1
|
Schwehr BJ, Hartnell D, Ellison G, Hindes MT, Milford B, Dallerba E, Hickey SM, Pfeffer FM, Brooks DA, Massi M, Hackett MJ. Fluorescent probes for neuroscience: imaging ex vivo brain tissue sections. Analyst 2024; 149:4536-4552. [PMID: 39171617 DOI: 10.1039/d4an00663a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Neurobiological research relies heavily on imaging techniques, such as fluorescence microscopy, to understand neurological function and disease processes. However, the number and variety of fluorescent probes available for ex vivo tissue section imaging limits the advance of research in the field. In this review, we outline the current range of fluorescent probes that are available to researchers for ex vivo brain section imaging, including their physical and chemical characteristics, staining targets, and examples of discoveries for which they have been used. This review is organised into sections based on the biological target of the probe, including subcellular organelles, chemical species (e.g., labile metal ions), and pathological phenomenon (e.g., degenerating cells, aggregated proteins). We hope to inspire further development in this field, given the considerable benefits to be gained by the greater availability of suitably sensitive probes that have specificity for important brain tissue targets.
Collapse
Affiliation(s)
- Bradley J Schwehr
- Curtin University, School of Molecular and Life Sciences, Perth, WA, Australia 6845.
| | - David Hartnell
- Curtin University, School of Molecular and Life Sciences, Perth, WA, Australia 6845.
- Curtin University, Curtin Health Innovation Research Institute, Perth, WA, Australia 6102
| | - Gaewyn Ellison
- Curtin University, School of Molecular and Life Sciences, Perth, WA, Australia 6845.
- Curtin University, Curtin Health Innovation Research Institute, Perth, WA, Australia 6102
| | - Madison T Hindes
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000
| | - Breah Milford
- Curtin University, School of Molecular and Life Sciences, Perth, WA, Australia 6845.
| | - Elena Dallerba
- Curtin University, School of Molecular and Life Sciences, Perth, WA, Australia 6845.
| | - Shane M Hickey
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000
| | - Frederick M Pfeffer
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Doug A Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000
| | - Massimiliano Massi
- Curtin University, School of Molecular and Life Sciences, Perth, WA, Australia 6845.
| | - Mark J Hackett
- Curtin University, School of Molecular and Life Sciences, Perth, WA, Australia 6845.
- Curtin University, Curtin Health Innovation Research Institute, Perth, WA, Australia 6102
| |
Collapse
|
2
|
Zott B, Nästle L, Grienberger C, Unger F, Knauer MM, Wolf C, Keskin-Dargin A, Feuerbach A, Busche MA, Skerra A, Konnerth A. β-amyloid monomer scavenging by an anticalin protein prevents neuronal hyperactivity in mouse models of Alzheimer's Disease. Nat Commun 2024; 15:5819. [PMID: 38987287 PMCID: PMC11237084 DOI: 10.1038/s41467-024-50153-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
Hyperactivity mediated by synaptotoxic β-amyloid (Aβ) oligomers is one of the earliest forms of neuronal dysfunction in Alzheimer's disease. In the search for a preventive treatment strategy, we tested the effect of scavenging Aβ peptides before Aβ plaque formation. Using in vivo two-photon calcium imaging and SF-iGluSnFR-based glutamate imaging in hippocampal slices, we demonstrate that an Aβ binding anticalin protein (Aβ-anticalin) can suppress early neuronal hyperactivity and synaptic glutamate accumulation in the APP23xPS45 mouse model of β-amyloidosis. Our results suggest that the sole targeting of Aβ monomers is sufficient for the hyperactivity-suppressing effect of the Aβ-anticalin at early disease stages. Biochemical and neurophysiological analyses indicate that the Aβ-anticalin-dependent depletion of naturally secreted Aβ monomers interrupts their aggregation to neurotoxic oligomers and, thereby, reverses early neuronal and synaptic dysfunctions. Thus, our results suggest that Aβ monomer scavenging plays a key role in the repair of neuronal function at early stages of AD.
Collapse
Affiliation(s)
- Benedikt Zott
- Institute of Neuroscience, Technical University of Munich, Munich, Germany.
- Department of Neuroradiology, MRI hospital of the Technical University of Munich, Munich, Germany.
