1
|
FitzGerald LM, Jung CH, Wong EM, Joo JE, Bassett JK, Dowty JG, Wang X, Dai JY, Stanford JL, O'Callaghan N, Nottle T, Pedersen J, Giles GG, Southey MC. Detection of differentially methylated CpGs between tumour and adjacent benign cells in diagnostic prostate cancer samples. Sci Rep 2024; 14:17877. [PMID: 39095452 PMCID: PMC11297152 DOI: 10.1038/s41598-024-66488-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Differentially methylated CpG sites (dmCpGs) that distinguish prostate tumour from adjacent benign tissue could aid in the diagnosis and prognosis of prostate cancer. Previously, the identification of such dmCpGs has only been undertaken in radical prostatectomy (RP) samples and not primary diagnostic tumour samples (needle biopsy or transurethral resection of the prostate). We interrogated an Australian dataset comprising 125 tumour and 43 adjacent histologically benign diagnostic tissue samples, including 41 paired samples, using the Infinium Human Methylation450 BeadChip. Regression analyses of paired tumour and adjacent benign samples identified 2,386 significant dmCpGs (Bonferroni p < 0.01; delta-β ≥ 40%), with LASSO regression selecting 16 dmCpGs that distinguished tumour samples in the full Australian diagnostic dataset (AUC = 0.99). Results were validated in independent North American (npaired = 19; AUC = 0.87) and The Cancer Genome Atlas (TCGA; npaired = 50; AUC = 0.94) RP datasets. Two of the 16 dmCpGs were in genes that were significantly down-regulated in Australian tumour samples (Bonferroni p < 0.01; GSTM2 and PRKCB). Ten additional dmCpGs distinguished low (n = 34) and high Gleason (n = 88) score tumours in the diagnostic Australian dataset (AUC = 0.95), but these performed poorly when applied to the RP datasets (North American: AUC = 0.66; TCGA: AUC = 0.62). The DNA methylation marks identified here could augment and improve current diagnostic tests and/or form the basis of future prognostic tests.
Collapse
Affiliation(s)
- Liesel M FitzGerald
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.
| | - Chol-Hee Jung
- Melbourne Bioinformatics, University of Melbourne, Parkville, VIC, Australia
| | - Ee Ming Wong
- Precision Medicine, School of Clinical Sciences at Monash Health Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - JiHoon E Joo
- Centre for Epidemiology and Biostatistics, School of Global and Population Health, University of Melbourne, Parkville, Australia
| | - Julie K Bassett
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
| | - James G Dowty
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, Australia
| | - Xiaoyu Wang
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - James Y Dai
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Janet L Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Neil O'Callaghan
- Precision Medicine, School of Clinical Sciences at Monash Health Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Tim Nottle
- TissuPath, Mount Waverley, Melbourne, VIC, Australia
| | - John Pedersen
- TissuPath, Mount Waverley, Melbourne, VIC, Australia
| | - Graham G Giles
- Precision Medicine, School of Clinical Sciences at Monash Health Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
- Centre for Epidemiology and Biostatistics, School of Global and Population Health, University of Melbourne, Parkville, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
2
|
Borbiev T, Kohaar I, Petrovics G. Clinical Biofluid Assays for Prostate Cancer. Cancers (Basel) 2023; 16:165. [PMID: 38201592 PMCID: PMC10777952 DOI: 10.3390/cancers16010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/11/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
This mini review summarizes the currently available clinical biofluid assays for PCa. The second most prevalent cancer worldwide is PCa. PCa is a heterogeneous disease, with a large percentage of prostate tumors being indolent, and with a relatively slow metastatic potential. However, due to the high case numbers, the absolute number of PCa-related deaths is still high. In fact, it causes the second highest number of cancer deaths in American men. As a first step for the diagnosis of PCa, the PSA test has been widely used. However, it has low specificity, which results in a high number of false positives leading to overdiagnosis and overtreatment. Newer derivatives of the original PSA test, including the Food and Drug Administration (FDA)-approved 4K (four kallikreins) and the PHI (Prostate Health Index) blood tests, have higher specificities. Tissue-based PCa tests are problematic as biopsies are invasive and have limited accuracy due to prostate tumor heterogeneity. Liquid biopsies offer a minimally or non-invasive choice for the patients, while providing a more representative reflection of the spatial heterogeneity in the prostate. In addition to the abovementioned blood-based tests, urine is a promising source of PCa biomarkers, offering a supplementary avenue for early detection and improved tumor classification. Four urine-based PCa tests are either FDA- or CLIA-approved: PCA3 (PROGENSA), ExoDX Prostate Intelliscore, MiPS, and SelectMDx. We will discuss these urine-based, as well as the blood-based, clinical PCa tests in more detail. We also briefly discuss a few promising biofluid marker candidates (DNA methylation, micro-RNAs) which are not in clinical application. As no single assay is perfect, we envision that a combination of biomarkers, together with imaging, will become the preferred practice.
Collapse
Affiliation(s)
- Talaibek Borbiev
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; (T.B.); (I.K.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Indu Kohaar
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; (T.B.); (I.K.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Gyorgy Petrovics
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; (T.B.); (I.K.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| |
Collapse
|
3
|
Eickelschulte S, Riediger AL, Angeles AK, Janke F, Duensing S, Sültmann H, Görtz M. Biomarkers for the Detection and Risk Stratification of Aggressive Prostate Cancer. Cancers (Basel) 2022; 14:cancers14246094. [PMID: 36551580 PMCID: PMC9777028 DOI: 10.3390/cancers14246094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Current strategies for the clinical management of prostate cancer are inadequate for a precise risk stratification between indolent and aggressive tumors. Recently developed tissue-based molecular biomarkers have refined the risk assessment of the disease. The characterization of tissue biopsy components and subsequent identification of relevant tissue-based molecular alterations have the potential to improve the clinical decision making and patient outcomes. However, tissue biopsies are invasive and spatially restricted due to tumor heterogeneity. Therefore, there is an urgent need for complementary diagnostic and prognostic options. Liquid biopsy approaches are minimally invasive with potential utility for the early detection, risk stratification, and monitoring of tumors. In this review, we focus on tissue and liquid biopsy biomarkers for early diagnosis and risk stratification of prostate cancer, including modifications on the genomic, epigenomic, transcriptomic, and proteomic levels. High-risk molecular alterations combined with orthogonal clinical parameters can improve the identification of aggressive tumors and increase patient survival.
