: RR 0.92, 95% CI 0.68 to 1.24; I² = 0%). Similarly, ESAs may have little or no effect on kidney function measures and adverse events such as myocardial infarction, stroke or hypertension. However, this may be due to the low incidence of these adverse events. AUTHORS' CONCLUSIONS In patients at risk of AKI, ESAs probably do not reduce the risk of AKI or death and may not reduce the need for starting dialysis. Similarly, there may be no differences in kidney function measures and adverse events such as thrombosis, myocardial infarction, stroke or hypertension. There are currently two ongoing studies that have either not been completed or published, and it is unclear whether they will change the results. Caution should be exercised when using ESAs to prevent AKI.
Collapse
Affiliation(s)
- Hiroki Nishiwaki
- Division of Nephrology, Department of Internal Medicine, Showa University Fujigaoka Hospital, Yokohama, Japan
- Institute of Clinical Epidemiology (iCE), Showa University, Tokyo, Japan
- Showa University Research Administration Center (SURAC), Showa University, Tokyo, Japan
| | - Yoshifusa Abe
- Children's Medical Center, Showa University Koto Toyosu Hospital, Tokyo, Japan
| | - Taihei Suzuki
- Department of Nephrology, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Takeshi Hasegawa
- Institute of Clinical Epidemiology (iCE), Showa University, Tokyo, Japan
- Showa University Research Administration Center (SURAC), Showa University, Tokyo, Japan
- Department of Nephrology, Showa University Graduate School of Medicine, Tokyo, Japan
- Department of Hygiene, Public Health, and Preventive Medicine, Graduate School of Medicine, Showa University, Tokyo, Japan
| | - William Mm Levack
- Rehabilitation Teaching and Research Unit, Department of Medicine, University of Otago, Wellington, New Zealand
| | - Hisashi Noma
- Department of Interdisciplinary Statistical Mathematics, The Institute of Statistical Mathematics, Tokyo, Japan
| | - Erika Ota
- Global Health Nursing, Graduate School of Nursing Science, St. Luke's International University, Tokyo, Japan
- Tokyo Foundation for Policy Research, Tokyo, Japan
| |
Collapse
|
3
|
Chung EY, Palmer SC, Saglimbene VM, Craig JC, Tonelli M, Strippoli GF. Erythropoiesis-stimulating agents for anaemia in adults with chronic kidney disease: a network meta-analysis. Cochrane Database Syst Rev 2023; 2:CD010590. [PMID: 36791280 PMCID: PMC9924302 DOI: 10.1002/14651858.cd010590.pub3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
BACKGROUND Erythropoiesis-stimulating agents (ESAs) are commonly used to treat anaemia in people with chronic kidney disease (CKD). However, their use has been associated with cardiovascular events. This is an update of a Cochrane review first published in 2014. OBJECTIVES To compare the efficacy and safety of ESAs (epoetin alfa, epoetin beta, darbepoetin alfa, methoxy polyethylene glycol-epoetin beta, and biosimilar ESAs against each other, placebo, or no treatment) to treat anaemia in adults with CKD. SEARCH METHODS In this update, we searched the Cochrane Kidney and Transplant Register of Studies up to 29 April 2022 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Register (ICTRP) Search Portal and ClinicalTrials.gov. SELECTION CRITERIA Randomised controlled trials (RCTs) that included a comparison of an ESA (epoetin alfa, epoetin beta, darbepoetin alfa, methoxy polyethylene glycol-epoetin beta, a biosimilar epoetin or a biosimilar darbepoetin alfa) with another ESA, placebo or no treatment in adults with CKD were considered for inclusion. DATA COLLECTION AND ANALYSIS Two independent authors screened the search results and extracted data. Data