1
|
Arencibia A, Salazar LA. Microarray meta-analysis reveals IL6 and p38β/MAPK11 as potential targets of hsa-miR-124 in endothelial progenitor cells: Implications for stent re-endothelization in diabetic patients. Front Cardiovasc Med 2022; 9:964721. [PMID: 36176980 PMCID: PMC9513120 DOI: 10.3389/fcvm.2022.964721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Circulating endothelial progenitor cells (EPCs) play an important role in the repair processes of damaged vessels, favoring re-endothelization of stented vessels to minimize restenosis. EPCs number and function is diminished in patients with type 2 diabetes, a known risk factor for restenosis. Considering the impact of EPCs in vascular injury repair, we conducted a meta-analysis of microarray to assess the transcriptomic profile and determine target genes during the differentiation process of EPCs into mature ECs. Five microarray datasets, including 13 EPC and 12 EC samples were analyzed, using the online tool ExpressAnalyst. Differentially expressed genes (DEGs) analysis was done by Limma method, with an | log2FC| > 1 and FDR < 0.05. Combined p-value by Fisher exact method was computed for the intersection of datasets. There were 3,267 DEGs, 1,539 up-regulated and 1,728 down-regulated in EPCs, with 407 common DEGs in at least four datasets. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed enrichment for terms related to “AGE-RAGE signaling pathway in diabetic complications.” Intersection of common DEGs, KEGG pathways genes and genes in protein-protein interaction network (PPI) identified four key genes, two up-regulated (IL1B and STAT5A) and two down-regulated (IL6 and MAPK11). MicroRNA enrichment analysis of common DEGs depicted five hub microRNA targeting 175 DEGs, including STAT5A, IL6 and MAPK11, with hsa-miR-124 as common regulator. This group of genes and microRNAs could serve as biomarkers of EPCs differentiation during coronary stenting as well as potential therapeutic targets to improve stent re-endothelization, especially in diabetic patients.
Collapse
|
2
|
Gori T. Restenosis after Coronary Stent Implantation: Cellular Mechanisms and Potential of Endothelial Progenitor Cells (A Short Guide for the Interventional Cardiologist). Cells 2022; 11:cells11132094. [PMID: 35805178 PMCID: PMC9265311 DOI: 10.3390/cells11132094] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 02/05/2023] Open
Abstract
Coronary stents are among the most common therapies worldwide. Despite significant improvements in the biocompatibility of these devices throughout the last decades, they are prone, in as many as 10–20% of cases, to short- or long-term failure. In-stent restenosis is a multifactorial process with a complex and incompletely understood pathophysiology in which inflammatory reactions are of central importance. This review provides a short overview for the clinician on the cellular types responsible for restenosis with a focus on the role of endothelial progenitor cells. The mechanisms of restenosis are described, along with the cell-based attempts made to prevent it. While the focus of this review is principally clinical, experimental evidence provides some insight into the potential implications for prevention and therapy of coronary stent restenosis.
Collapse
Affiliation(s)
- Tommaso Gori
- German Center for Cardiac and Vascular Research (DZHK) Standort Rhein-Main, Department of Cardiology, University Medical Center Mainz, 55131 Mainz, Germany
| |
Collapse
|
3
|
Pelliccia F, Zimarino M, De Luca G, Viceconte N, Tanzilli G, De Caterina R. Endothelial Progenitor Cells in Coronary Artery Disease: From Bench to Bedside. Stem Cells Transl Med 2022; 11:451-460. [PMID: 35365823 PMCID: PMC9154346 DOI: 10.1093/stcltm/szac010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 02/04/2022] [Indexed: 11/14/2022] Open
Abstract
Endothelial progenitor cells (EPCs) are a heterogeneous group of cells present in peripheral blood at various stages of endothelial differentiation. EPCs have been extensively investigated in patients with coronary artery disease (CAD), with controversial findings both on their role in atherosclerosis progression and in the process of neointimal growth after a percutaneous coronary intervention (PCI). Despite nearly 2 decades of experimental and clinical investigations, however, the significance of EPCs in clinical practice remains unclear and poorly understood. This review provides an update on the role of EPCs in the most common clinical scenarios that are experienced by cardiologists managing patients with CAD. We here summarize the main findings on the association of EPCs with cardiovascular risk factors, coronary atherosclerosis, and myocardial ischemia. We then discuss the potential effects of EPCs in post-PCI in-stent restenosis, as well as most recent findings with EPC-coated stents. Based on the mounting evidence of the relationship between levels of EPCs and several different adverse cardiovascular events, EPCs are emerging as novel predictive biomarkers of long-term outcomes in patients with CAD.