Collapse
Affiliation(s)
- Samaneh Eickelschulte
- Junior Clinical Cooperation Unit, Multiparametric Methods for Early Detection of Prostate Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Anja Lisa Riediger
- Junior Clinical Cooperation Unit, Multiparametric Methods for Early Detection of Prostate Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Arlou Kristina Angeles
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Florian Janke
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Stefan Duensing
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Holger Sültmann
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Magdalena Görtz
- Junior Clinical Cooperation Unit, Multiparametric Methods for Early Detection of Prostate Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221-42-2603
| |
Collapse
|
4
|
DeLouize AM, Eick G, Karam SD, Snodgrass JJ. Current and future applications of biomarkers in samples collected through minimally invasive methods for cancer medicine and population-based research. Am J Hum Biol 2022; 34:e23665. [PMID: 34374148 PMCID: PMC9894104 DOI: 10.1002/ajhb.23665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 02/04/2023] Open
Abstract
Despite advances in cancer medicine and research, invasive and potentially risky procedures such as biopsies, venous blood tests, imaging, colonoscopy, and pap smear tests are still primarily used for screening, staging, and assessing response to therapy. The development and interdisciplinary use of biomarkers from urine, feces, saliva, scent, and capillary blood collected with minimally invasive methods represents a potential opportunity for integration with biomarker analysis for cancers, both in clinical practice (e.g., in screening, treatment, and disease monitoring, and improved quality of life for patients) and population-based research (e.g., in epidemiology/public health, studies of social and environmental determinants, and evolutionary medicine). In this article, we review the scientific rationale, benefits, challenges, and potential opportunities for measuring cancer-related biomarkers in samples collected through minimally invasive methods.
Collapse
Affiliation(s)
| | - Geeta Eick
- Department of Anthropology, University of Oregon, Eugene, Oregon, USA
| | - Sana D. Karam
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - J. Josh Snodgrass
- Department of Anthropology, University of Oregon, Eugene, Oregon, USA
- Center for Global Health, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
5
|
Palanca-Ballester C, Rodriguez-Casanova A, Torres S, Calabuig-Fariñas S, Exposito F, Serrano D, Redin E, Valencia K, Jantus-Lewintre E, Diaz-Lagares A, Montuenga L, Sandoval J, Calvo A. Cancer Epigenetic Biomarkers in Liquid Biopsy for High Incidence Malignancies. Cancers (Basel) 2021; 13:cancers13123016. [PMID: 34208598 PMCID: PMC8233712 DOI: 10.3390/cancers13123016] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Early alterations in cancer include the deregulation of epigenetic events such as changes in DNA methylation and abnormal levels of non-coding (nc)RNAs. Although these changes can be identified in tumors, alternative sources of samples may offer advantages over tissue biopsies. Because tumors shed DNA, RNA, and proteins, biological fluids containing these molecules can accurately reflect alterations found in cancer cells, not only coming from the primary tumor, but also from metastasis and from the tumor microenvironment (TME). Depending on the type of cancer, biological fluids encompass blood, urine, cerebrospinal fluid, and saliva, among others. Such samples are named with the general term "liquid biopsy" (LB). With the advent of ultrasensitive technologies during the last decade, the identification of actionable genetic alterations (i.e., mutations) in LB is a common practice to decide whether or not targeted therapy should be applied. Likewise, the analysis of global or specific epigenetic alterations may also be important as biomarkers for diagnosis, prognosis, and even for cancer drug response. Several commercial kits that assess the DNA promoter methylation of single genes or gene sets are available, with some of them being tested as biomarkers for diagnosis in clinical trials. From the tumors with highest incidence, we can stress the relevance of DNA methylation changes in the following genes found in LB: SHOX2 (for lung cancer); RASSF1A, RARB2, and GSTP1 (for lung, breast, genitourinary and colon cancers); and SEPT9 (for colon cancer). Moreover, multi-cancer high-throughput methylation-based tests are now commercially available. Increased levels of the microRNA miR21 and several miRNA- and long ncRNA-signatures can also be indicative biomarkers in LB. Therefore, epigenetic biomarkers are attractive and may have a clinical value in cancer. Nonetheless, validation, standardization, and demonstration of an added value over the common clinical practice are issues needed to be addressed in the transfer of this knowledge from "bench to bedside".
Collapse
Affiliation(s)
- Cora Palanca-Ballester
- Biomarkers and Precision Medicine (UBMP) and Epigenomics Unit, IIS, La Fe, 46026 Valencia, Spain;
| | - Aitor Rodriguez-Casanova
- Cancer Epigenomics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706 Santiago de Compostela, Spain; (A.R.-C.); (A.D.-L.)
- Roche-CHUS Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain
| | - Susana Torres
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, 46014 Valencia, Spain
- TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de Valencia, 46014 Valencia, Spain
| | - Silvia Calabuig-Fariñas
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, 46014 Valencia, Spain
- TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de Valencia, 46014 Valencia, Spain
- Department of Pathology, Universitat de València, 46010 Valencia, Spain
| | - Francisco Exposito
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Diego Serrano
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Esther Redin
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Karmele Valencia
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
| | - Eloisa Jantus-Lewintre
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, 46014 Valencia, Spain
- TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de Valencia, 46014 Valencia, Spain
- Department of Biotechnology, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Angel Diaz-Lagares
- Cancer Epigenomics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706 Santiago de Compostela, Spain; (A.R.-C.); (A.D.-L.)
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
| | - Luis Montuenga
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Juan Sandoval
- Biomarkers and Precision Medicine (UBMP) and Epigenomics Unit, IIS, La Fe, 46026 Valencia, Spain;
- Correspondence: (J.S.); (A.C.)
| | - Alfonso Calvo
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
- Correspondence: (J.S.); (A.C.)
| |
Collapse
|
6
|
Epigenetic reprogramming during prostate cancer progression: A perspective from development. Semin Cancer Biol 2021; 83:136-151. [PMID: 33545340 DOI: 10.1016/j.semcancer.2021.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 12/15/2022]
Abstract
Conrad Waddington's theory of epigenetic landscape epitomize the process of cell fate and cellular decision-making during development. Wherein the epigenetic code maintains patterns of gene expression in pluripotent and differentiated cellular states during embryonic development and differentiation. Over the years disruption or reprogramming of the epigenetic landscape has been extensively studied in the course of cancer progression. Cellular dedifferentiation being a key hallmark of cancer allow us to take cues from the biological processes involved during development. Here, we discuss the role of epigenetic landscape and its modifiers in cell-fate determination, differentiation and prostate cancer progression. Lately, the emergence of RNA-modifications has also furthered our understanding of epigenetics in cancer. The overview of the epigenetic code regulating androgen signalling, and progression to aggressive neuroendocrine stage of PCa reinforces its gene regulatory functions during the development of prostate gland as well as cancer progression. Additionally, we also highlight the clinical implications of cancer cell epigenome, and discuss the recent advancements in the therapeutic strategies targeting the advanced stage disease.
