1
|
Mallack EJ, Turk BR, Yan H, Price C, Demetres M, Moser AB, Becker C, Hollandsworth K, Adang L, Vanderver A, Van Haren K, Ruzhnikov M, Kurtzberg J, Maegawa G, Orchard PJ, Lund TC, Raymond GV, Regelmann M, Orsini JJ, Seeger E, Kemp S, Eichler F, Fatemi A. MRI surveillance of boys with X-linked adrenoleukodystrophy identified by newborn screening: Meta-analysis and consensus guidelines. J Inherit Metab Dis 2021; 44:728-739. [PMID: 33373467 PMCID: PMC8113077 DOI: 10.1002/jimd.12356] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/11/2020] [Accepted: 12/28/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Among boys with X-Linked adrenoleukodystrophy, a subset will develop childhood cerebral adrenoleukodystrophy (CCALD). CCALD is typically lethal without hematopoietic stem cell transplant before or soon after symptom onset. We sought to establish evidence-based guidelines detailing the neuroimaging surveillance of boys with neurologically asymptomatic adrenoleukodystrophy. METHODS To establish the most frequent age and diagnostic neuroimaging modality for CCALD, we completed a meta-analysis of relevant studies published between January 1, 1970 and September 10, 2019. We used the consensus development conference method to incorporate the resulting data into guidelines to inform the timing and techniques for neuroimaging surveillance. Final guideline agreement was defined as >80% consensus. RESULTS One hundred twenty-three studies met inclusion criteria yielding 1285 patients. The overall mean age of CCALD diagnosis is 7.91 years old. The median age of CCALD diagnosis calculated from individual patient data is 7.0 years old (IQR: 6.0-9.5, n = 349). Ninety percent of patients were diagnosed between 3 and 12. Conventional MRI was most frequently reported, comprised most often of T2-weighted and contrast-enhanced T1-weighted MRI. The expert panel achieved 95.7% consensus on the following surveillance parameters: (a) Obtain an MRI between 12 and 18 months old. (b) Obtain a second MRI 1 year after baseline. (c) Between 3 and 12 years old, obtain a contrast-enhanced MRI every 6 months. (d) After 12 years, obtain an annual MRI. CONCLUSION Boys with adrenoleukodystrophy identified early in life should be monitored with serial brain MRIs during the period of highest risk for conversion to CCALD.
Collapse
Affiliation(s)
- Eric J. Mallack
- Department of Pediatrics, Division of Child Neurology, Weill Cornell Medical College, NewYork-Presbyterian Hospital, New York, New York
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts
| | - Bela R. Turk
- Division of Neurogenetics and The Moser Center for Leukodystrophies, Kennedy Krieger Institute, Johns Hopkins University, Baltimore, Maryland
| | - Helena Yan
- Department of Pediatrics, Division of Child Neurology, Weill Cornell Medical College, NewYork-Presbyterian Hospital, New York, New York
| | - Carrie Price
- Division of Neurogenetics and The Moser Center for Leukodystrophies, Kennedy Krieger Institute, Johns Hopkins University, Baltimore, Maryland
| | - Michelle Demetres
- Department of Pediatrics, Division of Child Neurology, Weill Cornell Medical College, NewYork-Presbyterian Hospital, New York, New York
| | - Ann B. Moser
- Division of Neurogenetics and The Moser Center for Leukodystrophies, Kennedy Krieger Institute, Johns Hopkins University, Baltimore, Maryland
| | - Catherine Becker
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts
| | - Kim Hollandsworth
- Division of Neurogenetics and The Moser Center for Leukodystrophies, Kennedy Krieger Institute, Johns Hopkins University, Baltimore, Maryland
| | - Laura Adang
- Division of Neurology, Perelman School of Medicine at the University of Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Adeline Vanderver
- Division of Neurology, Perelman School of Medicine at the University of Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Keith Van Haren
- Department of Neurology, Stanford University School of Medicine, Lucile Packard Children’s Hospital, Stanford, California
| | - Maura Ruzhnikov
- Department of Neurology, Stanford University School of Medicine, Lucile Packard Children’s Hospital, Stanford, California
| | - Joanne Kurtzberg
- Department of Pediatrics, Duke University School of Medicine, Duke Children’s Hospital and Health Center, Durham, North Carolina
| | - Gustavo Maegawa
- Department of Pediatrics, Division of Genetics and Metabolism, University of Florida College of Medicine, University of Florida Health Shands Children’s Hospital, Gainesville, Florida
| | - Paul J. Orchard
- Department of Pediatrics, Division of Bone Marrow Transplantation, University of Minnesota Children’s Hospital, Minneapolis, Minnesota
| | - Troy C. Lund
- Department of Pediatrics, Division of Bone Marrow Transplantation, University of Minnesota Children’s Hospital, Minneapolis, Minnesota
| | - Gerald V. Raymond
- Division of Neurogenetics and The Moser Center for Leukodystrophies, Kennedy Krieger Institute, Johns Hopkins University, Baltimore, Maryland
| | - Molly Regelmann
- Department of Pediatrics, Division of Endocrinology & Diabetes, Children’s Hospital at Montefiore, Bronx, New York
| | - Joseph J. Orsini
- Newborn Screening Program, NY State Department of Health, New York, New York
| | - Elisa Seeger
- Aidan Jack Seeger Foundation, Brooklyn, New York
| | - Stephan Kemp
- Department of Pediatric Neurology, Emma Children’s Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Florian Eichler
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts
| | - Ali Fatemi
- Division of Neurogenetics and The Moser Center for Leukodystrophies, Kennedy Krieger Institute, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
2
|
A Tanzanian Boy with Molecularly Confirmed X-Linked Adrenoleukodystrophy. Case Rep Genet 2019; 2019:6148425. [PMID: 32089906 PMCID: PMC7011349 DOI: 10.1155/2019/6148425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 10/29/2019] [Indexed: 11/23/2022] Open
Abstract
Adrenoleukodystrophy (ALD) is an X-linked peroxisomal disorder with classical features, which can be also recognised in a low resource setting. It had been described in various populations across the globe, but very few cases have been reported from Africa. In a boy with features of a progressive central nervous system condition and adrenal failure, ABCD1 gene screening was performed based on a clinical history and basic radiological features which were compatible with ALD. A common ABCD1 mutation was identified in this patient, which is the first report of genetically confirmed ALD in Sub-Saharan Africa. ALD is likely under recognised in those areas where there is no neurologist. This genetic confirmation widens geographical distribution of ABCD1-associated disease, and illustrates recognisability of this disorder, even when encountered in a low-resource environment.
Collapse
|