1
|
Lu F, Huang T, Chen R, Yin H. Multi-omics analysis reveals the interplay between pulmonary microbiome and host in immunocompromised patients with sepsis-induced acute lung injury. Microbiol Spectr 2024:e0142424. [PMID: 39422492 DOI: 10.1128/spectrum.01424-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
The mechanisms behind the high inflammatory state and immunocompromise in severe sepsis remain unclear. While microbiota's role in immune regulation is known, the impact of pulmonary microbiota on sepsis progression is not fully understood. This study aims to investigate pulmonary microbial characteristics in septic patients and their relationship with host immune-related genes and clinical features. Fifty-four sepsis patients were divided into the immunocompromised host (ICH) group (n = 18) and the control group (n = 36). Bronchoalveolar lavage fluid (BALF) was analyzed using metagenomic next-generation sequencing (mNGS) to assess the pulmonary microbiome, and transcriptomic sequencing evaluated host gene expression. The pulmonary microbiota network in the ICH group showed notable alterations. Symbiotic bacteria like Streptococcus salivarius and Streptococcus oralis were key taxa in the control group. In contrast, opportunistic pathogens such as Campylobacter concisus and Prevotella melaninogenica, typically linked to infections in various body sites, dominated in the ICH group. Transcriptomic analysis revealed differential genes between the two groups. The downregulated differential genes in the ICH group were primarily enriched in pathways related to T-cell activation and the Type I interferon signaling pathway, both crucial for the immune system. Further correlation analysis identified significant associations between certain microbes and host genes, as well as clinical indicators, particularly with species like Campylobacter concisus, Streptococcus salivarius, Streptococcus oralis, and several species of Veillonella. These findings suggest that alterations in the pulmonary microbiome, especially the presence of opportunistic pathogens, may contribute to immune dysregulation in immunocompromised septic patients, warranting further research to explore causal relationships. IMPORTANCE Recent research has substantiated the significant role of microbiota in immune regulation, which could influence high inflammatory state and immunocompromise in patients with severe sepsis, as well as provide new opportunities for acute lung injury induced by sepsis diagnosis and treatment. Our study identified some potential critical microbes (Campylobacter concisus and several species of Veillonella), which were correlated with immune-related genes and might be the novel target to regulate immunotherapy in sepsis.
Collapse
Affiliation(s)
- Fan Lu
- Department of Emergency, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ting Huang
- Department of Obstetrics, Guangdong Women and Children Hospital, Guangzhou, China
| | - Ruichang Chen
- Department of Emergency, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Haiyan Yin
- Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
2
|
Azad MA, Patel R. Practical Guidance for Clinical Microbiology Laboratories: Microbiologic diagnosis of implant-associated infections. Clin Microbiol Rev 2024; 37:e0010423. [PMID: 38506553 PMCID: PMC11237642 DOI: 10.1128/cmr.00104-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
SUMMARYImplant-associated infections (IAIs) pose serious threats to patients and can be associated with significant morbidity and mortality. These infections may be difficult to diagnose due, in part, to biofilm formation on device surfaces, and because even when microbes are found, their clinical significance may be unclear. Despite recent advances in laboratory testing, IAIs remain a diagnostic challenge. From a therapeutic standpoint, many IAIs currently require device removal and prolonged courses of antimicrobial therapy to effect a cure. Therefore, making an accurate diagnosis, defining both the presence of infection and the involved microorganisms, is paramount. The sensitivity of standard microbial culture for IAI diagnosis varies depending on the type of IAI, the specimen analyzed, and the culture technique(s) used. Although IAI-specific culture-based diagnostics have been described, the challenge of culture-negative IAIs remains. Given this, molecular assays, including both nucleic acid amplification tests and next-generation sequencing-based assays, have been used. In this review, an overview of these challenging infections is presented, as well as an approach to their diagnosis from a microbiologic perspective.
