1
|
Ashraf A, Ijaz MU, Muzammil S, Nazir MM, Zafar S, Zihad SMNK, Uddin SJ, Hasnain MS, Nayak AK. The role of bixin as antioxidant, anti-inflammatory, anticancer, and skin protecting natural product extracted from Bixa orellana L. Fitoterapia 2023; 169:105612. [PMID: 37454777 DOI: 10.1016/j.fitote.2023.105612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Since long, medicinal plants or herbs are being used in different traditional treatment systems as therapeutic agents to treat a variety of illnesses. Bixa orellana L., an medicinal plant (family: Bixaceae), is an Ayurvedic herb used to treat dyslipidemia, diarrhoea, and hepatitis since ancient times. B. orellana L., seeds contain an orange-red coloured component known as bixin (C25H30O4), which constitutes 80% of the extract.Chemically, bixin is a natural apocarotenoid, biosynthesized through the oxidative degradation of C40 carotenoids. Bixin helps to regulate the Nrf2/MyD88/TLR4 and TGF-1/PPAR-/Smad3 pathways, which further give it antifibrosis, antioxidant, and anti-inflammatory properties. This current review article presents a comprehensive review of bixin as an anti-inflammatory, antioxidant, anticancer,and skin protecting natural product. In addition, the biosynthesis and molecular target of bixin, along with bixin extraction techniques, are also presented.
Collapse
Affiliation(s)
- Asma Ashraf
- Department of Zoology, Government College University, Faisalabad 38000, Pakistan.
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad 38040, Pakistan
| | - Saima Muzammil
- Department of Microbiology, Government College University, Faisalabad 38000, Pakistan
| | | | - Saima Zafar
- Department of Zoology, Government College University, Faisalabad 38000, Pakistan
| | - S M Neamul Kabir Zihad
- Department of Pharmacy, State University of Bangladesh, Dhaka 1205, Bangladesh; Pharmacy Discipline, Khulna University, Khulna 9208, Bangladesh
| | | | - Md Saquib Hasnain
- Department of Pharmacy, Palamau Institute of Pharmacy, Chianki, Daltonganj 822102, Jharkhand, India.
| | - Amit Kumar Nayak
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India.
| |
Collapse
|
2
|
Enayati A, Rezaei A, Falsafi SR, Rostamabadi H, Malekjani N, Akhavan-Mahdavi S, Kharazmi MS, Jafari SM. Bixin-loaded colloidal nanodelivery systems, techniques and applications. Food Chem 2023; 412:135479. [PMID: 36709686 DOI: 10.1016/j.foodchem.2023.135479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/22/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
Bixin is the cis-carotenoid from the seed of achiote tree or annatto. It is an approved liposoluble apocarotenoid by FDA as colorant and additive in the food industry. Nonetheless, bixin is unstable in the presence of oxygen, light, high pHs (alkali) and heat; thereby reducing its bioavailability/bioactivity, and also, with a low solubility in water. Some biopolymeric (e.g., nanofibers, nanogels, and nanotubes) and lipid-based nanocarriers (nanoliposomes, niosomes, hexosomes, nanoemulsions, solid-lipid nanoparticles, and nanostructured lipid carriers) have been introduced for bixin. Thus, this review focuses on the updated information regarding bixin-loaded nanodelivery platforms. Moreover, it provides a comprehensive review of bioavailability, physicochemical properties, and applications of nanoencapsulated-bixin as an additive, its release rate and safety issues. These findings will bring potential strategies for the usage of nanocarriers in managing bixin defaults to improve its broad application in various industries.
Collapse
Affiliation(s)
- Ayesheh Enayati
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Atefe Rezaei
- Department of Food Science and Technology, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seid Reza Falsafi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Narjes Malekjani
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Sahar Akhavan-Mahdavi
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | | | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
3
|
Varghese R, Efferth T, Ramamoorthy S. Carotenoids for lung cancer chemoprevention and chemotherapy: Promises and controversies. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154850. [PMID: 37187036 DOI: 10.1016/j.phymed.2023.154850] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Lung cancer is one of the leading causes of malignancy in the world. Several therapeutical and chemopreventive approaches have been practised to mitigate the disease. The use of phytopigments including carotenoids is a well-known approach. However, some of the prominent clinical trials interrogated the efficacy of carotenoids in lung cancer prevention. METHODS A elaborate literature survey have been performed investigating in vitro, in vivo, and clinical studies reported on the administration of carotenoids for chemoprevention and chemotherapy. RESULTS Tobacco consumption, genetic factors, dietary patterns, occupational carcinogens, lung diseases, infection, and sex disparities are some of the prominent factors leading to lung cancer. Significant evidence has been found underlining the efficiency of carotenoids in alleviating cancer. In vitro studies have proven that carotenoids act through PI3K/ AKT/mTOR, ERK-MAPK pathways and induce apoptosis through PPAR, IFNs, RAR, which are p53 intermediators in lung cancer signaling. Animal models and cell lines studies showed promising results, while the outcomes of clinical trials are contradictory and require further verification. CONCLUSION The carotenoids exert chemotherapeutic and chemopreventive effects on lung tumors which has been evidenced in numerous investigations. However, further analyses are necessary to the answer the uncertainties raised by several clinical trials.
