1
|
Tanaka M, Fujii S, Inoue H, Takahashi N, Ishimi Y, Uehara M. (S)-Equol Is More Effective than (R)-Equol in Inhibiting Osteoclast Formation and Enhancing Osteoclast Apoptosis, and Reduces Estrogen Deficiency-Induced Bone Loss in Mice. J Nutr 2022; 152:1831-1842. [PMID: 35675296 DOI: 10.1093/jn/nxac130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/27/2022] [Accepted: 06/01/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Equol, a metabolite of daidzein, binds to the estrogen receptor with greater affinity than daidzein and exhibits various biological properties. It exists as an enantiomer, either (S)-equol or (R)-equol. OBJECTIVES We have previously shown that the inhibitory effect of (S)-equol on bone fragility is stronger than that of racemic equol in ovariectomized (OVX) mice; however, the effect of (R)-equol has not been elucidated. The aim of this study was to compare the activities of equol enantiomers on bone metabolism in vitro and in vivo. METHODS Bone marrow cells (BMCs) and RAW 264.7 cells were treated with equol enantiomers. The number of osteoclasts and caspase-3/7 activity were measured. We examined the effect of equol enantiomers on osteoblast differentiation in MC3T3-E1 cells. In vivo, 8-wk-old female ddY mice were assigned to 4 groups: sham-operated (sham), OVX, OVX + 0.5 mg/d of (S)-equol (S-eq), and OVX + 0.5 mg/d of (R)-equol (R-eq). Four weeks after the intervention, femoral bone mineral density (BMD) and osteoclastic gene expression were analyzed, along with concentrations of equol enantiomers in the serum and tissues. RESULTS (S)-equol and (R)-equol inhibited osteoclast differentiation in BMCs (97% and 60%, P < 0.05) and RAW 264.7 cells (83% and 68%, P < 0.05). (S)-equol promoted apoptosis of mature osteoclasts by inducing caspase-3/7 activity (29%, P < 0.05) and enhanced osteoblast differentiation (29%, P < 0.05). In OVX mice, BMD was ameliorated in (S)-equol-treated mice (11%, P < 0.05), but not in (R)-equol-treated mice. The concentrations of (S)-equol were greater than those of (R)-equol in the serum, tibia, liver, and kidney (by 148%, 80%, 22%, and 139%, respectively). CONCLUSIONS These results suggest that (S)-equol is more effective than (R)-equol in inhibiting osteoclast formation and enhancing osteoclast apoptosis in vitro, supporting the beneficial effect of (S)-equol to reduce estrogen deficiency-induced bone loss in OVX mice.
Collapse
Affiliation(s)
- Miori Tanaka
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Shungo Fujii
- Department of Health and Nutrition, Faculty of Human Sciences, Hokkaido Bunkyo University, Eniwa, Japan
| | - Hirofumi Inoue
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Nobuyuki Takahashi
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Yoshiko Ishimi
- Research Institute, Tokyo University of Agriculture, Tokyo, Japan
| | - Mariko Uehara
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
2
|
Liyanage GSG, Inoue R, Fujitani M, Ishijima T, Shibutani T, Abe K, Kishida T, Okada S. Effects of Soy Isoflavones, Resistant Starch and Antibiotics on Polycystic Ovary Syndrome (PCOS)-Like Features in Letrozole-Treated Rats. Nutrients 2021; 13:nu13113759. [PMID: 34836015 PMCID: PMC8621859 DOI: 10.3390/nu13113759] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/21/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in reproductive-aged women. Recently, various dietary interventions have been used extensively as a novel therapy against PCOS. In the present study, we show that soy isoflavone metabolites and resistant starch, together with gut microbiota modulations, were successful in decreasing the severity of PCOS-like reproductive features while increasing the expression of gut barrier markers and butyric acid in the gut. In the letrozole-induced PCOS model rats, the intake of both 0.05% soy isoflavones and 11% resistant starch, even with letrozole treatment, reduced the severity of menstrual irregularity and polycystic ovaries with a high concentration of soy isoflavones and equol in plasma. Antibiotic cocktail treatment suppressed soy isoflavone metabolism in the gut and showed no considerable effects on reducing the PCOS-like symptoms. The mRNA expression level of occludin significantly increased with soy isoflavone and resistant starch combined treatment. Bacterial genera such as Blautia, Dorea and Clostridium were positively correlated with menstrual irregularity under resistant starch intake. Moreover, the concentration of butyric acid was elevated by resistant starch intake. In conclusion, we propose that both dietary interventions and gut microbiota modulations could be effectively used in reducing the severity of PCOS reproductive features.