Collapse
Affiliation(s)
- Marisa Ann Azad
- Division of Infectious Diseases, Department of Medicine, The Ottawa Hospital, Ottawa, Canada
- Ottawa Hospital Research Institute, Ottawa, Canada
| | - Robin Patel
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
3
|
Karvouniaris M, Brotis A, Tsiakos K, Palli E, Koulenti D. Current Perspectives on the Diagnosis and Management of Healthcare-Associated Ventriculitis and Meningitis. Infect Drug Resist 2022; 15:697-721. [PMID: 35250284 PMCID: PMC8896765 DOI: 10.2147/idr.s326456] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/05/2022] [Indexed: 12/31/2022] Open
Abstract
Ventriculitis or post-neurosurgical meningitis or healthcare-associated ventriculitis and meningitis (VM) is a severe infection that complicates central nervous system operations or is related to the use of neurosurgical devices or drainage catheters. It can further deteriorate patients who have already presented significant neurologic injury and is associated with high morbidity, mortality, and poor functional outcome. VM can be difficult to distinguish from aseptic meningitis, inflammation that follows hemorrhagic strokes and neurosurgical operations. The associated microorganisms can be either skin flora or nosocomial pathogens, most commonly, Gram-negative bacteria. Classical microbiology can fail to isolate the culprit pathogen. Novel cerebrospinal fluid (CSF) biomarkers and molecular microbiology can fill the diagnostic gap and expedite pathogen identification and treatment. The pathogens may demonstrate significant resistant patterns and their antibiotic treatment can be difficult, as many important drug classes, including the beta-lactams and the glycopeptides, hardly penetrate to the CSF, and do not achieve therapeutic levels at the site of the infection. Treatment modifications, such as higher daily dose and prolonged or continuous administration, might increase antibiotic levels in the site of infection and facilitate pathogens clearance. However, in the case of therapeutic failure or infection due to difficult-to-treat bacteria, the direct antibiotic instillation into the CSF, in addition to the intravenous antibiotic delivery, may help in the resolution of infection. However, intraventricular antibiotic therapy may result in aseptic meningitis and seizures, concerning the administration of aminoglycosides, polymyxins, and vancomycin. Meanwhile, bacteria form biofilms on the catheter or the device that should routinely be removed. Novel neurosurgical treatment modalities comprise endoscopic evacuation of debris and irrigation of the ventricles. VM prevention includes perioperative antibiotics, antimicrobial impregnated catheters, and the implementation of standardized protocols, regarding catheter insertion and manipulation.
Collapse
Affiliation(s)
- Marios Karvouniaris
- Intensive Care Unit, AHEPA University Hospital, Thessaloniki, Greece
- Correspondence: Marios Karvouniaris, ACHEPA University Hospital, S.Kiriakidi 1, Thessaloniki, 54636, Greece, Tel +302313303645, Fax +302313303096, Email
| | - Alexandros Brotis
- Neurosurgery Department, University Hospital of Larissa, Larissa, Greece
| | | | - Eleni Palli
- Intensive Care Unit, University Hospital of Larissa, Larissa, Greece
| | - Despoina Koulenti
- Second Critical Care Department, Attikon University Hospital, Athens, Greece
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
4
|
Tett A, Pasolli E, Masetti G, Ercolini D, Segata N. Prevotella diversity, niches and interactions with the human host. Nat Rev Microbiol 2021; 19:585-599. [PMID: 34050328 PMCID: PMC11290707 DOI: 10.1038/s41579-021-00559-y] [Citation(s) in RCA: 278] [Impact Index Per Article: 92.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2021] [Indexed: 02/06/2023]
Abstract
The genus Prevotella includes more than 50 characterized species that occur in varied natural habitats, although most Prevotella spp. are associated with humans. In the human microbiome, Prevotella spp. are highly abundant in various body sites, where they are key players in the balance between health and disease. Host factors related to diet, lifestyle and geography are fundamental in affecting the diversity and prevalence of Prevotella species and strains in the human microbiome. These factors, along with the ecological relationship of Prevotella with other members of the microbiome, likely determine the extent of the contribution of Prevotella to human metabolism and health. Here we review the diversity, prevalence and potential connection of Prevotella spp. in the human host, highlighting how genomic methods and analysis have improved and should further help in framing their ecological role. We also provide suggestions for future research to improve understanding of the possible functions of Prevotella spp. and the effects of the Western lifestyle and diet on the host-Prevotella symbiotic relationship in the context of maintaining human health.
Collapse
Affiliation(s)
- Adrian Tett
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Edoardo Pasolli
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | | | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy.