- TUM Institute for Advanced Study, Garching, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Lea Nästle
- Chair of Biological Chemistry, Technical University of Munich, Freising, Germany
| | - Christine Grienberger
- Institute of Neuroscience, Technical University of Munich, Munich, Germany
- Department of Biology and Volen National Center of Complex Systems, Brandeis University, Waltham, MA, USA
| | - Felix Unger
- Institute of Neuroscience, Technical University of Munich, Munich, Germany
- Department of Neuroradiology, MRI hospital of the Technical University of Munich, Munich, Germany
- TUM Institute for Advanced Study, Garching, Germany
| | - Manuel M Knauer
- Institute of Neuroscience, Technical University of Munich, Munich, Germany
| | - Christian Wolf
- Institute of Neuroscience, Technical University of Munich, Munich, Germany
- Department of Neuroradiology, MRI hospital of the Technical University of Munich, Munich, Germany
| | | | - Anna Feuerbach
- Chair of Biological Chemistry, Technical University of Munich, Freising, Germany
| | - Marc Aurel Busche
- Institute of Neuroscience, Technical University of Munich, Munich, Germany
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| | - Arne Skerra
- Chair of Biological Chemistry, Technical University of Munich, Freising, Germany.
| | - Arthur Konnerth
- Institute of Neuroscience, Technical University of Munich, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
3
|
Oliinyk TM, Sokurenko LM, Kaminsky RF, Lavrynenko VE, Kancer OV, Chuhray SN, Omelchuk ST, Blagaia AV. CHANGES IN THE SENSORIMOTOR CORTEX OF THE RAT BRAIN UNDER THE MODELING OF HEMORRHAGIC STROKE. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2023; 76:2015-2020. [PMID: 37898938 DOI: 10.36740/wlek202309116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
OBJECTIVE The aim: To assess the structural and metabolic changes in the sensorimotor cortex of the rat brain under conditions of hemorrhagic stroke. PATIENTS AND METHODS Materials and methods: The experiment was carried out on rats of the control and experimental groups with a model of hemorrhagic stroke. We used histological, electron microscopic, biochemical methods and biological markers. RESULTS Results: In the sensorimotor cortex of the ipsilateral cerebral hemisphere of rats under conditions of hemorrhagic stroke, cerebral edema and progression of neurodegenerative changes were observed; an increase in the size of mitochondria, which is caused by edema of their matrix; activation of lipid peroxidation processes and a decrease in the activity of enzymes of the antioxidant system, a decrease in the level of apoptosis markers and inhibition of ERK1/2 expression. The study of DNA fragmentation in the cerebral cortex revealed a significant number of manifestations of necrosis and an insignificant number of cells in a state of apoptosis. CONCLUSION Conclusions: after modelling a hemorrhagic stroke in the right hemisphere of the brain, perivascular and pericellular edema of the energy apparatus, cell death by necrosis and apoptosis, and activation of lipid peroxidation processes were established as well as a decrease in the activity of enzymes of the antioxidant system.
Collapse
Affiliation(s)
- Tetiana M Oliinyk
- NATIONAL UNIVERSITY OF UKRAINE ON PHYSICAL EDUCATION AND SPORT, KYIV, UKRAINE
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Zott B, Simon MM, Hong W, Unger F, Chen-Engerer HJ, Frosch MP, Sakmann B, Walsh DM, Konnerth A. A vicious cycle of β amyloid-dependent neuronal hyperactivation. Science 2020; 365:559-565. [PMID: 31395777 DOI: 10.1126/science.aay0198] [Citation(s) in RCA: 383] [Impact Index Per Article: 95.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022]
Abstract
β-amyloid (Aβ)-dependent neuronal hyperactivity is believed to contribute to the circuit dysfunction that characterizes the early stages of Alzheimer's disease (AD). Although experimental evidence in support of this hypothesis continues to accrue, the underlying pathological mechanisms are not well understood. In this experiment, we used mouse models of Aβ-amyloidosis to show that hyperactivation is initiated by the suppression of glutamate reuptake. Hyperactivity occurred in neurons with preexisting baseline activity, whereas inactive neurons were generally resistant to Aβ-mediated hyperactivation. Aβ-containing AD brain extracts and purified Aβ dimers were able to sustain this vicious cycle. Our findings suggest a cellular mechanism of Aβ-dependent neuronal dysfunction that can be active before plaque formation.