Collapse
Affiliation(s)
| | - Marco Zimarino
- Institute of Cardiology, “G. d’Annunzio” University, Chieti, Italy
- Cath Lab, SS. Annunziata Hospital, Chieti, Italy
| | - Giuseppe De Luca
- Division of Cardiology, Azienda Ospedaliero-Universitaria Maggiore della Carità, Università del Piemonte Orientale, Novara, Italy
| | - Nicola Viceconte
- Department of Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - Gaetano Tanzilli
- Department of Cardiovascular Sciences, Sapienza University, Rome, Italy
| | | |
Collapse
|
4
|
Reskiawan A. Kadir R, Alwjwaj M, Ahmad Othman O, Rakkar K, Sprigg N, Bath PM, Bayraktutan U. Inhibition of oxidative stress delays senescence and augments functional capacity of endothelial progenitor cells. Brain Res 2022; 1787:147925. [DOI: 10.1016/j.brainres.2022.147925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/01/2022] [Accepted: 04/19/2022] [Indexed: 01/07/2023]
|
5
|
Effects of Shen-Yuan-Dan on Periprocedural Myocardial Injury and the Number of Peripheral Blood Endothelial Progenitor Cells in Patients with Unstable Angina Pectoris Undergoing Elective Percutaneous Coronary Intervention. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9055585. [PMID: 35035512 PMCID: PMC8759927 DOI: 10.1155/2022/9055585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/29/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVES We aimed to investigate the effects of Shen-Yuan-Dan (SYD), a Chinese medicine preparation, on periprocedural myocardial injury (PMI) and the number of peripheral blood endothelial progenitor cells (EPCs) in patients with unstable angina pectoris (UA) who underwent elective percutaneous coronary intervention (PCI). METHODS Patients were randomly divided into the experimental (group A) and control (group B) groups through the random number table method. In group A, patients concurrently received the conventional western treatment and SYD orally (4 capsules/time, 3 times/d, from 3 d before surgery to 7 d after surgery). In group B, patients received conventional Western medicine treatment. Both groups underwent coronary angiography, and patients undergoing PCI were eventually included in the study. The following patient data were collected: incidence of PMI, serum CK-MB content before PCI, 4 h, 24 h, and 7 d after PCI, number of CD45dim/-CD34+CD309+ peripheral venous EPCs, and number of CD184 coexpressed EPCs. The incidence of adverse reactions and 30-day major adverse cardiovascular events (MACEs) were also recorded. RESULTS Sixty-two patients were finally included in this study, with 32 and 30 in groups A and B, respectively. In group A, the number of peripheral blood EPCs and the number of CD184 coexpressed EPCs at 1 h before surgery were higher than those at 3 d before surgery (37.24 ± 25.20 vs. 22.78 ± 9.60/ml; P < 0.001 and 23.38 ± 15.30 vs. 13.54 ± 8.08/ml; P < 0.001, resp.). The number of peripheral blood EPCs and number of CD184 coexpressed EPCs at 4 h after surgery were lower than those at 1 h before surgery (25.30 ± 11.90 vs. 37.24 ± 25.20/ml; P=0.019 and 15.38 ± 8.78 vs. 23.38 ± 15.30/ml; P=0.013, resp.), but there was no difference at 24 h and at 7 d after surgery in comparison with that at 1 h before surgery (P > 0.05). In group B, compared with that at 1 h before surgery, there existed a decline in the number of EPCs in peripheral blood and the number of CD184 coexpressed EPCs at 4 h after surgery, but without a statistical difference (P > 0.05). Comparing both groups, it was found that the incidence of PMI in group A was lower (6.25% vs. 26.67%; P=0.04), and the serum CK-MB content at 4 and 24 h after surgery was also lower than that in group B (17.33 ± 5.83 vs. 20.38 ± 4.32 U/l; P=0.048 and 15.79 ± 5.32 vs. 19.10 ± 4.93 U/l; P=0.030, resp.). The number of EPCs in peripheral blood and the number of CD184 coexpressed EPCs in group A were higher than those in group B at 1 h before surgery (37.24 ± 25.20 vs. 22.36 ± 12.26/ml; P=0.034 and 23.38 ± 15.30 vs. 13.12 ± 14.62/ml; P=0.013, resp.). In addition, there were no obvious adverse reactions and no 30-day MACEs in both groups during the trial. CONCLUSION SYD can reduce PMI and promote the mobilization of EPCs in the perioperative period of elective PCI in patients with UA.
