1
|
Yamane T, Okumoto T, Tamura T, Oishi Y. Acute ultraviolet B irradiation increases cholesterol and decreases Cyp7a1 expression in the liver of female mice. Lipids 2024; 59:181-191. [PMID: 38958246 DOI: 10.1002/lipd.12407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024]
Abstract
Recent studies have demonstrated that ultraviolet B (UVB) irradiation impacts both skin and hepatic functions. In this study, we investigated the effects of UVB irradiation on cholesterol metabolism in the liver. Hairless mice were exposed to UVB (1.6 J/cm2) irradiation. Dorsal skin and liver samples were collected 24 h after exposure. Total RNA was extracted from the skin and liver tissues, and used for DNA microarray analysis and real-time polymerase chain reaction (PCR). Hepatic mRNA expression of Cyp7a1 revealed a 4.4-fold decrease in the UVB (+) group compared to that in the UVB (-) group. No differences were observed in the expression of the other genes related to cholesterol metabolism. Additionally, the level of hepatic total cholesterol in the UVB (+) group was significantly higher than in the UVB (-) group. These findings suggest that acute UVB irradiation increases total cholesterol levels and decreases Cyp7a1 expression in the liver.
Collapse
Affiliation(s)
- Takumi Yamane
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Takahiro Okumoto
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Tomoko Tamura
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Yuichi Oishi
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
2
|
Quan QL, Yoon KN, Lee JS, Kim EJ, Lee DH. Impact of ultraviolet radiation on cardiovascular and metabolic disorders: The role of nitric oxide and vitamin D. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2023; 39:573-581. [PMID: 37731181 DOI: 10.1111/phpp.12914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND/PURPOSE Ultraviolet (UV) radiation has both harmful and beneficial effects on human skin and health. It causes skin damage, aging, and cancer; however, it is also a primary source of vitamin D. Additionally, UV radiation can impact energy metabolism and has protective effects on several cardiovascular and metabolic disorders in mice and humans. However, the mechanisms of UV protection against these diseases have not been clearly identified. METHODS This review summarizes the systemic effects of UV radiation on hypertension and several metabolic diseases such as obesity, diabetes, and nonalcoholic fatty liver disease (NAFLD) in mice, and we also consider the mechanisms of action of the related regulators nitric oxide (NO) and vitamin D. RESULTS UV exposure can lower blood pressure and prevent the development of cardiovascular diseases and metabolic disorders, such as metabolic syndrome, obesity, and type 2 diabetes, primarily through mechanisms that depend on UV-induced NO. UV radiation may also effectively delay the onset of type 1 diabetes through mechanisms that rely on UV-induced vitamin D. UV-induced NO and vitamin D play roles in preventing and slowing the progression of NAFLD. CONCLUSION UV exposure is a promising nonpharmacological intervention for cardiovascular and metabolic disorders. NO and vitamin D may play a crucial role in mediating these effects. However, further investigations are required to elucidate the exact mechanisms and determine the optimal dosage and exposure duration of UV radiation.
Collapse
Affiliation(s)
- Qing-Ling Quan
- Department of Dermatology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Korea
| | - Kyeong-No Yoon
- Department of Dermatology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Korea
| | - Ji Su Lee
- Department of Dermatology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Korea
| | - Eun Ju Kim
- Department of Dermatology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Korea
| |
Collapse
|
3
|
De Silva WGM, McCarthy BY, Han J, Yang C, Holland AJA, Stern H, Dixon KM, Tang EKY, Tuckey RC, Rybchyn MS, Mason RS. The Over-Irradiation Metabolite Derivative, 24-Hydroxylumister-ol 3, Reduces UV-Induced Damage in Skin. Metabolites 2023; 13:775. [PMID: 37512482 PMCID: PMC10383208 DOI: 10.3390/metabo13070775] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
The hormonal form of vitamin D3, 1,25(OH)2D3, reduces UV-induced DNA damage. UV exposure initiates pre-vitamin D3 production in the skin, and continued UV exposure photoisomerizes pre-vitamin D3 to produce "over-irradiation products" such as lumisterol3 (L3). Cytochrome P450 side-chain cleavage enzyme (CYP11A1) in skin catalyzes the conversion of L3 to produce three main derivatives: 24-hydroxy-L3 [24(OH)L3], 22-hydroxy-L3 [22(OH)L3], and 20,22-dihydroxy-L3 [20,22(OH)L3]. The current study investigated the photoprotective properties of the major over-irradiation metabolite, 24(OH)L3, in human primary keratinocytes and human skin explants. The results indicated that treatment immediately after UV with either 24(OH)L3 or 1,25(OH)2D3 reduced UV-induced cyclobutane pyrimidine dimers and oxidative DNA damage, with similar concentration response curves in keratinocytes, although in skin explants, 1,25(OH)2D3 was more potent. The reductions in DNA damage by both compounds were, at least in part, the result of increased DNA repair through increased energy availability via increased glycolysis, as well as increased DNA damage recognition proteins in the nucleotide excision repair pathway. Reductions in UV-induced DNA photolesions by either compound occurred in the presence of lower reactive oxygen species. The results indicated that under in vitro and ex vivo conditions, 24(OH)L3 provided photoprotection against UV damage similar to that of 1,25(OH)2D3.