Collapse
Affiliation(s)
- Ressin Varghese
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute, Technology, Vellore 632014, India
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Siva Ramamoorthy
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute, Technology, Vellore 632014, India.
| |
Collapse
|
4
|
Haslea ostrearia Pigment Marennine Affects Key Actors of Neuroinflammation and Decreases Cell Migration in Murine Neuroglial Cell Model. Int J Mol Sci 2023; 24:ijms24065388. [PMID: 36982463 PMCID: PMC10049552 DOI: 10.3390/ijms24065388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Haslea ostrearia, a cosmopolitan marine pennate diatom, produces a characteristic blue pigment called marennine that causes the greening of filter-feeding organisms, such as oysters. Previous studies evidenced various biological activities of purified marennine extract, such as antibacterial, antioxidant and antiproliferative effects. These effects could be beneficial to human health. However, the specific biological activity of marennine remains to be characterized, especially regarding primary cultures of mammals. In the present study, we aimed to determine in vitro the effects of a purified extract of marennine on neuroinflammatory and cell migratory processes. These effects were assessed at non-cytotoxic concentrations of 10 and 50μg/mL on primary cultures of neuroglial cells. Marennine strongly interacts with neuroinflammatory processes in the immunocompetent cells of the central nervous system, represented by astrocytes and microglial cells. An anti-migratory activity based on a neurospheres migration assay has also been observed. These results encourage further study of Haslea blue pigment effects, particularly the identification of molecular and cellular targets affected by marennine, and strengthen previous studies suggesting that marennine has bioactivities which could be beneficial for human health applications.
Collapse
|
5
|
Nurcahyanti ADR, Satriawan N, Sharopov F. Free radical scavenging synergism of fucoxanthin with lipophilic plant products. Nat Prod Res 2023; 37:782-787. [PMID: 36796788 DOI: 10.1080/14786419.2022.2084737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Fucoxanthin demonstrates potential bioactivity, gaining greater interest with many prospective applications. The fundamental activity of fucoxanthin is antioxidant. However, some findings also report the pro-oxidant potential of carotenoids in particular concentrations and environments. In many applications, fucoxanthin requires additional materials to improve bioavailability and stability, such as lipophilic plant products (LPP). Despite much-growing evidence, little is known how fucoxanthin interacts with LPP, which is susceptible to an oxidative reaction. We hypothesised that lower concentration of fucoxanthin exerts a synergistic effect in combination with LPP. The low molecular weight of LPP may exhibit greater activity than long-chain LPP, and so it does with the concentration of unsaturated moieties. We performed free radical-scavenging assay of fucoxanthin combined with some essential oils and edible oils. Chou-Talalay theorem was employed to depict the combination effect. The current study demonstrates a staple finding and constitutes theoretical viewpoints before further fucoxanthin's utilization with LPP.
Collapse
Affiliation(s)
- Agustina Dwi Retno Nurcahyanti
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Natasha Satriawan
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Farukh Sharopov
- Research Institution "Chinese-Tajik Innovation Center for Natural Products", National Academy of Sciences of Tajikistan, Dushanbe, Tajikistan
| |
Collapse
|
6
|
Chandra F, Tania TF, Nurcahyanti ADR. Bixin and Fuxoxanthin Alone and in Combination with Cisplatin Regulate ABCC1 and ABCC2 Transcription in A549 Lung Cancer Cells. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2023; 15:15-20. [PMID: 37313537 PMCID: PMC10259734 DOI: 10.4103/jpbs.jpbs_50_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/04/2023] [Accepted: 02/16/2023] [Indexed: 06/15/2023] Open
Abstract
Background The ATP-Binding Cassette (ABC) transporter has long been studied to confer drug resistance in human tumors and play important role in metabolic processes and cellular signaling. The overexpression of ABCB1, ABCC1, ABCC2, ABCC3, and ABCG2 leads to decreased sensitivity of lung cancer to cisplatin. At the transcription level, the expression of ABC transporters is highly regulated and requires the complex interplay of factors involved in differentiation and development, cell survival and apoptosis upon intrinsic and environmental stress. The p53 regulation of drug-resistance genes is also complex yet not well understood. Previously, we demonstrated the synergistic interaction between bixin or fucoxanthin with cisplatin in A549 lung cancer cells. Objectives Current study aims to identify whether carotenoids enhancing therapeutic effect of Cisplatin due to the ability to reverse drug resistance associated proteins, such as ABC transporter and regulating the tumor suppressor corresponding gene, p53. Methods Real-Time Quantitative-Polymerase Chain Reaction (RT-qPCR) was performed to estimate the expression level of ABCC1 and ABCC2, and p53 of A549 cell lines in response to carotenoids alone and in combination with cisplatin. Results and Conclusion The administration of bixin or fucoxanthin decreases the expression of ABCC1 and ABCC2. Both carotenoids, either alone or in combination with cisplatin, upregulated p53 gene expression indicating the mechanism of proliferation inhibition and apoptosis occurs via the p53 caspase-independent pathway.