Collapse
|
7
|
Age-Related Macular Degeneration: From Epigenetics to Therapeutic Implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1256:221-235. [PMID: 33848004 DOI: 10.1007/978-3-030-66014-7_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aberrant regulation of epigenetic mechanisms, including the two most common types; DNA methylation and histone modification have been implicated in common chronic progressive conditions, including Alzheimer disease, cardiovascular disease, and age-related macular degeneration (AMD). All these conditions are complex, meaning that environmental factors, genetic factors, and their interactions play a role in disease pathophysiology. Although genome wide association studies (GWAS), and studies on twins demonstrate the genetic/hereditary component to these complex diseases, including AMD, this contribution is much less than 100%. Moreover, the contribution of the hereditary component decreases in the advanced, later onset forms of these chronic diseases including AMD. This underscores the need to elucidate how the genetic and environmental factors function to exert their influence on disease pathophysiology. By teasing out epigenetic mechanisms and how they exert their influence on AMD, therapeutic targets can be tailored to prevent and/or slow down disease progression. Epigenetic studies that incorporate well-characterized patient tissue samples (including affected tissues and peripheral blood), similar to those relevant to gene expression studies, along with genetic and epidemiological information, can be the first step in developing appropriate functional assays to validate findings and identify potential therapies.
Collapse
|
8
|
van den Helder R, Wever BMM, van Trommel NE, van Splunter AP, Mom CH, Kasius JC, Bleeker MCG, Steenbergen RDM. Non-invasive detection of endometrial cancer by DNA methylation analysis in urine. Clin Epigenetics 2020; 12:165. [PMID: 33143739 PMCID: PMC7640380 DOI: 10.1186/s13148-020-00958-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/23/2020] [Indexed: 12/24/2022] Open
Abstract
Background The incidence of endometrial cancer is rising, and current diagnostics often require invasive biopsy procedures. Urine may offer an alternative sample type, which is easily accessible and allows repetitive self-sampling at home. Here, we set out to investigate the feasibility of endometrial cancer detection in urine using DNA methylation analysis. Results Urine samples of endometrial cancer patients (n = 42) and healthy controls (n = 46) were separated into three fractions (full void urine, urine sediment, and urine supernatant) and tested for three DNA methylation markers (GHSR, SST, ZIC1). Strong to very strong correlations (r = 0.77–0.92) were found amongst the different urine fractions. All DNA methylation markers showed increased methylation levels in patients as compared to controls, in all urine fractions. The highest diagnostic potential for endometrial cancer detection in urine was found in full void urine, with area under the receiver operating characteristic curve values ranging from 0.86 to 0.95. Conclusions This feasibility study demonstrates, for the first time, that DNA methylation analysis in urine could provide a non-invasive alternative for the detection of endometrial cancer. Further investigation is warranted to validate its clinical usefulness. Potential applications of this diagnostic approach include the screening of asymptomatic women, triaging women with postmenopausal bleeding symptoms, and monitoring women with increased endometrial cancer risk.
Collapse
Affiliation(s)
- Rianne van den Helder
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.,Antoni van Leeuwenhoek/Netherlands Cancer Institute, Center of Gynecologic Oncology Amsterdam, Department of Gynecologic Oncology, Amsterdam, The Netherlands
| | - Birgit M M Wever
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Nienke E van Trommel
- Antoni van Leeuwenhoek/Netherlands Cancer Institute, Center of Gynecologic Oncology Amsterdam, Department of Gynecologic Oncology, Amsterdam, The Netherlands
| | - Annina P van Splunter
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Constantijne H Mom
- Amsterdam UMC, University of Amsterdam, Center of Gynecologic Oncology Amsterdam, Department of Gynecologic Oncology, Cancer Center Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Jenneke C Kasius
- Amsterdam UMC, University of Amsterdam, Center of Gynecologic Oncology Amsterdam, Department of Gynecologic Oncology, Cancer Center Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Maaike C G Bleeker
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Renske D M Steenbergen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Lam D, Clark S, Stirzaker C, Pidsley R. Advances in Prognostic Methylation Biomarkers for Prostate Cancer. Cancers (Basel) 2020; 12:E2993. [PMID: 33076494 PMCID: PMC7602626 DOI: 10.3390/cancers12102993] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/24/2022] Open
Abstract
There is a major clinical need for accurate biomarkers for prostate cancer prognosis, to better inform treatment strategies and disease monitoring. Current clinically recognised prognostic factors, including prostate-specific antigen (PSA) levels, lack sensitivity and specificity in distinguishing aggressive from indolent disease, particularly in patients with localised intermediate grade prostate cancer. There has therefore been a major focus on identifying molecular biomarkers that can add prognostic value to existing markers, including investigation of DNA methylation, which has a known role in tumorigenesis. In this review, we will provide a comprehensive overview of the current state of DNA methylation biomarker studies in prostate cancer prognosis, and highlight the advances that have been made in this field. We cover the numerous studies into well-established candidate genes, and explore the technological transition that has enabled hypothesis-free genome-wide studies and the subsequent discovery of novel prognostic genes.
Collapse
Affiliation(s)
- Dilys Lam
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia; (D.L.); (S.C.); (C.S.)
| | - Susan Clark
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia; (D.L.); (S.C.); (C.S.)
- St. Vincent’s Clinical School, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Clare Stirzaker
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia; (D.L.); (S.C.); (C.S.)
- St. Vincent’s Clinical School, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Ruth Pidsley
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia; (D.L.); (S.C.); (C.S.)
- St. Vincent’s Clinical School, University of New South Wales, Sydney, New South Wales 2010, Australia
| |
Collapse
|
10
|
Carson JJK, Di Lena MA, Berman DM, Siemens DR, Mueller CR. Development and initial clinical correlation of a DNA methylation-based blood test for prostate cancer. Prostate 2020; 80:1038-1042. [PMID: 32506642 DOI: 10.1002/pros.24025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/19/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND One of the principle limitations for more precise management of advanced prostate cancer is the lack of accurate biomarkers allowing estimation of tumor burden, ongoing assessment of progression, and response to treatment. Although prostate-specific antigen (PSA) performs modestly, nonsecreting cancers including those with early castrate-resistance warrant investigation of other predictive biomarkers. The objectives of these studies were to develop and perform initial validation of a circulating tumor DNA (ctDNA) methylation assay. METHODS Methylation DETection of Circulating Tumor DNA (mDETECT) is a highly multiplexed targeted sequencing DNA methylation-based ctDNA blood test that captures the vast majority of prostate cancer phenotypes due to a careful development process that ensures that each probe region is methylated in at least 50% of all methylation-based subtypes and is not methylated in normal tissues. Next-generation sequencing of targeted polymerase chain reaction (PCR) products whose amplification is biased towards methylated DNA ensures the specificity of the assay by identifying multiple tumor-specific methylated CpG residues in each read. RESULTS The final test is comprised of 46 PCR probes to 40 regions. It is relatively resistant to contaminating normal DNA and as a result functions in both serum and plasma samples. The assay was initially validated in a variety of prostate cancer cell lines to ensure specificity. Using a small number of longitudinal samples from prostate cancer patients initiating androgen deprivation therapy, the ability of mDETECT to track tumor burden was assessed compared with PSA. The mDETECT test signal generally paralleled that of PSA increasing and decreasing commensurate with tumor evolution in these patients. In two cases it appeared to anticipate clinical progression by a number of months compared to PSA and in a PSA nonproducing case, it was able to track tumor progression. CONCLUSIONS mDETECT offers a promising tool for the assessment of prostate cancer burden based on the sensitive detection of prostate-specific ctDNA and requires further validation.