Collapse
Affiliation(s)
| | - Bianca Yuko McCarthy
- School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jeremy Han
- School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Chen Yang
- School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Andrew J A Holland
- Douglas Cohen Department of Paediatric Surgery, The Children's Hospital at Westmead Clinical School, The Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Harvey Stern
- Department of Plastic and Constructive Surgery, The Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
- Strathfield Private Hospital, Sydney, NSW 2042, Australia
| | - Katie Marie Dixon
- School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Edith Kai Yan Tang
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Robert Charles Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Mark Stephen Rybchyn
- School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rebecca Sara Mason
- School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
- School of Life and Environmental Sciences, Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
Wang J, Pothana K, Chen S, Sawant H, Travers JB, Bihl J, Chen Y. Ultraviolet B Irradiation Alters the Level and miR Contents of Exosomes Released by Keratinocytes in Diabetic Condition. Photochem Photobiol 2021; 98:1122-1130. [PMID: 34931322 PMCID: PMC9511213 DOI: 10.1111/php.13583] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/14/2021] [Indexed: 12/17/2022]
Abstract
Ultraviolet B (UVB) stimulates the generation of extracellular vesicles, which elicit systemic effects. Here, we studied whether UVB affects the release and microRNA (miR) content of keratinocyte exosomes (EXs) in diabetic conditions. In vitro, we examined the UVB effects on affecting EX release from keratinocyte HaCaT cells (HaCaT‐EX) pretreated with high glucose. HaCaT‐EX functions were evaluated on Schwann cells (SCs). In vivo, UVB‐induced miR change in skin EXs of diabetic db/db mice was analyzed. The miRs of interest were validated in HaCaT‐EXs. We found that: (1) UVB promoted HaCaT‐EX generation in dose‐ and time‐dependent manners; 100 and 1800 J m−2 of UVB had the most prominent effect and were selected as effective low‐ and high‐fluence UVB in vitro. (2) A total of 13 miRs were differentially expressed >3‐fold in skin EXs in UVB‐treated db/db mice; miR‐126 was the most up‐regulated by low‐fluence UVB. (3) Functional studies revealed that the SC viability was improved by low‐fluence UVB HaCaT‐EXs, while worsened by high‐fluence UVB HaCaT‐EXs. (4) MiR‐126 inhibitor attenuated the effects induced by low‐fluence UVB HaCaT‐EXs. Our data have demonstrated that low‐ and high‐fluence UVBs promote HaCaT‐EX generation but differentially affect exosomal miR levels and functions under diabetic conditions.