Collapse
Affiliation(s)
- Geethika S. G. Liyanage
- Food Functionality Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (G.S.G.L.); (T.I.); (T.S.); (K.A.)
| | - Ryo Inoue
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Osaka 573-0101, Japan;
| | - Mina Fujitani
- Laboratory of Nutrition Science, Division of Applied Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama 790-8566, Japan; (M.F.); (T.K.)
| | - Tomoko Ishijima
- Food Functionality Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (G.S.G.L.); (T.I.); (T.S.); (K.A.)
| | - Taisei Shibutani
- Food Functionality Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (G.S.G.L.); (T.I.); (T.S.); (K.A.)
| | - Keiko Abe
- Food Functionality Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (G.S.G.L.); (T.I.); (T.S.); (K.A.)
- Kanagawa Institute of Industrial Science and Technology (KISTEC), 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Taro Kishida
- Laboratory of Nutrition Science, Division of Applied Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama 790-8566, Japan; (M.F.); (T.K.)
- Food and Health Sciences Research Centre, Graduate School of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| | - Shinji Okada
- Food Functionality Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (G.S.G.L.); (T.I.); (T.S.); (K.A.)
- Correspondence: ; Tel.: +81-3-5841-1127
| |
Collapse
|
3
|
Yoshioka H, Watanabe M, Nanba F, Suzuki T, Fukiya S, Yokota A, Toda T. Administration of Cholic Acid Inhibits Equol Production from Daidzein in Mice. J Nutr Sci Vitaminol (Tokyo) 2021; 66:571-576. [PMID: 33390399 DOI: 10.3177/jnsv.66.571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Equol (Eq) is a metabolite of soy isoflavone daidzein (De) produced by the intestinal microbiota. The clinical effectiveness of soy isoflavone is considered to depend on the individual ability of Eq production. Previous studies have demonstrated that habitual dietary patterns may influence the production of Eq. For example, high Eq producers consumed less fat as a percentage of energy than low Eq producers. However, the inhibitory factors of Eq production are unknown. Recently, it was reported that bile acids induced by high-fat diet consumption may be a host-related factor controlling the composition of the intestinal microbiota. In this study, we investigated the effect of cholic acid (CA) administration, a mimic of the microbiota altered by a high-fat diet, on Eq production in mice. CA administration significantly decreased the levels of the De metabolites Eq, dihydrodaidzein, and O-desmethylangolensin in the serum of mice. However, CA administration did not affect the total molar concentration of De and its metabolites. Moreover, CA administration increased the levels of secondary bile acids, particularly deoxycholic acid (DCA), which has strong antibacterial activity in the cecum contents of mice. Thus, CA administration may increase the levels of DCA, a secondary bile acid, resulting in inhibition of Eq production. These findings may help to reveal the factors inhibiting Eq production and enhance the clinical effectiveness of isoflavone intake.
Collapse
Affiliation(s)
- Hiroko Yoshioka
- Department of Innovative Food Sciences, School of Food Sciences and Nutrition, Mukogawa Women's University
| | | | | | | | - Satoru Fukiya
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University
| | - Atsushi Yokota
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University
| | - Toshiya Toda
- Department of Innovative Food Sciences, School of Food Sciences and Nutrition, Mukogawa Women's University
| |
Collapse
|
4
|
Abstract
Soybeans contain several physiologically active ingredients, such as soy phytosterol, soyasaponin, soy protein, and lecithin, and are therefore expected to express the functionalities of said ingredients. Among them, soy isoflavones have been studied in recent years for their various functions, including their obesity-preventing effect, blood glucose level reducing effect, osteoporosis and breast cancer risk reduction, and anti-oxidative effect, and several health promoting effects and disease preventing effects are expected. For example, it has been determined that soy isoflavones reduce body and fat weight in experiments in which mice were fed a diet containing soy isoflavones in studies on anti-obesity. Epidemiologic studies with humans have also shown that women who consume more soybeans have lower BMI than those who consume less. We previously found that soy isoflavones may have anti-obesity effects in myoblasts through the activation of transcriptional coactivator PGC-1β, which increases energy expenditure. In recent studies, a decrease in blood glucose level due to soy isoflavone was seen in an experiment in which diabetic model mice were fed a diet containing soy isoflavone. It has also been suggested that soy isoflavone intake may increase bone mineral density in postmenopausal women and reduce the risk of breast cancer. This review focuses on the actions of soy isoflavones known to date, including their anti-obesity and anti-diabetic effects, bone loss preventing effects, and cancer risk reduction effects, and introduces reports on the health promotion and disease prevention effects of soy isoflavones.