Collapse
Affiliation(s)
- Ferdy Chandra
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Teresa F. Tania
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Agustina D. R. Nurcahyanti
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| |
Collapse
|
7
|
Mathew JE, Ramamoorthy S. Elucidation of the interaction of apocarotenoids with calf thymus DNA by biophysical techniques and in vitro study in MCF-7 cells to explore their potential in cancer therapy. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:1083-1089. [PMID: 37605726 PMCID: PMC10440139 DOI: 10.22038/ijbms.2023.69926.15213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 05/03/2023] [Indexed: 08/23/2023]
Abstract
Objectives DNA is one of the targets of cancer-therapeutic small molecules. Cisplatin, a DNA intercalator, is one of the first-line drugs in the cancer chemo regimen which comes with health-compromising side effects during chemotherapy. The synergistic effect of natural molecules with cisplatin can help to potentiate its anti-cancer efficacy and decrease its negative effect on health. Here, we report the interaction of cisplatin with calf thymus-DNA (ct-DNA) in combination with natural molecules like apocarotenoids which are reported for their therapeutic properties. Materials and Methods The combinatorial effect of apocarotenoids on ct-DNA was explored through various biophysical techniques such as UV-Visible spectroscopy, circular dichroism studies, DNA melt curve analysis, viscosity measurements, and an in vitro study in MCF-7 cells by cell cycle analysis. Results UV-Visible spectroscopy studies suggest apocarotenoids and their combination shows a non-intercalative mode of binding. Circular dichroism analysis showed no major changes in DNA form during the interaction of DNA with apocarotenoids and their respective combinations with cisplatin, which is suggestive of the groove-binding mode of apocarotenoids. DNA melt curve analysis showed a decrease in the intensity of the fluorescence for apocarotenoids with cisplatin which indicates the possibility of DNA interaction through groove binding. Viscosity studies suggested a groove binding mode of interaction of ct-DNA with apocarotenoids and their combination as there was minimal change in the viscosity measurements. The in vitro analysis exhibits that the apocarotenoids and their combination have a considerable effect on DNA synthesis. Conclusion This study provides a better perspective on the possible mode of interaction between ct-DNA and natural molecules along with cisplatin.
Collapse
Affiliation(s)
- Jill Elza Mathew
- School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Siva Ramamoorthy
- School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
8
|
Pajot A, Hao Huynh G, Picot L, Marchal L, Nicolau E. Fucoxanthin from Algae to Human, an Extraordinary Bioresource: Insights and Advances in up and Downstream Processes. Mar Drugs 2022; 20:md20040222. [PMID: 35447895 PMCID: PMC9027613 DOI: 10.3390/md20040222] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 12/11/2022] Open
Abstract
Fucoxanthin is a brown-colored pigment from algae, with great potential as a bioactive molecule due to its numerous properties. This review aims to present current knowledge on this high added-value pigment. An accurate analysis of the biological function of fucoxanthin explains its wide photon absorption capacities in golden-brown algae. The specific chemical structure of this pigment also leads to many functional activities in human health. They are outlined in this work and are supported by the latest studies in the literature. The scientific and industrial interest in fucoxanthin is correlated with great improvements in the development of algae cultures and downstream processes. The best fucoxanthin producing algae and their associated culture parameters are described. The light intensity is a major influencing factor, as it has to enable both a high biomass growth and a high fucoxanthin content. This review also insists on the most eco-friendly and innovative extraction methods and their perspective within the next years. The use of bio-based solvents, aqueous two-phase systems and the centrifugal partition chromatography are the most promising processes. The analysis of the global market and multiple applications of fucoxanthin revealed that Asian companies are major actors in the market with macroalgae. In addition, fucoxanthin from microalgae are currently produced in Israel and France, and are mostly authorized in the USA.
Collapse
Affiliation(s)
- Anne Pajot
- Ifremer, GENALG Laboratory, Unité PHYTOX, F-44000 Nantes, France; (G.H.H.); (E.N.)
- Correspondence:
| | - Gia Hao Huynh
- Ifremer, GENALG Laboratory, Unité PHYTOX, F-44000 Nantes, France; (G.H.H.); (E.N.)
| | - Laurent Picot
- Unité Mixte de Recherche CNRS 7266 Littoral Environnement et Sociétés (LIENSs), Université La Rochelle, F-17042 La Rochelle, France;
| | - Luc Marchal
- Génie des Procédés Environnement (GEPEA), Université Nantes, F-44000 Saint Nazaire, France;
| | - Elodie Nicolau
- Ifremer, GENALG Laboratory, Unité PHYTOX, F-44000 Nantes, France; (G.H.H.); (E.N.)
| |
Collapse
|