Collapse
Affiliation(s)
- Jinju Wang
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Kartheek Pothana
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Shuzhen Chen
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Harshal Sawant
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Jeffrey B Travers
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA.,The Dayton V.A. Medical Center, Dayton, OH, USA
| | - Ji Bihl
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Yanfang Chen
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
5
|
FATP2-targeted therapies - A role beyond fatty liver disease. Pharmacol Res 2020; 161:105228. [PMID: 33027714 DOI: 10.1016/j.phrs.2020.105228] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 12/31/2022]
Abstract
Fatty acid transport protein 2 (FATP2) is a multifunctional protein whose specific function is determined by the type of located cell, its intracellular location, or organelle-specific interactions. In the different diseases setting, a newfound appreciation for the biological function of FATP2 has come into view. Two main functions of FATP2 are to activate long-chain fatty acids (LCFAs) as a very long-chain acyl-coenzyme A (CoA) synthetase (ACSVL) and to transport LCFAs as a fatty acid transporter. FATP2 is not only involved in the occurrence of nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM), but also plays an important role in lithogenic diet-induced cholelithiasis, the formation of cancer tumor immunity, the progression of chronic kidney disease (CKD), and the regulation of zoledronate-induced nephrotoxicity. Herein, we review the updated information on the role of FATP2 in related diseases. In particular, we discuss the new functions of FATP2 and propose that FATP2 is a potential clinical biomarker and therapeutic target. In conclusion, regulatory strategies for FATP2 may bring new treatment options for cancer and lipid metabolism-related disorders.
Collapse
|
6
|
Dhamrait GK, Panchal K, Fleury NJ, Abel TN, Ancliffe MK, Crew RC, Croft K, Fernandez BO, Minnion M, Hart PH, Lucas RM, Mark PJ, Feelisch M, Weller RB, Matthews V, Gorman S. Characterising nitric oxide-mediated metabolic benefits of low-dose ultraviolet radiation in the mouse: a focus on brown adipose tissue. Diabetologia 2020; 63:179-193. [PMID: 31713010 DOI: 10.1007/s00125-019-05022-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/29/2019] [Indexed: 12/20/2022]
Abstract
AIMS/HYPOTHESIS Exposure to sunlight has the potential to suppress metabolic dysfunction and obesity. We previously demonstrated that regular exposure to low-doses of ultraviolet radiation (UVR) reduced weight gain and signs of diabetes in male mice fed a high-fat diet, in part via release of nitric oxide from skin. Here, we explore further mechanistic pathways through which low-dose UVR exerts these beneficial effects. METHODS We fed mice with a luciferase-tagged Ucp1 gene (which encodes uncoupling protein-1 [UCP-1]), referred to here as the Ucp1 luciferase transgenic mouse ('Thermomouse') a high-fat diet and examined the effects of repeated exposure to low-dose UVR on weight gain and development of metabolic dysfunction as well as UCP-1-dependent thermogenesis in interscapular brown adipose tissue (iBAT). RESULTS Repeated exposure to low-dose UVR suppressed the development of glucose intolerance and hepatic lipid accumulation via dermal release of nitric oxide while also reducing circulating IL-6 (compared with mice fed a high-fat diet only). Dietary nitrate supplementation did not mimic the effects of low-dose UVR. A single low dose of UVR increased UCP-1 expression (by more than twofold) in iBAT of mice fed a low-fat diet, 24 h after exposure. However, in mice fed a high-fat diet, there was no effect of UVR on UCP-1 expression in iBAT (compared with mock-treated mice) when measured at regular intervals over 12 weeks. More extensive circadian studies did not identify any substantial shifts in UCP-1 expression in mice exposed to low-dose UVR, although skin temperature at the interscapular site was reduced in UVR-exposed mice. The appearance of cells with a white adipocyte phenotype ('whitening') in iBAT induced by consuming the high-fat diet was suppressed by exposure to low-dose UVR in a nitric oxide-dependent fashion. Significant shifts in the expression of important core gene regulators of BAT function (Dio2, increased more than twofold), fatty acid transport (increased Fatp2 [also known as Slc27a2]), lipolysis (decreased Atgl [also known as Pnpla2]), lipogenesis (decreased Fasn) and inflammation (decreased Tnf), and proportions of macrophages (increased twofold) were observed in iBAT of mice exposed to low-dose UVR. These effects were independent of nitric oxide released from skin. CONCLUSIONS/INTERPRETATION Our results suggest that non-burning (low-dose) UVR suppresses the BAT 'whitening', steatotic and pro-diabetic effects of consuming a high-fat diet through skin release of nitric oxide, with some metabolic and immune pathways in iBAT regulated by UVR independently of nitric oxide.