Collapse
Affiliation(s)
- Jacob J K Carson
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Michael A Di Lena
- Department of Urology, Queen's University, Kingston, Ontario, Canada
| | - David M Berman
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
- Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | - D Robert Siemens
- Department of Urology, Queen's University, Kingston, Ontario, Canada
| | - Christopher R Mueller
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
- Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
- Department of Biological and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
11
|
Demircan Tan B, Turan T, Yucel B, Altundag Kara S, Salman Yilmaz S, Yildirim A. Aberrant SOCS3 Promoter Methylation as a Noninvasive Diagnostic Biomarker for Locally Advanced Prostate Cancer. Medeni Med J 2020; 35:99-105. [PMID: 32733758 PMCID: PMC7384502 DOI: 10.5222/mmj.2020.58708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/12/2020] [Indexed: 11/05/2022] Open
Abstract
Objective The aim of this study was to investigate the promoter methylation status of Rasassociated domain family 1A (RASSF1A), O-6-methylguanine-DNA methyltransferase (MGMT), Phosphatase with tensin homology (PTEN) and Suppressor of cytokine signaling 3 (SOCS3) tumor suppressor genes and evaluate the clinical utility of these genes as noninvasive, blood-based epigenetic biomarkers for the diagnosis of Prostate Cancer (PCa). Method A total of 41 consecutive patients and 10 healthy control groups were enrolled in the study. Pyrosequencing was performed to analyze the methylation levels of the promoter regions of the four tumor suppressor genes in patients compared to healthy controls. Results The promoter methylation levels of RASSF1A, MGMT, PTEN and SOCS3 did not differ between the patient and control groups. However, SOCS3 promoter methylation level was significantly higher for patients having locally advanced PCa compared to those having localizedPCa (p<0.05). Conclusion Our results indicated that SOCS3 could be a useful, noninvasive blood-based epigenetic biomarker for the diagnosis of locally advanced PCa.
Collapse
Affiliation(s)
- Berna Demircan Tan
- Istanbul Medeniyet University, Faculty of Medicine Department of Medical Biology, Istanbul, Turkey
| | - Turgay Turan
- Istanbul Medeniyet University, Faculty of Medicine, Department of Urology, Istanbul, Turkey
| | - Burcu Yucel
- Istanbul Medeniyet University, Faculty of Medicine, Department of Medical Biology, Istanbul, Turkey
| | - Sedef Altundag Kara
- Istanbul Okan University, Faculty of Medicine, Department of Histology, Istanbul, Turkey
| | - Seda Salman Yilmaz
- Istanbul University Cerrahpasa, Faculty of Medicine, Department of Medical Genetics, Istanbul, Turkey
| | - Asif Yildirim
- Istanbul Medeniyet University, Faculty of Medicine, Department of Urology, Istanbul, Turkey
| |
Collapse
|
12
|
Dompe C, Janowicz K, Hutchings G, Moncrieff L, Jankowski M, Nawrocki MJ, Józkowiak M, Mozdziak P, Petitte J, Shibli JA, Dyszkiewicz-Konwińska M, Bruska M, Piotrowska-Kempisty H, Kempisty B, Nowicki M. Epigenetic Research in Stem Cell Bioengineering-Anti-Cancer Therapy, Regenerative and Reconstructive Medicine in Human Clinical Trials. Cancers (Basel) 2020; 12:E1016. [PMID: 32326172 PMCID: PMC7226111 DOI: 10.3390/cancers12041016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
The epigenome denotes all the information related to gene expression that is not contained in the DNA sequence but rather results from chemical changes to histones and DNA. Epigenetic modifications act in a cooperative way towards the regulation of gene expression, working at the transcriptional or post-transcriptional level, and play a key role in the determination of phenotypic variations in cells containing the same genotype. Epigenetic modifications are important considerations in relation to anti-cancer therapy and regenerative/reconstructive medicine. Moreover, a range of clinical trials have been performed, exploiting the potential of epigenetics in stem cell engineering towards application in disease treatments and diagnostics. Epigenetic studies will most likely be the basis of future cancer therapies, as epigenetic modifications play major roles in tumour formation, malignancy and metastasis. In fact, a large number of currently designed or tested clinical approaches, based on compounds regulating epigenetic pathways in various types of tumours, employ these mechanisms in stem cell bioengineering.
Collapse
Affiliation(s)
- Claudia Dompe
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (C.D.); (L.M.); (M.N.)
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (K.J.); (G.H.)
| | - Krzysztof Janowicz
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (K.J.); (G.H.)
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.); (M.J.N.); (M.D.-K.); (M.B.)
| | - Greg Hutchings
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (K.J.); (G.H.)
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.); (M.J.N.); (M.D.-K.); (M.B.)
| | - Lisa Moncrieff
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (C.D.); (L.M.); (M.N.)
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (K.J.); (G.H.)
| | - Maurycy Jankowski
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.); (M.J.N.); (M.D.-K.); (M.B.)
| | - Mariusz J. Nawrocki
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.); (M.J.N.); (M.D.-K.); (M.B.)
| | - Małgorzata Józkowiak
- Department of Toxicology, Poznan University of Medical Sciences, 61-631 Poznan, Poland; (M.J.); (H.P.-K.)
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA;
| | - Jim Petitte
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Jamil A. Shibli
- Department of Periodontology and Oral Implantology, Dental Research Division, University of Guarulhos, São Paulo 07023-070, Brazil;
| | - Marta Dyszkiewicz-Konwińska
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.); (M.J.N.); (M.D.-K.); (M.B.)
- Department of Biomaterials and Experimental Dentistry, Poznan University of Medical Sciences, 61 701 Poznan, Poland
| | - Małgorzata Bruska
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.); (M.J.N.); (M.D.-K.); (M.B.)
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 61-631 Poznan, Poland; (M.J.); (H.P.-K.)
| | - Bartosz Kempisty
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (C.D.); (L.M.); (M.N.)
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.); (M.J.N.); (M.D.-K.); (M.B.)