synthesis was performed using random-effects pairwise meta-analysis (expressed as odds ratios (OR) and their 95% confidence intervals (CI)) and network meta-analysis. We assessed for heterogeneity and inconsistency within meta-analyses using standard techniques and planned subgroup and meta-regression to explore sources of heterogeneity or inconsistency. We assessed certainty in treatment estimates for the primary outcomes (preventing blood transfusions and death (any cause)) using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. MAIN RESULTS Sixty-two new studies (9237 participants) were included in this update, so the review now includes 117 studies with 25,237 participants. Most studies were at high or unclear risk of bias in most methodological domains. Overall, results remain similar in this update compared to our previous review in 2014. For preventing blood transfusion, epoetin alfa (OR 0.28, 95% CI 0.13 to 0.61; low certainty evidence) and epoetin beta (OR 0.19, 95% CI 0.08 to 0.47; low certainty evidence) may be superior to placebo, and darbepoetin alfa was probably superior to placebo (OR 0.27, 95% CI 0.11 to 0.67; moderate certainty evidence). Methoxy polyethylene glycol-epoetin beta (OR 0.33, 95% CI 0.11 to 1.02; very low certainty evidence), a biosimilar epoetin (OR 0.34, 95% CI 0.11 to 1.03; very low certainty evidence) and a biosimilar darbepoetin alfa (OR 0.37, 95% CI 0.07 to 1.91; very low certainty evidence) had uncertain effects on preventing blood transfusion compared to placebo. The comparative effects of ESAs compared with another ESA on preventing blood transfusions were uncertain, in low to very low certainty evidence. Effects on death (any cause) were uncertain for epoetin alfa (OR 0.79, 95% CI 0.51 to 1.22; low certainty evidence), epoetin beta (OR 0.69, 95% CI 0.40 to 1.20; low certainty evidence), methoxy polyethylene glycol-epoetin beta (OR 1.07, 95% CI 0.67 to 1.71; very low certainty evidence), a biosimilar epoetin (OR 0.80, 95% CI 0.47 to 1.36; low certainty evidence) and a biosimilar darbepoetin alfa (OR 1.63, 95% CI 0.51 to 5.23; very low certainty evidence) compared to placebo. There was probably no difference between darbepoetin alfa and placebo on the odds of death (any cause) (OR 0.99, 95% CI 0.81 to 1.21; moderate certainty evidence). The comparative effects of ESAs compared with another ESA on death (any cause) were uncertain in low to very low certainty evidence. Epoetin beta probably increased the odds of hypertension when compared to placebo (OR 2.17, 95% CI 1.17 to 4.00; moderate certainty evidence). Compared to placebo, epoetin alfa (OR 2.10, 95% CI 1.22 to 3.59; very low certainty evidence), darbepoetin alfa (OR 1.88, 95% CI 1.12 to 3.14; low certainty evidence) and methoxy polyethylene glycol-epoetin beta (OR 1.98, 95% CI 1.05 to 3.74; low certainty evidence) may increase the odds of hypertension, but a biosimilar epoetin (OR 1.88, 95% CI 0.96 to 3.67; low certainty evidence) and biosimilar darbepoetin alfa (OR 1.98, 95% CI 0.84 to 4.66; low certainty evidence) had uncertain effects on hypertension. The comparative effects of all ESAs compared with another ESA, placebo or no treatment on cardiovascular death, myocardial infarction, stroke, vascular access thrombosis, kidney failure, and breathlessness were uncertain. Network analysis for fatigue was not possible due to sparse data. AUTHORS' CONCLUSIONS: The comparative effects of different ESAs on blood transfusions, death (any cause and cardiovascular), major cardiovascular events, myocardial infarction, stroke, vascular access thrombosis, kidney failure, fatigue and breathlessness were uncertain.