- European Institute of Oncology IRCCS, Milan, Italy.
| |
Collapse
|
5
|
Apostolakis S. Use of Focused Ultrasound (Sonication) for the Diagnosis of Infections in Neurosurgical Operations: A Systematic Review and Meta-Analysis. World Neurosurg 2020; 136:364-373.e2. [PMID: 31899387 DOI: 10.1016/j.wneu.2019.12.143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Postoperative infections are one of the most devastating complications in neurosurgery, and their results are even more disastrous when biocompatible implants are involved. As the application of these implants increases, the need for a sensitive and efficient method to detect pathogens becomes imperative. The application of sonication appears to be a viable option. METHODS A systematic review and meta-analysis of the available literature was conducted, looking for studies reporting findings from the application of sonication following neurosurgical operations. To be included, an article needed to contain information about the material that was subjected to sonication, indication of other culture methods that were applied, and information about the isolated pathogens. RESULTS Six studies comprising 437 patients were included in the meta-analysis. Potential superiority of sonication over conventional microbiologic methods was found in the detection of gram-positive bacteria and in particular of coagulase-negative Staphylococcus species. A sensitivity of 0.87 and a specificity of 0.57 were calculated. CONCLUSIONS Regardless of the potential of sonication, it is still not a panacea. Additional studies are expected to provide significant insight into the indications and limitations of this technique.
Collapse
|
6
|
Kates AE, Dalman M, Torner JC, Smith TC. The nasal and oropharyngeal microbiomes of healthy livestock workers. PLoS One 2019; 14:e0212949. [PMID: 30861031 PMCID: PMC6413945 DOI: 10.1371/journal.pone.0212949] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/12/2019] [Indexed: 12/26/2022] Open
Abstract
Little information exists on the microbiomes of livestock workers. A cross-sectional, epidemiological study was conducted enrolling 59 participants (26 of which had livestock contact) in Iowa. Participants were enrolled in one of four ways: from an existing prospective cohort study (n = 38), from the Iowa Department of Natural Resources Animal Feeding Operations database (n = 17), through Iowa county fairs (n = 3), and through snowball sampling (n = 1). We collected swabs from the nares and oropharynx of each participant to assess the microbiome via 16s rRNA sequencing. We observed livestock workers to have greater diversity in their microbiomes compared to those with no livestock contact. In the nares, there were 27 operational taxonomic units found to be different between livestock workers and non-livestock workers with the greatest difference seen with Streptococcus and Proteobacteria. In the oropharynx, livestock workers with swine exposure were more likely to carry several pathogenic organisms. The results of this study are the first to characterize the livestock worker nasal and oropharyngeal microbiomes.
Collapse
Affiliation(s)
- Ashley E. Kates
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, United States of America
| | - Mark Dalman
- Kent State University, College of Public Health, Kent, OH, United States of America
| | - James C. Torner
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, United States of America
| | - Tara C. Smith
- Kent State University, College of Public Health, Kent, OH, United States of America
- * E-mail:
| |
Collapse
|
7
|
Zeng X, Xiong S, Zhuo S, Liu C, Miao J, Liu D, Wang H, Zhang Y, Wang C, Liu Y. Nanosilver/poly (dl-lactic-co-glycolic acid) on titanium implant surfaces for the enhancement of antibacterial properties and osteoinductivity. Int J Nanomedicine 2019; 14:1849-1863. [PMID: 30880984 PMCID: PMC6417851 DOI: 10.2147/ijn.s190954] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Despite titanium (Ti) implants have been commonly used in the medical device field due to their superior biocompatibility, implant-associated bacterial infection remains a major clinical complication. Nanosilver, an effective antibacterial agent against a wide spectrum of bacterial strains, with a low-resistance potential, has attracted much interest too. Incorporation of nanosilver on Ti implants may be a promising approach to prevent biofilm formation. Purpose The objective of the study was to investigate the antibacterial effects and osteoinductive properties of nanosilver/poly (dl-lactic-co-glycolic acid)-coated titanium (NSPTi). Methods Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) and the Gram-negative opportunistic pathogen Pseudomonas aeruginosa (PAO-1) were used to evaluate the antibacterial activity of NSPTi implants through the analysis of bacterial colonization in vitro and in vivo. Furthermore, we examined the osteoinductive potential of NSPTi implants by investigating the proliferation and differentiation of MC3T3-E1 preosteoblast cells. In vivo, the osteoinductive properties of NSPTi implants were assessed by radiographic evaluation, H&E staining, and Masson’s trichrome staining. Results In vitro, bacterial adhesion to the 2% NSPTi was significantly inhibited and <1% of adhered bacteria survived after 24 hours. In vitro, the average colony-forming units (CFU)/g ratios in the 2% NSPTi with 103 CFU MRSA and PAO-1 were 1.50±0.68 and 1.75±0.6, respectively. In the uncoated Ti groups, the ratios were 1.03±0.82×103 and 0.94±0.49×103, respectively. These results demonstrated that NSPTi implants had prominent antibacterial properties. Proliferation of MC3T3-E1 cells on the 2% NSPTi sample was 1.51, 1.78, and 2.22 times that on the uncoated Ti control after 3, 5, and 7 days’ incubation, respectively. Furthermore, NSPTi implants promoted the maturation and differentiation of MC3T3-E1 cells. In vivo, NSPTi accelerated the formation of new bone while suppressing bacterial survival. Conclusion NSPTi implants have simultaneous antibacterial and osteoinductive activities and therefore have the potential in clinical applications.