- Department of Obstetrics and Gynaecology, University Hospital and Masaryk University, 602 00 Brno, Czech Republic
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87 100 Torun, Poland
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (C.D.); (L.M.); (M.N.)
| |
Collapse
|
13
|
Zhang W, Zhang XJ, Chao SY, Chen SJ, Zhang ZJ, Zhao J, Lv YN, Yao JJ, Bai YY. Update on urine as a biomarker in cancer: a necessary review of an old story. Expert Rev Mol Diagn 2020; 20:477-488. [PMID: 32212972 DOI: 10.1080/14737159.2020.1743687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Cancer causes thousands of deaths worldwide each year. Therefore, monitoring of health status and the early diagnosis of cancer using noninvasive assays, such as the analysis of molecular biomarkers in urine, is essential. However, effective biomarkers for early diagnosis of cancer have not been established in many types of cancer.Areas covered: In this review, we discuss recent findings with regard to the use of urine composition as a biomarker in eleven types of cancer. We also highlight the use of urine biomarkers for improving early diagnosis.Expert opinion: Urinary biomarkers have been applied for clinical application of early diagnosis. The main limitation is a lack of integrated approaches for identification of new biomarkers in most cancer. The utilization of urinary biomarker detection will be promoted by improved detection methods and new data from different types of cancers. With the development of precision medicine, urinary biomarkers will play an increasingly important clinical role. Future early diagnosis would benefit from changes in the utilization of urinary biomarkers.
Collapse
Affiliation(s)
- Wei Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiao Jian Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Shen Yan Chao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Su Juan Chen
- Synthetic Biology Engineering Lab of Henan Province, School of Sciences and Technology, Xinxiang Medical University, Henan, China
| | - Zi Jing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, PR China
| | - Jian Zhao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Ya Nan Lv
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Jing Jie Yao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yue Yu Bai
- Animal Health Supervision in Henan Province, Zhengzhou, Henan, PR China
| |
Collapse
|
14
|
Santos PB, Patel H, Henrique R, Félix A. Can epigenetic and inflammatory biomarkers identify clinically aggressive prostate cancer? World J Clin Oncol 2020; 11:43-52. [PMID: 32133274 PMCID: PMC7046922 DOI: 10.5306/wjco.v11.i2.43] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/13/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer (PCa) is a highly prevalent malignancy and constitutes a major cause of cancer-related morbidity and mortality. It emerges through the acquisition of genetic and epigenetic alterations. Epigenetic modifications include DNA methylation, histone modifications and microRNA deregulation. These generate heritable transformations in the expression of genes but do not change the DNA sequence. Alterations in DNA methylation (hypo and hypermethylation) are the most characterized in PCa. They lead to genomic instability and inadequate gene expression. Major and minor-specific modifications in chromatin recasting are involved in PCa, with signs suggesting a dysfunction of enzymes modified by histones. MicroRNA deregulation also contributes to the initiation of PCa, including involvement in androgen receptor signalization and apoptosis. The influence of inflammation on prostate tumor carcinogenesis is currently much better known. Recent discoveries about microbial species resident in the urinary tract suggest that these are the initiators of chronic inflammation, promoting prostate inflammatory atrophy and eventually leading to PCa. Complete characterization of the relationship between the urinary microbiome and prostatic chronic inflammation will be crucial to develop plans for the prevention of PCa. The prevalent nature of epigenetic and inflammatory alterations may provide potential biomarkers for PCa diagnosis, treatment decisions, evaluation of prognosis and posttreatment surveillance.
Collapse
Affiliation(s)
- Pedro Bargão Santos
- Department of Urology, Prof. Doutor Fernando Fonseca Hospital, Amadora 2720-276, Portugal
| | - Hitendra Patel
- Department of Urology, University Hospital North Norway, Tromsø 9019, Norway
- Department of Urology, St George’s University Hospitals, Tooting, London SW17 0QT, United Kingdom
| | - Rui Henrique
- Departments of Pathology and Cancer Biology and Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto, Porto 4200-072, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto 4099-002, Portugal
| | - Ana Félix
- Department of Pathology, Portuguese Oncology Institute of Lisbon, Lisbon 1099-023, Portugal
- Department of Pathology, NOVA Medical School, Lisbon 1169-056, Portugal
| |
Collapse
|
15
|
Methylation silencing of TGF-β receptor type II is involved in malignant transformation of esophageal squamous cell carcinoma. Clin Epigenetics 2020; 12:25. [PMID: 32046777 PMCID: PMC7014638 DOI: 10.1186/s13148-020-0819-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/28/2020] [Indexed: 12/24/2022] Open
Abstract
Background Although massive studies have been conducted to investigate the mechanisms of esophageal squamous cell carcinoma (ESCC) carcinogenesis, the understanding of molecular alterations during the malignant transformation of epithelial dysplasia is still lacking, especially regarding epigenetic changes. Results To better characterize the methylation changes during the malignant transformation of epithelial dysplasia, a whole-genome bisulfite sequencing analysis was performed on a series of tumor, dysplastic, and non-neoplastic epithelial tissue samples from esophageal squamous cell carcinoma (ESCC) patients. Promoter hypermethylation in TGF-β receptor type II (TGFBR2), an important mediator of TGF-β signaling, was identified. Further, we evaluated the methylation and expression of TGFBR2 in tumor samples through The Cancer Genome Atlas multiplatform data as well as immunohistochemistry. Moreover, treatment of ESCC cell lines with5-Aza-2′-deoxycytidine, a DNA methyltransferase inhibitor, reactivated the expression of TGFBR2. The lentiviral mediating the overexpression of TGFBR2 inhibited the proliferation of ESCC cell line by inducing cell cycle G2/M arrest. Furthermore, the overexpression of TGFBR2 inhibited the tumor growth obviously in vivo. Conclusions The characterization of methylation silencing of TGFBR2 in ESCC will enable us to further explore whether this epigenetic change could be considered as a predictor of malignant transformation in esophageal epithelial dysplasia and whether use of a TGFBR2 agonist may lead to a new therapeutic strategy in patients with ESCC.
Collapse
|
16
|
Ma Y, He S, Gao A, Zhang Y, Zhu Q, Wang P, Yang B, Yin H, Li Y, Song J, Yue P, Li M, Zhang D, Liu Y, Wang X, Guo M, Jiao Y. Methylation silencing of TGF-β receptor type II is involved in malignant transformation of esophageal squamous cell carcinoma. Clin Epigenetics 2020. [PMID: 32046777 DOI: 10.1186/s13148-020-0819-6.pmid:32046777;pmcid:pmc7014638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND Although massive studies have been conducted to investigate the mechanisms of esophageal squamous cell carcinoma (ESCC) carcinogenesis, the understanding of molecular alterations during the malignant transformation of epithelial dysplasia is still lacking, especially regarding epigenetic changes. RESULTS To better characterize the methylation changes during the malignant transformation of epithelial dysplasia, a whole-genome bisulfite sequencing analysis was performed on a series of tumor, dysplastic, and non-neoplastic epithelial tissue samples from esophageal squamous cell carcinoma (ESCC) patients. Promoter hypermethylation in TGF-β receptor type II (TGFBR2), an important mediator of TGF-β signaling, was identified. Further, we evaluated the methylation and expression of TGFBR2 in tumor samples through The Cancer Genome Atlas multiplatform data as well as immunohistochemistry. Moreover, treatment of ESCC cell lines with5-Aza-2'-deoxycytidine, a DNA methyltransferase inhibitor, reactivated the expression of TGFBR2. The lentiviral mediating the overexpression of TGFBR2 inhibited the proliferation of ESCC cell line by inducing cell cycle G2/M arrest. Furthermore, the overexpression of TGFBR2 inhibited the tumor growth obviously in vivo. CONCLUSIONS The characterization of methylation silencing of TGFBR2 in ESCC will enable us to further explore whether this epigenetic change could be considered as a predictor of malignant transformation in esophageal epithelial dysplasia and whether use of a TGFBR2 agonist may lead to a new therapeutic strategy in patients with ESCC.