Collapse
Affiliation(s)
- Edmund Ym Chung
- Cochrane Kidney and Transplant, Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| | - Suetonia C Palmer
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Valeria M Saglimbene
- Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Jonathan C Craig
- Cochrane Kidney and Transplant, Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Marcello Tonelli
- Department of Medicine, University of Calgary, Calgary, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Giovanni Fm Strippoli
- Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
- Cochrane Kidney and Transplant, Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| |
Collapse
|
4
|
El-Maadawy WH, Hassan M, Hafiz E, Badawy MH, Eldahshan S, AbuSeada A, El-Shazly MAM, Ghareeb MA. Co-treatment with Esculin and erythropoietin protects against renal ischemia-reperfusion injury via P2X7 receptor inhibition and PI3K/Akt activation. Sci Rep 2022; 12:6239. [PMID: 35422072 PMCID: PMC9010483 DOI: 10.1038/s41598-022-09970-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/30/2022] [Indexed: 12/17/2022] Open
Abstract
Renal ischemia/reperfusion (RI/R) is a critical clinical outcome with slightly reported improvement in mortality and morbidity. Effective therapies are still crucially required. Accordingly, the therapeutic effects of esculin (ESC, LCESI-MS/MS-isolated compound from Vachellia farnesiana flowers extract, with reported P2X7 receptor inhibitor activity) alone and in combination with erythropoietin (EPO) were investigated against RI/R injury and the possible underlying mechanisms were delineated. ESC and EPO were administered for 7 days and 30 min prior to RI, respectively. Twenty-four hour following reperfusion, blood and kidney samples were collected. Results revealed that pretreatment with either ESC or EPO reduced serum nephrotoxicity indices, renal oxidative stress, inflammatory, and apoptosis markers. They also ameliorated the renal histopathological injury on both endothelial and tubular epithelial levels. Notably, ESC markedly inhibited P2X7 receptors and NLRP3 inflammasome signaling (downregulated NLRP3 and Caspase-1 gene expressions), whereas EPO significantly upregulated PI3K and Akt gene expressions, also p-PI3K and p-Akt levels in renal tissues. ESC, for the first time, demonstrated effective protection against RI/R-injury and its combination with EPO exerted maximal renoprotection when compared to each monotherapy, thereby representing an effective therapeutic approach via inhibiting oxidative stress, inflammation, renal tubular and endothelial injury, apoptosis, and P2X7 receptors expression, and activating PI3K/Akt pathway.
Collapse
Affiliation(s)
- Walaa H El-Maadawy
- Pharmacology Department, Theodor Bilharz Research Institute, Kornaish El Nile, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza, 12411, Egypt.
| | - Marwa Hassan
- Immunology Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza, 12411, Egypt
| | - Ehab Hafiz
- Electron Microscopy Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza, 12411, Egypt
| | - Mohamed H Badawy
- Urology Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza, 12411, Egypt
| | - Samir Eldahshan
- Urology Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza, 12411, Egypt
| | - AbdulRahman AbuSeada
- Anesthesia Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza, 12411, Egypt
| | - Maha A M El-Shazly
- Medicinal Chemistry Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza, 12411, Egypt
| | - Mosad A Ghareeb
- Medicinal Chemistry Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza, 12411, Egypt
| |
Collapse
|
5
|
Alshamsi I. Extended Literature Review of the role of erythropoietin stimulating agents (ESA) use in the management of post renal transplant anaemia. TRANSPLANTATION REPORTS 2022. [DOI: 10.1016/j.tpr.2022.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
6
|
Cui R, Li F, Shao J, Wang Y, Yue C, Zheng Y, Li X. Postoperative anemia is a risk factor for acute kidney injury after open aorta and vena cava surgeries. PLoS One 2020; 15:e0240243. [PMID: 33048948 PMCID: PMC7553320 DOI: 10.1371/journal.pone.0240243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Open aorta and vena cava surgeries are usually associated with substantial blood loss which may result in postoperative acute kidney injury (AKI). The present study is designed to investigate the prevalence, outcome and risk factors of postoperative AKI associated with open aorta and vena cava surgeries, with a focus on the role of anemia in these conditions. A retrospective review of medical records of Peking Union Medical College Hospital was conducted. Patients who underwent open aorta and vena cava surgeries during January 1, 2010 and June 30, 2014 were included in this study. The primary analysis was between patients underwent open aorta and vena cava surgeryies, with or without postoperative AKI. Multivariable logistic regression models were used to determine risk factors of postoperative AKI. The study included 79 patients (63.3% male) with a mean age of 52.5±17.3 years (range, 17–81 years). Postoperative AKI occurred in 23/79 (29.1%) of the patients. Anemia was present in 11/79 (16%) at baseline, and increased to 45/79 (52%) postoperatively. After adjustment for various risk factors, postoperative anemia (OR, 5.202; 95% CI 1.403–19.285) was independently associated with postoperative AKI. AKI is a common complication in patients who undergo open aorta and vena cava surgeries, and postoperative anemia was the most relevant predictive factor of AKI. Strategies to minimize bleeding and anemia for all patients may be advisable. Further studies are needed to assess the impact of AKI on long term outcome and to examine preventive strategies to address potentially modifiable risk factors.