Collapse
|
6
|
Dai H, Wang J, Shi Z, Ji X, Huang Y, Zhou R. Predictive value of miRNA-21 on coronary restenosis after percutaneous coronary intervention in patients with coronary heart disease: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e24966. [PMID: 33725861 PMCID: PMC7969307 DOI: 10.1097/md.0000000000024966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Evidence reveals that microRNA (miRNA) can predict coronary restenosis in patients suffering from coronary heart disease (CHD) after percutaneous coronary intervention (PCI). Perhaps, miRNA-21 is a promising biomarker for the diagnosis of coronary restenosis after PCI. However, the accuracy of miRNA-21 has not been systematically evaluated. Therefore, it is necessary to perform meta-analysis to certify the diagnostic values of miRNA-21 on coronary restenosis after PCI. METHODS China National Knowledge Infrastructure, Wanfang, VIP, and China Biology Medicine disc, PubMed, EMBASE, Cochrane Library, and Web of Science were searched for relevant studies to explore the potential diagnostic values of miRNA-21 on coronary restenosis after PCI from inception to January 2021. All data were extracted by 2 experienced researchers independently. The risk of bias about the meta-analysis was confirmed by the Quality Assessment of Diagnostic Accuracy Studies-2. The data extracted were synthesized and heterogeneity was investigated as well. All of the above statistical analyses were carried out with Stata 16.0. RESULTS This study proved the pooled diagnostic performance of miRNA-21 on coronary restenosis after PCI. CONCLUSION This study clarified confusions about the specificity and sensitivity of miRNA-21 on coronary restenosis after PCI, thus further guiding their promotion and application. ETHICS AND DISSEMINATION Ethical approval is not required for this study. The systematic review will be published in a peer-reviewed journal, presented at conferences, and shared on social media platforms. This review would be disseminated in a peer-reviewed journal or conference presentations. OSF REGISTRATION NUMBER DOI 10.17605/OSF.IO/356QK.