Collapse
Affiliation(s)
- Yarui Ma
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Research Building, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Siyuan He
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Research Building, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Aiai Gao
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, Research Building, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Ying Zhang
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Research Building, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Qing Zhu
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Research Building, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Pei Wang
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Research Building, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Beibei Yang
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Research Building, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Huihui Yin
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Research Building, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yifei Li
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Research Building, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Jinge Song
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Research Building, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Pinli Yue
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Research Building, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Mo Li
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Research Building, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Dandan Zhang
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yun Liu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaobing Wang
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Research Building, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| | - Mingzhou Guo
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, Research Building, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Yuchen Jiao
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Research Building, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
17
|
The Impact of Prostate Cancer Upgrading and Upstaging on Biochemical Recurrence and Cancer-Specific Survival. ACTA ACUST UNITED AC 2020; 56:medicina56020061. [PMID: 32033148 PMCID: PMC7074013 DOI: 10.3390/medicina56020061] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 01/18/2023]
Abstract
Background and Objectives: Significant numbers of prostate cancer (PCa) patients experience tumour upgrading and upstaging between prostate biopsy and radical prostatectomy (RP) specimens. The aim of our study was to investigate the role of grade and stage increase on surgical and oncological outcomes. Materials and Methods: Upgrading and upstaging rates were analysed in 676 treatment-naïve PCa patients who underwent RP with subsequent follow-up. Positive surgical margin (PSM), biochemical recurrence (BCR), metastasis-free survival (MFS), overall (OS) and cancer specific survival (CSS) were analysed according to upgrading and upstaging. Results: Upgrading was observed in 29% and upstaging in 22% of PCa patients. Patients undergoing upgrading or upstaging were 1.5 times more likely to have a PSM on RP pathology. Both upgrading and upstaging were associated with increased risk for BCR: 1.8 and 2.1 times, respectively. Mean time to BCR after RP was 2.1 years in upgraded cases and 2.7 years in patients with no upgrading (p < 0.001), while mean time to BCR was 1.9 years in upstaged and 2.8 years in non-upstaged cases (p < 0.001). Grade and stage increase after RP were associated with inferior MFS rates and ten-year CSS: 89% vs. 98% for upgrading (p = 0.039) and 87% vs. 98% for upstaging (p = 0.008). Conclusions: Currently used risk stratification models are associated with substantial misdiagnosis. Pathological upgrading and upstaging have been associated with inferior surgical results, substantial higher risk of BCR and inferior rates of important oncological outcomes, which should be considered when counselling PCa patients at the time of diagnosis or after definitive therapy.
Collapse
|
18
|
Constâncio V, Nunes SP, Moreira-Barbosa C, Freitas R, Oliveira J, Pousa I, Oliveira J, Soares M, Dias CG, Dias T, Antunes L, Henrique R, Jerónimo C. Early detection of the major male cancer types in blood-based liquid biopsies using a DNA methylation panel. Clin Epigenetics 2019; 11:175. [PMID: 31791387 PMCID: PMC6889617 DOI: 10.1186/s13148-019-0779-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/13/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Lung (LC), prostate (PCa) and colorectal (CRC) cancers are the most incident in males worldwide. Despite recent advances, optimal population-based cancer screening methods remain an unmet need. Due to its early onset, cancer specificity and accessibility in body fluids, aberrant DNA promoter methylation might be a valuable minimally invasive tool for early cancer detection. Herein, we aimed to develop a minimally invasive methylation-based test for simultaneous early detection of LC, PCa and CRC in males, using liquid biopsies. RESULTS Circulating cell-free DNA was extracted from 102 LC, 121 PCa and 100 CRC patients and 136 asymptomatic donors' plasma samples. Sodium-bisulfite modification and whole-genome amplification was performed. Promoter methylation levels of APCme, FOXA1me, GSTP1me, HOXD3me, RARβ2me, RASSF1Ame, SEPT9me and SOX17me were assessed by multiplex quantitative methylation-specific PCR. SEPT9me and SOX17me were the only biomarkers shared by all three cancer types, although they detected CRC with limited sensitivity. A "PanCancer" panel (FOXA1me, RARβ2me and RASSF1Ame) detected LC and PCa with 64% sensitivity and 70% specificity, complemented with "CancerType" panel (GSTP1me and SOX17me) which discriminated between LC and PCa with 93% specificity, but with modest sensitivity. Moreover, a HOXD3me and RASSF1Ame panel discriminated small cell lung carcinoma from non-small cell lung carcinoma with 75% sensitivity, 88% specificity, 6.5 LR+ and 0.28 LR-. An APCme and RASSF1Ame panel independently predicted disease-specific mortality in LC patients. CONCLUSIONS We concluded that a DNA methylation-based test in liquid biopsies might enable minimally invasive screening of LC and PCa, improving patient compliance and reducing healthcare costs. Moreover, it might assist in LC subtyping and prognostication.