Collapse
Affiliation(s)
- Rui Cui
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Department of Nephrology, Beijing Haidian Hospital and Beijing Haidian section of Peking University Third Hospital, Beijing, China
| | - Fangda Li
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiang Shao
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuzhu Wang
- Department of Nephrology, Beijing Haidian Hospital and Beijing Haidian section of Peking University Third Hospital, Beijing, China
| | - Cai Yue
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- * E-mail: (CY); (YZ)
| | - Yuehong Zheng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- * E-mail: (CY); (YZ)
| | - Xuemei Li
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Fiorentino M, Castellano G, Kellum JA. Differences in acute kidney injury ascertainment for clinical and preclinical studies. Nephrol Dial Transplant 2018; 32:1789-1805. [PMID: 28371878 DOI: 10.1093/ndt/gfx002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 01/03/2017] [Indexed: 12/25/2022] Open
Abstract
Background Acute kidney injury (AKI) is a common clinical condition directly associated with adverse outcomes. Several AKI biomarkers have been discovered, but their use in clinical and preclinical studies has not been well examined. This study aims to investigate the differences between clinical and preclinical studies on AKI biomarkers. Methods We performed a systematic review of clinical and preclinical interventional studies that considered AKI biomarkers in enrollment criteria and/or outcome assessment and described the main differences according to their setting, the inclusion of biomarkers in the definition of AKI and the use of biomarkers as primary or secondary end points. Results In the 151 included studies (76 clinical, 75 preclinical), clinical studies have prevalently focused on cardiac surgery (38.1%) and contrast-associated AKI (17.1%), while the majority of preclinical studies have focused on ether ischemia-reperfusion injury or drug-induced AKI (42.6% each). A total of 57.8% of clinical studies defined AKI using the standard criteria and only 19.7% of these studies used AKI biomarkers in the definition of renal injury. Conversely, the majority of preclinical studies defined AKI according to the increase in serum creatinine and blood urea nitrogen, and 32% included biomarkers in that definition. The percentage of both clinical and preclinical studies with biomarkers as a primary end point has not significantly increased in the last 10 years; however, preclinical studies are more likely to use AKI biomarkers as a primary end point compared with clinical studies [odds ratio 2.31 (95% confidence interval 1.17-4.59); P = 0.016]. Conclusion Differences between clinical and preclinical studies are evident and may affect the translation of preclinical findings in the clinical setting.
Collapse
Affiliation(s)
- Marco Fiorentino
- Department of Critical Care Medicine, Center for Critical Care Nephrology, CRISMA (Clinical Research, Investigation, and Systems Modeling of Acute Illness) Center, University of Pittsburgh School of Medicine, Pittsburgh, USA.,Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari, Bari, Italy
| | - Giuseppe Castellano
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari, Bari, Italy
| | - John A Kellum
- Department of Critical Care Medicine, Center for Critical Care Nephrology, CRISMA (Clinical Research, Investigation, and Systems Modeling of Acute Illness) Center, University of Pittsburgh School of Medicine, Pittsburgh, USA
| |
Collapse
|
8
|
Elliott S, Tomita D, Endre Z. Erythropoiesis stimulating agents and reno-protection: a meta-analysis. BMC Nephrol 2017; 18:14. [PMID: 28077085 PMCID: PMC5225567 DOI: 10.1186/s12882-017-0438-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 01/04/2017] [Indexed: 02/08/2023] Open
Abstract
Background Erythropoiesis stimulating agents (ESAs) were proposed to enhance survival of renal tissues through direct effects via activation of EPO receptors on renal cells resulting in reduced cell apoptosis, or indirect effects via increased oxygen delivery due to increased numbers of Hb containing red blood cells. Thus through several mechanisms there may be benefit of ESA administration on kidney disease progression and kidney function in renal patients. However conflicting ESA reno-protection outcomes have been reported in both pre-clinical animal studies and human clinical trials. To better understand the potential beneficial effects of ESAs on renal-patients, meta-analyses of clinical trials is needed. Methods Literature searches and manual searches of references lists from published studies were performed. Controlled trials that included ESA treatment on renal patients with relevant renal endpoints were selected. Results Thirty two ESA controlled trials in 3 categories of intervention were identified. These included 7 trials with patients who had a high likelihood of AKI, 7 trials with kidney transplant patients and 18 anemia correction trials with chronic kidney disease (predialysis) patients. There was a trend toward improvement in renal outcomes in the ESA treated arm of AKI and transplant trials, but none reached statistical significance. In 12 of the anemia correction trials, meta-analyses showed no difference in renal outcomes with the anemia correction but both arms received some ESA treatment making it difficult to assess effects of ESA treatment alone. However, in 6 trials the low Hb arm received no ESAs and meta-analysis also showed no difference in renal outcomes, consistent with no benefit of ESA/ Hb increase. Conclusions Most ESA trials were small with modest event rates. While trends tended to favor the ESA treatment arm, these meta-analyses showed no reduction of incidence of AKI, no reduction in DGF or improvement in 1-year graft survival after renal transplantation and no significant delay in progression of CKD. These results do not support significant clinical reno-protection by ESAs.