Collapse
Affiliation(s)
- Benedikt Zott
- Institute of Neuroscience, Technical University of Munich, 80802 Munich, Germany.,Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany
| | - Manuel M Simon
- Institute of Neuroscience, Technical University of Munich, 80802 Munich, Germany.,Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany
| | - Wei Hong
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Felix Unger
- Institute of Neuroscience, Technical University of Munich, 80802 Munich, Germany.,Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany
| | - Hsing-Jung Chen-Engerer
- Institute of Neuroscience, Technical University of Munich, 80802 Munich, Germany.,Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany
| | - Matthew P Frosch
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bert Sakmann
- Institute of Neuroscience, Technical University of Munich, 80802 Munich, Germany
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Arthur Konnerth
- Institute of Neuroscience, Technical University of Munich, 80802 Munich, Germany. .,Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany
| |
Collapse
|
5
|
Growth Hormone Promotes Motor Function after Experimental Stroke and Enhances Recovery-Promoting Mechanisms within the Peri-Infarct Area. Int J Mol Sci 2020; 21:ijms21020606. [PMID: 31963456 PMCID: PMC7013985 DOI: 10.3390/ijms21020606] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 12/31/2022] Open
Abstract
Motor impairment is the most common and widely recognised clinical outcome after stroke. Current clinical practice in stroke rehabilitation focuses mainly on physical therapy, with no pharmacological intervention approved to facilitate functional recovery. Several studies have documented positive effects of growth hormone (GH) on cognitive function after stroke, but surprisingly, the effects on motor function remain unclear. In this study, photothrombotic occlusion targeting the motor and sensory cortex was induced in adult male mice. Two days post-stroke, mice were administered with recombinant human GH or saline, continuing for 28 days, followed by evaluation of motor function. Three days after initiation of the treatment, bromodeoxyuridine was administered for subsequent assessment of cell proliferation. Known neurorestorative processes within the peri-infarct area were evaluated by histological and biochemical analyses at 30 days post-stroke. This study demonstrated that GH treatment improves motor function after stroke by 50%–60%, as assessed using the cylinder and grid walk tests. Furthermore, the observed functional improvements occurred in parallel with a reduction in brain tissue loss, as well as increased cell proliferation, neurogenesis, increased synaptic plasticity and angiogenesis within the peri-infarct area. These findings provide new evidence about the potential therapeutic effects of GH in stroke recovery.
Collapse
|
6
|
Khan AM, Grant AH, Martinez A, Burns GAPC, Thatcher BS, Anekonda VT, Thompson BW, Roberts ZS, Moralejo DH, Blevins JE. Mapping Molecular Datasets Back to the Brain Regions They are Extracted from: Remembering the Native Countries of Hypothalamic Expatriates and Refugees. ADVANCES IN NEUROBIOLOGY 2018; 21:101-193. [PMID: 30334222 PMCID: PMC6310046 DOI: 10.1007/978-3-319-94593-4_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This article focuses on approaches to link transcriptomic, proteomic, and peptidomic datasets mined from brain tissue to the original locations within the brain that they are derived from using digital atlas mapping techniques. We use, as an example, the transcriptomic, proteomic and peptidomic analyses conducted in the mammalian hypothalamus. Following a brief historical overview, we highlight studies that have mined biochemical and molecular information from the hypothalamus and then lay out a strategy for how these data can be linked spatially to the mapped locations in a canonical brain atlas where the data come from, thereby allowing researchers to integrate these data with other datasets across multiple scales. A key methodology that enables atlas-based mapping of extracted datasets-laser-capture microdissection-is discussed in detail, with a view of how this technology is a bridge between systems biology and systems neuroscience.
Collapse
Affiliation(s)
- Arshad M Khan
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, TX, USA.
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA.
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, USA.
| | - Alice H Grant
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, TX, USA
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
- Graduate Program in Pathobiology, University of Texas at El Paso, El Paso, TX, USA
| | - Anais Martinez
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, TX, USA
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
- Graduate Program in Pathobiology, University of Texas at El Paso, El Paso, TX, USA
| | - Gully A P C Burns
- Information Sciences Institute, Viterbi School of Engineering, University of Southern California, Marina del Rey, CA, USA
| | - Brendan S Thatcher
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Vishwanath T Anekonda
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Benjamin W Thompson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Zachary S Roberts
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Daniel H Moralejo
- Division of Neonatology, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - James E Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
7
|
Systems Medicine: The Application of Systems Biology Approaches for Modern Medical Research and Drug Development. Mol Biol Int 2015; 2015:698169. [PMID: 26357572 PMCID: PMC4556074 DOI: 10.1155/2015/698169] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 12/21/2022] Open
Abstract
The exponential development of highly advanced scientific and medical research technologies throughout the past 30 years has arrived to the point where the high number of characterized molecular agents related to pathogenesis cannot be readily integrated or processed by conventional analytical approaches. Indeed, the realization that several moieties are signatures of disease has partly led to the increment of complex diseases being characterized. Scientists and clinicians can now investigate and analyse any individual dysregulations occurring within the genomic, transcriptomic, miRnomic, proteomic, and metabolomic levels thanks to currently available advanced technologies. However, there are drawbacks within this scientific brave new age in that only isolated molecular levels are individually investigated for their influence in affecting any particular health condition. Since their conception in 1992, systems biology/medicine focuses mainly on the perturbations of overall pathway kinetics for the consequent onset and/or deterioration of the investigated condition/s. Systems medicine approaches can therefore be employed for shedding light in multiple research scenarios, ultimately leading to the practical result of uncovering novel dynamic interaction networks that are critical for influencing the course of medical conditions. Consequently, systems medicine also serves to identify clinically important molecular targets for diagnostic and therapeutic measures against such a condition.
Collapse
|