Collapse
Affiliation(s)
- Vera Constâncio
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), LAB 3, F Bdg, 1st floor Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Master in Oncology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal
| | - Sandra P Nunes
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), LAB 3, F Bdg, 1st floor Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Catarina Moreira-Barbosa
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), LAB 3, F Bdg, 1st floor Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Rui Freitas
- Urology Clinic, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Jorge Oliveira
- Urology Clinic, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Inês Pousa
- Lung Cancer Clinic and Department of Medical Oncology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Júlio Oliveira
- Lung Cancer Clinic and Department of Medical Oncology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Marta Soares
- Lung Cancer Clinic and Department of Medical Oncology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Carlos Gonçalves Dias
- Digestive Tract Pathology Clinic and Surgical Oncology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Teresa Dias
- Digestive Tract Pathology Clinic and Surgical Oncology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Luís Antunes
- Department of Epidemiology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Rui Henrique
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), LAB 3, F Bdg, 1st floor Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), LAB 3, F Bdg, 1st floor Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal. .,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal.
| |
Collapse
|
19
|
Hua X, Liu Z, Zhou M, Tian Y, Zhao PP, Pan WH, Li CX, Huang XX, Liao ZX, Xian Q, Chen B, Hu Y, Leng L, Fang XW, Yu LN. LSAMP-AS1 binds to microRNA-183-5p to suppress the progression of prostate cancer by up-regulating the tumor suppressor DCN. EBioMedicine 2019; 50:178-190. [PMID: 31727599 PMCID: PMC6921238 DOI: 10.1016/j.ebiom.2019.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/24/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022] Open
Abstract
Background : Prostate cancer (PCa) is a leading cause of cancer-related death in males. Aberrant expression of long noncoding RNAs (lncRNAs) is frequently reported in human malignancies. This study was performed to explore the role of LSAMP-AS1 in epithelial-mesenchymal transition (EMT), proliferation, migration and invasion of PCa cells. Methods : Initially, the differentially expressed lncRNAs in PCa were screened out by microarray analysis. The clinicopathological and prognostic significance of LSAMP-AS1 was evaluated. LSAMP-AS1 was over-expressed or silenced to investigate the roles in EMT, proliferation, migration and invasion of PCa cells. Moreover, the relationships between LSAMP-AS1 and miR-183–5p, as well as miR-183–5p and decorin (DCN) were characterized. The tumorigenicity of PCa cells was verified in nude mice. Results : LSAMP-AS1 was poorly expressed in PCa tissues and cells. Low expression of LSAMP-AS1 was indicative of poor overall survival and disease-free survival, and related to Gleason score, TNM stage, and risk stratification. Over-expressed LSAMP-AS1 inhibited EMT, proliferation, migration and invasion of PCa cells, as well as tumor growth in nude mice. Meanwhile, over-expression of LSAMP-AS1 resulted in up-regulation of E-cadherin and down-regulation of Vimentin, N-cadherin, Ki67, PCNA, MMP-2, MMP-9, Ezrin and Fascin. Notably, LSAMP-AS1 competitively bound to miR-183–5p which directly targets DCN. It was confirmed that the inhibitory effect of LSAMP-AS1 on PCa cells was achieved by binding to miR-183–5p, thus promoting the expression of DCN. Conclusion : LSAMP-AS1 up-regulates the DCN gene by competitively binding to miR-183–5p, thus inhibiting EMT, proliferation, migration and invasion of PCa cells.
Collapse
Affiliation(s)
- Xing Hua
- Departments of Pathology, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou 510220, P.R. China
| | - Zhen Liu
- Department of Pathology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, P.R. China
| | - Min Zhou
- Department of Otolaryngology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Yan Tian
- Department of pathology, School of Basic Medical Sciences, Southern Medical University, Guanghou 510515, P.R.China; Department of pathology, Nanfang Hospital, Guanghou 510515, P.R. China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, P.R. China
| | - Pei-Pei Zhao
- Department of pathology, School of Basic Medical Sciences, Southern Medical University, Guanghou 510515, P.R.China; Department of pathology, Nanfang Hospital, Guanghou 510515, P.R. China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, P.R. China
| | - Wen-Hai Pan
- Departments of Pathology, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou 510220, P.R. China
| | - Chao-Xia Li
- Departments of Pathology, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou 510220, P.R. China
| | - Xiao-Xiao Huang
- Departments of Pathology, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou 510220, P.R. China
| | - Ze-Xiao Liao
- Departments of Pathology, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou 510220, P.R. China
| | - Qi Xian
- Departments of Pathology, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou 510220, P.R. China
| | - Bo Chen
- Departments of Pathology, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou 510220, P.R. China
| | - Yue Hu
- Departments of Pathology, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou 510220, P.R. China
| | - Lei Leng
- Departments of Pathology, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou 510220, P.R. China
| | - Xiao-Wei Fang
- Departments of Pathology, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou 510220, P.R. China
| | - Li-Na Yu
- Department of pathology, School of Basic Medical Sciences, Southern Medical University, Guanghou 510515, P.R.China; Department of pathology, Nanfang Hospital, Guanghou 510515, P.R. China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, P.R. China.
| |
Collapse
|
20
|
Bakavicius A, Daniunaite K, Zukauskaite K, Barisiene M, Jarmalaite S, Jankevicius F. Urinary DNA methylation biomarkers for prediction of prostate cancer upgrading and upstaging. Clin Epigenetics 2019; 11:115. [PMID: 31383039 PMCID: PMC6683454 DOI: 10.1186/s13148-019-0716-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/22/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Significant numbers of prostate cancer (PCa) patients experience tumour upstaging and upgrading in surgical specimens that cause serious problems in timely and proper selection of the treatment strategy. This study was aimed at the evaluation of a set of established epigenetic biomarkers as a noninvasive tool for more accurate PCa categorization before radical prostatectomy (RP). METHODS Quantitative methylation-specific PCR was applied for the methylation analysis of RARB, RASSF1, and GSTP1 in 514 preoperatively collected voided or catheterized urine samples from the single-centre cohort of 1056 treatment-naïve PCa patients who underwent RP. The rates of biopsy upgrading and upstaging were analysed in the whole cohort. RESULTS Pathological examination of RP specimens revealed Gleason score upgrading in 27.2% and upstaging in 20.3% of the patients with a total misclassification rate of 39.0%. DNA methylation changes in at least one gene were detected in more than 80% of urine samples. Combination of the PSA test with the three-gene methylation analysis in urine was a significant predictor of pathological upstaging and upgrading (P < 0.050), however, with limited increase in overall accuracy. The PSA test or each gene alone was not informative enough. CONCLUSIONS The urinary DNA methylation assay in combination with serum PSA may predict tumour stage or grade migration post-RP aiding in improved individual risk assessment and appropriate treatment selection. Clinical utility of these biomarkers should be proven in larger multi-centre studies.