Collapse
Affiliation(s)
- Shiho Nakai
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University
| | - Mariko Fujita
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University
| | - Yasutomi Kamei
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University
| |
Collapse
|
5
|
Horiuchi H, Usami A, Shirai R, Harada N, Ikushiro S, Sakaki T, Nakano Y, Inui H, Yamaji R. S-Equol Activates cAMP Signaling at the Plasma Membrane of INS-1 Pancreatic β-Cells and Protects against Streptozotocin-Induced Hyperglycemia by Increasing β-Cell Function in Male Mice. J Nutr 2017; 147:1631-1639. [PMID: 28768836 DOI: 10.3945/jn.117.250860] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/19/2017] [Accepted: 06/27/2017] [Indexed: 11/14/2022] Open
Abstract
Background:S-equol, which is enantioselectively produced from daidzein by gut microbiota, has been suggested as a chemopreventive agent against type 2 diabetes mellitus (T2DM), but the underlying mechanisms remain unclear.Objective: We investigated the effects of S-equol on pancreatic β-cell function.Methods: β-Cell growth and insulin secretion were evaluated with male Institute of Cancer Research mice and isolated pancreatic islets from the mice, respectively. The mechanisms by which S-equol stimulated β-cell response were examined in INS-1 β-cells. The effect of S-equol treatment on β-cell function was assessed in low-dose streptozotocin-treated mice. S-equol was used at 10 μmol/L for in vitro and ex vivo studies and was administered by oral gavage (20 mg/kg, 2 times/d throughout the experimental period) for in vivo studies.Results:S-equol administration for 7 d increased Ki67-positive β-cells by 27% (P < 0.01) in mice. S-equol enantioselectively enhanced glucose-stimulated insulin secretion in mouse pancreatic islets by 41% (P < 0.001). In INS-1 cells, S-equol exerted stronger effects than daidzein on cell growth, insulin secretion, and cAMP-response element (CRE)-mediated transcription. These S-equol effects were diminished by inhibiting protein kinase A. The effective concentration of S-equol for stimulating cAMP production at the plasma membrane was lower than that for phosphodiesterase inhibition. S-equol-stimulated CRE activation was negatively controlled by the knockdown of G-protein α subunit group S (stimulatory) and positively controlled by that of G-protein-coupled receptor kinase-3 and -6. Compared with vehicle-treated controls, S-equol gavage treatment resulted in an increase in β-cell mass of 104% (P < 0.05), a trend toward high plasma insulin concentrations (by 118%; P = 0.06), and resistance to hyperglycemia after streptozotocin treatment (78% of AUC after glucose challenge; P < 0.01). S-equol administration significantly increased the number of Ki67-positive proliferating β-cells by 62% (P < 0.01) and decreased that of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive apoptotic β-cells by 75% (P < 0.05).Conclusions: Our results show that S-equol boosts β-cell function and prevents hypoglycemia in mice, suggesting its potential for T2DM prevention.
Collapse
Affiliation(s)
- Hiroko Horiuchi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences
| | - Atsuko Usami
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences
| | - Rie Shirai
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences
| | - Naoki Harada
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences,
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Toyama, Japan
| | - Toshiyuki Sakaki
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Toyama, Japan
| | | | - Hiroshi Inui
- Division of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Osaka, Japan; and
| | - Ryoichi Yamaji
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences
| |
Collapse
|