Collapse
Affiliation(s)
| | | | | | | | | | - Rui Zhou
- Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, Zhejiang province, China
| |
Collapse
|
7
|
Dai C, Zhou Y, Zhang B, Ge J. Bletilla striata Polysaccharide Prevents Restenosis of Vein Graft Through Inhibiting Cell Proliferation in Rat Model. Cell Transplant 2020; 29:963689720969173. [PMID: 33267619 PMCID: PMC7873761 DOI: 10.1177/0963689720969173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Coronary artery bypass grafting (CABG) is still the most effective method for the treatment of coronary heart disease at present. However, the restenosis of vein grafts following surgery is an important complication of CABG. In this study, Bletilla striata polysaccharide (BSP), which has anti-inflammatory and antiproliferative properties, was used to prevent or delay the proliferation of venous bridge endothelial cells in a rat model. We transplanted the autogenous jugular vein to the rat carotid artery, and wrapped it with BSP. We carried out experiments in 4 groups (with 24 rats in each group): a high-BSP dose group (the HBG group, 10 mg), a low-BSP dose group (the LBG group, 3 mg), a pluronic gel group (the gel group), and a control group. Vein grafts were then harvested after 3, 14, and 28 days. Following transplantation, we used color Doppler ultrasound to assess the patency of the transplanted vein. The grafted veins were stained with hematoxylin and eosin (H&E) and Masson to measure the thickness of the intima and media of the blood vessels. Proliferating cell nuclear antigen (PCNA) and vascular cell adhesion molecule-l (VCAM-1) were assessed in vein grafts by immunohistochemistry and western blotting. We detected a significant reduction in the proliferation of endothelial cells in the BSP group compared with the control group (P < 0.05). H&E and Masson's trichrome staining showed that the extent of intimal hyperplasia in transplanted veins from the high BSP group (HBS) (67.42 ± 0.54 µm) and low BSP group (LBS) (120.83 ± 1.87 µm) groups was significantly lower than that in the control group (257.03 ± 2.74 µm, P < 0.05), and that the extent of intimal hyperplasia in the HBS group was lower than that in the LBS group (P < 0.05). We found that the effect of BSP was dose-dependent, as high-dose BSP had a more significant inhibitory effect on cell proliferation than low-dose BSP (P < 0.05). The results of immunohistochemistry and western blotting showed that PCNA and VCAM-1 were significantly downregulated in the BSP treatment group on days 14 and 28 (P < 0.05). BSP inhibits the proliferation of vascular endothelial cells and reduces the expression of VCAM-1, thereby inhibiting the restenosis of graft veins.
Collapse
Affiliation(s)
- Chun Dai
- Anhui Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Yang Zhou
- Department of Cardiac Surgery, Anhui Provincial Hospital, Anhui Medical University, Hefei, PR China
| | - Bing Zhang
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Jianjun Ge
- Anhui Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| |
Collapse
|
8
|
Zhou H, Tu Q, Zhang Y, Xie HQ, Shuai QY, Huang XC, Fu J, Cao Z. Shear stress improves the endothelial progenitor cell function via the CXCR7/ERK pathway axis in the coronary artery disease cases. BMC Cardiovasc Disord 2020; 20:403. [PMID: 32894067 PMCID: PMC7487552 DOI: 10.1186/s12872-020-01681-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Dysfunction in the late Endothelial Progenitor Cells (EPCs) is responsible for endothelial repair in patients with Coronary Artery Disease (CAD), and the shear stress is beneficial for EPCs function. However, the impact of shear stress on the capacity of EPCs in CAD patients has not been elucidated yet. The C-X-C chemokine receptor 7/extracellular signal-regulated kinase (CXCR7)/(ERK) pathways are identified to regulate EPCs function in CAD patients. Here, we hypothesize that shear stress upregulates the CXCR7/ERK pathways, which restore the EPCs function in CAD patients. METHODS The human Peripheral Blood Mononuclear Cells (PBMCs) were collected from healthy adults and CAD patients and then used for EPCs cultivation. The Lv-siRNA for human CXCR7 was transfected into induced EPCs isolated from the CAD patients. Meanwhile, the EPCs from CAD patients were subjected to shear stress generated by a biomimetic device. Next, the cell viability, migration, tube formation, and apoptosis were detected by CCK-8, Transwell assay, Matrigel, and flow cytometry, respectively. Also, the CXCR7/ERK pathways in human EPCs were analyzed by Western blotting and qRT-PCR. RESULT Compared to the EPCs collected from normal adults, the CAD patient-derived EPCs showed reduced in vitro vasculogenic capacity. Also, the level of CXCR7 in CAD patient-derived EPCs was significantly reduced compared to the EPCs of healthy subjects. Meanwhile, the extracellular signal-regulated kinase (ERK), which represents a CXCR7 downstream signaling pathway, had decreased phosphorylation level. The shear stress treatment augmented the CXCR7 expression and also elevated ERK phosphorylation, which is comparable to the up-regulation of CAD patient-derived EPCs function. Further, the small interfering RNA (siRNA)-mediated CXCR7 knockdown diminished the enhanced migration, adhesion, and tube formation capacity of shear stress treated CAD patient-derived EPCs. CONCLUSION Up-regulation of the CXCR7/ERK pathways by shear stress can be a promising new target in enhancing the vasculogenic ability of CAD patient-derived EPCs.