Collapse
Affiliation(s)
- Gursimran K Dhamrait
- Telethon Kids Institute, University of Western Australia, PO Box 855, West Perth, WA, 6782, Australia
| | - Kunjal Panchal
- Telethon Kids Institute, University of Western Australia, PO Box 855, West Perth, WA, 6782, Australia
| | - Naomi J Fleury
- Telethon Kids Institute, University of Western Australia, PO Box 855, West Perth, WA, 6782, Australia
| | - Tamara N Abel
- Telethon Kids Institute, University of Western Australia, PO Box 855, West Perth, WA, 6782, Australia
| | - Mathew K Ancliffe
- Telethon Kids Institute, University of Western Australia, PO Box 855, West Perth, WA, 6782, Australia
| | - Rachael C Crew
- School of Human Sciences, University of Western Australia, Perth, WA, Australia
| | - Kevin Croft
- School of Biomedical Science - Royal Perth Hospital Unit, The University of Western Australia, Perth, WA, Australia
| | - Bernadette O Fernandez
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Magdalena Minnion
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Prue H Hart
- Telethon Kids Institute, University of Western Australia, PO Box 855, West Perth, WA, 6782, Australia
| | - Robyn M Lucas
- National Centre for Epidemiology and Population Health, Research School of Population Health, Australian National University, Canberra, ACT, Australia
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, WA, Australia
| | - Peter J Mark
- School of Human Sciences, University of Western Australia, Perth, WA, Australia
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Richard B Weller
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Vance Matthews
- School of Biomedical Science - Royal Perth Hospital Unit, The University of Western Australia, Perth, WA, Australia
| | - Shelley Gorman
- Telethon Kids Institute, University of Western Australia, PO Box 855, West Perth, WA, 6782, Australia.
| |
Collapse
|
7
|
Tse BCY, Byrne SN. Lipids in ultraviolet radiation-induced immune modulation. Photochem Photobiol Sci 2020; 19:870-878. [DOI: 10.1039/d0pp00146e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ultraviolet (UV) radiation modulates cutaneous lipids which in turn mediates immune suppression – a key mechanism conferring both detrimental and beneficial impacts of sun exposure on human health.
Collapse
Affiliation(s)
- Benita C. Y. Tse
- The University of Sydney
- School of Medical Sciences
- Faculty of Medicine and Health
- Sydney
- Australia
| | - Scott N. Byrne
- The University of Sydney
- School of Medical Sciences
- Faculty of Medicine and Health
- Sydney
- Australia
| |
Collapse
|
8
|
Systematic Review of the Effects of Ultraviolet Radiation on Markers of Metabolic Dysfunction. Clin Biochem Rev 2019; 40:147-162. [PMID: 31530965 DOI: 10.33176/aacb-19-00026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Emerging findings suggest that exposure to ultraviolet wavelengths of sunlight modulates metabolic function. Here we review the metabolic effects of exposure to ultraviolet radiation (UVR), focusing on the effects of phototherapies (that administer UVR), and advice to increase sun exposure in individuals enrolled in clinical trials and intervention studies. We identified 25 studies in which the effects of UVR on metabolic outcomes were examined, including: narrowband ultraviolet B phototherapy (nbUVB, n = 12); psoralen ultraviolet A phototherapy (n = 4); other types of UVR phototherapy (n = 5); and sun exposure advice (n = 5). Most studies recruited a small number of participants (≤100), who were middle-aged individuals undergoing treatment for psoriasis flare, with phototherapy or sun exposure advice administered for ≤12 weeks. Data obtained at baseline were usually compared with an endpoint following treatment with UVR, for a limited number of outcomes. There were few studies in which markers of glucose metabolism were assessed, with some beneficial effects of sun exposure (but not phototherapy) reported. LDL-cholesterol levels were lower in individuals receiving sun exposure advice, while treatment with nbUVB reduced blood concentrations of inflammatory markers (C-reactive protein and interleukin-6). Future studies should focus on determining whether the effects of these interventions change with time, and if they are dependent on the source of UVR (i.e. phototherapy or sun exposure) and wavelength(s) of light administered. Furthermore, studies need to measure a variety of (clinical) markers of glucose metabolism, adiposity and inflammation, control for factors such as skin type and sex, and stratify participants for metabolic disease diagnosis.
Collapse
|