Collapse
Affiliation(s)
- Steve Elliott
- Amgen Inc, One Amgen Center, Newbury Park, Thousand Oaks, CA, 91320, USA.
| | - Dianne Tomita
- Amgen Inc, One Amgen Center, Newbury Park, Thousand Oaks, CA, 91320, USA
| | - Zoltan Endre
- Department of Nephrology, Prince of Wales Hospital and Clinical School, University of New South Wales, Sydney, NSW, 2031, Australia
| |
Collapse
|
9
|
de Caestecker M, Humphreys BD, Liu KD, Fissell WH, Cerda J, Nolin TD, Askenazi D, Mour G, Harrell FE, Pullen N, Okusa MD, Faubel S. Bridging Translation by Improving Preclinical Study Design in AKI. J Am Soc Nephrol 2015; 26:2905-16. [PMID: 26538634 DOI: 10.1681/asn.2015070832] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite extensive research, no therapeutic interventions have been shown to prevent AKI, accelerate recovery of AKI, or reduce progression of AKI to CKD in patients. This failure in translation has led investigators to speculate that the animal models being used do not predict therapeutic responses in humans. Although this issue continues to be debated, an important concern that has not been addressed is whether improvements in preclinical study design can be identified that might also increase the likelihood of translating basic AKI research into clinical practice using the current models. In this review, we have taken an evidence-based approach to identify common weaknesses in study design and reporting in preclinical AKI research that may contribute to the poor translatability of the findings. We focused on use of N-acetylcysteine or sodium bicarbonate for the prevention of contrast-induced AKI and use of erythropoietin for the prevention of AKI, two therapeutic approaches that have been extensively studied in clinical trials. On the basis of our findings, we identified five areas for improvement in preclinical study design and reporting. These suggested and preliminary guidelines may help improve the quality of preclinical research for AKI drug development.
Collapse
Affiliation(s)
- Mark de Caestecker
- Division of Nephology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - Ben D Humphreys
- Division of Renal Diseases, Washington University School of Medicine, St. Louis, Missouri
| | - Kathleen D Liu
- Division of Nephrology, Department of Medicine, University of California, San Francisco, California
| | - William H Fissell
- Division of Nephology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jorge Cerda
- Division of Nephrology and Hypertension, Albany Medical College, Albany, New York
| | - Thomas D Nolin
- Renal-Electrolyte Division, Department of Medicine and Center for Critical Care Nephrology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - David Askenazi
- Department of Pediatrics, Division of Nephrology, University of Alabama, Birmingham, Alabama
| | - Girish Mour
- Renal-Electrolyte Division, Department of Medicine and Center for Critical Care Nephrology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Frank E Harrell
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Nick Pullen
- Pfizer Global Research and Development, Inflammation & Immunology Research Unit, Cambridge, Massachusetts
| | - Mark D Okusa
- Division of Nephrology, Department of Medicine, University of California, San Francisco, California; Division of Nephrology, Department of Medicine, University of California, San Francisco, California
| | - Sarah Faubel
- Renal Division, University of Colorado Denver and Denver Veterans Affairs Medical Center, Aurora, Colorado
| | | |
Collapse
|