Collapse
Affiliation(s)
- Hua Zhou
- Department of Medical Ultrasound, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Qiang Tu
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yan Zhang
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Hua Qiang Xie
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Qing Yun Shuai
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xiao Chuan Huang
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Jie Fu
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Zheng Cao
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| |
Collapse
|
9
|
Lopes-Coelho F, Silva F, Gouveia-Fernandes S, Martins C, Lopes N, Domingues G, Brito C, Almeida AM, Pereira SA, Serpa J. Monocytes as Endothelial Progenitor Cells (EPCs), Another Brick in the Wall to Disentangle Tumor Angiogenesis. Cells 2020; 9:cells9010107. [PMID: 31906296 PMCID: PMC7016533 DOI: 10.3390/cells9010107] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/22/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022] Open
Abstract
Bone marrow contains endothelial progenitor cells (EPCs) that, upon pro-angiogenic stimuli, migrate and differentiate into endothelial cells (ECs) and contribute to re-endothelialization and neo-vascularization. There are currently no reliable markers to characterize EPCs, leading to their inaccurate identification. In the past, we showed that, in a panel of tumors, some cells on the vessel wall co-expressed CD14 (monocytic marker) and CD31 (EC marker), indicating a putative differentiation route of monocytes into ECs. Herein, we disclosed monocytes as potential EPCs, using in vitro and in vivo models, and also addressed the cancer context. Monocytes acquired the capacity to express ECs markers and were able to be incorporated into blood vessels, contributing to cancer progression, by being incorporated in tumor neo-vasculature. Reactive oxygen species (ROS) push monocytes to EC differentiation, and this phenotype is reverted by cysteine (a scavenger and precursor of glutathione), which indicates that angiogenesis is controlled by the interplay between the oxidative stress and the scavenging capacity of the tumor microenvironment.
Collapse
Affiliation(s)
- Filipa Lopes-Coelho
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (F.L.-C.); (F.S.); (S.G.-F.); (G.D.); (S.A.P.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof. Lima Basto 1099-023 Lisboa, Portugal; (C.M.); (A.M.A.)
| | - Fernanda Silva
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (F.L.-C.); (F.S.); (S.G.-F.); (G.D.); (S.A.P.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof. Lima Basto 1099-023 Lisboa, Portugal; (C.M.); (A.M.A.)
| | - Sofia Gouveia-Fernandes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (F.L.-C.); (F.S.); (S.G.-F.); (G.D.); (S.A.P.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof. Lima Basto 1099-023 Lisboa, Portugal; (C.M.); (A.M.A.)
| | - Carmo Martins
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof. Lima Basto 1099-023 Lisboa, Portugal; (C.M.); (A.M.A.)
| | - Nuno Lopes
- Instituto de Biologia Experimental e Tecnológica, Avenida da República, Estação Agronómica, 2780-157 Oeiras, Portugal; (N.L.); (C.B.)
| | - Germana Domingues
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (F.L.-C.); (F.S.); (S.G.-F.); (G.D.); (S.A.P.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof. Lima Basto 1099-023 Lisboa, Portugal; (C.M.); (A.M.A.)
| | - Catarina Brito
- Instituto de Biologia Experimental e Tecnológica, Avenida da República, Estação Agronómica, 2780-157 Oeiras, Portugal; (N.L.); (C.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - António M Almeida
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof. Lima Basto 1099-023 Lisboa, Portugal; (C.M.); (A.M.A.)
- Hospital da Luz, Av. Lusíada 100, 1500-650 Lisboa, Portugal
| | - Sofia A Pereira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (F.L.-C.); (F.S.); (S.G.-F.); (G.D.); (S.A.P.)
| | - Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (F.L.-C.); (F.S.); (S.G.-F.); (G.D.); (S.A.P.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof. Lima Basto 1099-023 Lisboa, Portugal; (C.M.); (A.M.A.)
- Correspondence: ; Tel.: +350-217-229-800; Fax: +351-217-248-756
| |
Collapse
|