Collapse
Affiliation(s)
- Xuemin Zeng
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, People's Republic of China, ; .,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, People's Republic of China, ;
| | - Shijiang Xiong
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, People's Republic of China, ; .,Department of Endodontics, School of Stomatology, Shandong University, Jinan, People's Republic of China
| | - Shaoyang Zhuo
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, People's Republic of China, ; .,Department of Oral Maxillofacial Surgery, School of Stomatology, Shandong University, Jinan, People's Republic of China
| | - Chunpeng Liu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, People's Republic of China, ; .,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, People's Republic of China, ;
| | - Jie Miao
- Department of Stomatology, The 5th People's Hospital of Jinan, Jinan, People's Republic of China
| | - Dongxu Liu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, People's Republic of China, ; .,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, People's Republic of China, ;
| | - Hengxiao Wang
- Department of Experimental Pathology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Yueying Zhang
- Department of Experimental Pathology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Chunling Wang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, People's Republic of China, ; .,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, People's Republic of China, ;
| | - Yi Liu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, People's Republic of China, ; .,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, People's Republic of China, ;
| |
Collapse
|
8
|
Diagnostic Approach to Health Care- and Device-Associated Central Nervous System Infections. J Clin Microbiol 2018; 56:JCM.00861-18. [PMID: 30135235 DOI: 10.1128/jcm.00861-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Health care- and device-associated central nervous system (CNS) infections have a distinct epidemiology, pathophysiology, and microbiology that require a unique diagnostic approach. Most clinical signs, symptoms, and tests used to diagnose community-acquired CNS infections are insensitive and nonspecific in neurosurgical patients due to postsurgical changes, invasive devices, prior antimicrobial exposure, and underlying CNS disease. The lack of a standardized definition of infection or diagnostic pathway has added to this challenge. In this review, we summarize the epidemiology, microbiology, and clinical presentation of these infections, discuss the issues with existing microbiologic tests, and give an overview of the current diagnostic approach.
Collapse
|
9
|
Conen A, Fux CA, Vajkoczy P, Trampuz A. Management of infections associated with neurosurgical implanted devices. Expert Rev Anti Infect Ther 2016; 15:241-255. [PMID: 27910709 DOI: 10.1080/14787210.2017.1267563] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Neurosurgical devices are increasingly used. With it, neurosurgical device-related infections gain relevance. As biofilms are involved in implant-associated infections the diagnosis and treatment is challenging and requires specific anti-biofilm concepts and management algorithms. Areas covered: The literature concerning the management of neurosurgical device-associated infections is scarce and heterogeneous treatment concepts are discussed, but no standardized diagnostic and treatment procedures exist. Therefore, we emphasize extrapolating management strategies predominantly from orthopedic device-associated infections, where the concept is better established and clinically validated. This review covers infections associated with craniotomy fixation devices, cranioplasties, external ventricular and lumbar drainages, internal shunts and neurostimulators. Expert commentary: Sonication of the removed implants significantly improves microbiological diagnosis. A combined surgical and antimicrobial management is crucial for successful treatment: appropriate surgical intervention is combined with prolonged anti-biofilm therapy of usually 12 weeks. In selected patients, new treatment algorithms enable cure of neurosurgical device-associated infections without implant removal or with a one-stage implant exchange, considerably improving the quality of patient lives.
Collapse
Affiliation(s)
- Anna Conen
- a Clinic of Infectious Diseases and Hospital Hygiene , Department of Internal Medicine, Kantonsspital Aarau , Aarau , Switzerland
| | - Christoph A Fux
- a Clinic of Infectious Diseases and Hospital Hygiene , Department of Internal Medicine, Kantonsspital Aarau , Aarau , Switzerland
| | - Peter Vajkoczy
- b Department of Neurosurgery , Charité - Universitätsmedizin Berlin , Berlin , Germany
| | - Andrej Trampuz
- c Center for Musculoskeletal Surgery , Charité - Universitätsmedizin Berlin , Berlin , Germany
| |
Collapse
|