Collapse
Affiliation(s)
- Arnas Bakavicius
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- National Cancer Institute, Vilnius, Lithuania
- Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Kristina Daniunaite
- National Cancer Institute, Vilnius, Lithuania
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Kristina Zukauskaite
- National Cancer Institute, Vilnius, Lithuania
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Marija Barisiene
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | | | - Feliksas Jankevicius
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- National Cancer Institute, Vilnius, Lithuania
| |
Collapse
|
21
|
Mazzu YZ, Yoshikawa Y, Nandakumar S, Chakraborty G, Armenia J, Jehane LE, Lee GSM, Kantoff PW. Methylation-associated miR-193b silencing activates master drivers of aggressive prostate cancer. Mol Oncol 2019; 13:1944-1958. [PMID: 31225930 PMCID: PMC6717747 DOI: 10.1002/1878-0261.12536] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/14/2019] [Accepted: 06/19/2019] [Indexed: 12/19/2022] Open
Abstract
Epigenetic silencing of miRNA is a primary mechanism of aberrant miRNA expression in cancer, and hypermethylation of miRNA promoters has been reported to contribute to prostate cancer initiation and progression. Recent data have shown that the miR‐193b promoter is hypermethylated in prostate cancer compared with normal tissue, but studies assessing its functional significance have not been performed. We aimed to elucidate the function of miR‐193b and identify its critical targets in prostate cancer. We observed an inverse correlation between miR‐193b level and methylation of its promoter in The Cancer Genome Atlas (TCGA) cohort. Overexpression of miR‐193b in prostate cancer cell lines inhibited invasion and induced apoptosis. We found that a majority of the top 150 genes downregulated when miR‐193b was overexpressed in liposarcoma are overexpressed in metastatic prostate cancer and that 41 miR‐193b target genes overlapped with the 86 genes in the aggressive prostate cancer subtype 1 (PCS1) signature. Overexpression of miR‐193b led to the inhibition of the majority of the 41 genes in prostate cancer cell lines. High expression of the 41 genes was correlated with recurrence of prostate cancer. Knockdown of miR‐193b targets FOXM1 and RRM2 in prostate cancer cells phenocopied overexpression of miR‐193b. Dual treatment with DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors decreased miR‐193b promoter methylation and restored inhibition of FOXM1 and RRM2. Our data suggest that silencing of miR‐193b through promoter methylation may release the inhibition of PCS1 genes, contributing to prostate cancer progression and suggesting a possible therapeutic strategy for aggressive prostate cancer.
Collapse
Affiliation(s)
- Ying Z Mazzu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Yuki Yoshikawa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Subhiksha Nandakumar
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Goutam Chakraborty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Joshua Armenia
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Lina E Jehane
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Gwo-Shu Mary Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Philip W Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
22
|
Larsen LK, Lind GE, Guldberg P, Dahl C. DNA-Methylation-Based Detection of Urological Cancer in Urine: Overview of Biomarkers and Considerations on Biomarker Design, Source of DNA, and Detection Technologies. Int J Mol Sci 2019; 20:ijms20112657. [PMID: 31151158 PMCID: PMC6600406 DOI: 10.3390/ijms20112657] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022] Open
Abstract
Changes in DNA methylation have been causally linked with cancer and provide promising biomarkers for detection in biological fluids such as blood, urine, and saliva. The field has been fueled by genome-wide characterization of DNA methylation across cancer types as well as new technologies for sensitive detection of aberrantly methylated DNA molecules. For urological cancers, urine is in many situations the preferred "liquid biopsy" source because it contains exfoliated tumor cells and cell-free tumor DNA and can be obtained easily, noninvasively, and repeatedly. Here, we review recent advances made in the development of DNA-methylation-based biomarkers for detection of bladder, prostate, renal, and upper urinary tract cancers, with an emphasis on the performance characteristics of biomarkers in urine. For most biomarkers evaluated in independent studies, there was great variability in sensitivity and specificity. We discuss issues that impact the outcome of DNA-methylation-based detection of urological cancer and account for the great variability in performance, including genomic location of biomarkers, source of DNA, and technical issues related to the detection of rare aberrantly methylated DNA molecules. Finally, we discuss issues that remain to be addressed to fully exploit the potential of DNA-methylation-based biomarkers in the clinic, including the need for prospective trials and careful selection of control groups.
Collapse
Affiliation(s)
| | - Guro Elisabeth Lind
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, the Norwegian Radium Hospital, NO-0424 Oslo, Norway.
| | - Per Guldberg
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark.
| | - Christina Dahl
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
23
|
Snoek BC, Splunter APV, Bleeker MCG, Ruiten MCV, Heideman DAM, Rurup WF, Verlaat W, Schotman H, Gent MV, Trommel NEV, Steenbergen RDM. Cervical cancer detection by DNA methylation analysis in urine. Sci Rep 2019; 9:3088. [PMID: 30816167 PMCID: PMC6395822 DOI: 10.1038/s41598-019-39275-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/11/2019] [Indexed: 12/20/2022] Open
Abstract
Urine samples provide a potential alternative to physician-taken or self-collected cervical samples for cervical screening. Screening by primary hrHPV testing requires additional risk assessment (so-called triage) of hrHPV-positive women. Molecular markers, such as DNA methylation, have proven most valuable for triage when applied to cervical specimens. This study was set out to compare hrHPV and DNA methylation results in paired urine and cervical scrapes, and to evaluate the feasibility of DNA methylation analysis in urine to detect cervical cancer. Urine samples (n = 41; native and sediment) and paired cervical scrapes (n = 38) from cervical cancer patients, and urine from 44 female controls, were tested for hrHPV and 6 methylation markers. Results on native urine and sediment were highly comparable. A strong agreement was found between hrHPV testing on urine and scrapes (kappa = 0.79). Also, methylation levels in urine were moderately to strongly correlated to those detected in scrapes (r = 0.508-0.717). All markers were significantly increased in urine from cervical cancer patients compared to controls and showed a good discriminatory power for cervical cancer (AUC = 0.744-0.887). Our results show a good agreement of urine-based molecular analysis with reference cervical samples, and suggest that urine-based DNA methylation testing may provide a promising strategy for cervical cancer detection.
Collapse
Affiliation(s)
- Barbara C Snoek
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pathology, Cancer Center Amsterdam, De Boelelaan, 1117, Amsterdam, Netherlands
| | - Annina P van Splunter
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pathology, Cancer Center Amsterdam, De Boelelaan, 1117, Amsterdam, Netherlands
| | - Maaike C G Bleeker
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pathology, Cancer Center Amsterdam, De Boelelaan, 1117, Amsterdam, Netherlands
| | - Maartje C van Ruiten
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pathology, Cancer Center Amsterdam, De Boelelaan, 1117, Amsterdam, Netherlands
| | - Daniëlle A M Heideman
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pathology, Cancer Center Amsterdam, De Boelelaan, 1117, Amsterdam, Netherlands
| | - W Frederik Rurup
- BIOS Lab on a Chip group, MESA+ and MIRA institutes, University of Twente, Enschede, Netherlands
| | - Wina Verlaat
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pathology, Cancer Center Amsterdam, De Boelelaan, 1117, Amsterdam, Netherlands
| | - Hans Schotman
- Amsterdam UMC, Vrije Universiteit Amsterdam, Clinical Chemistry, De Boelelaan, 1117, Amsterdam, Netherlands
| | - Mignon van Gent
- Department of Gynecologic Oncology, Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, Netherlands
| | - Nienke E van Trommel
- Department of Gynecologic Oncology, Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, Netherlands
| | - Renske D M Steenbergen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pathology, Cancer Center Amsterdam, De Boelelaan, 1117, Amsterdam, Netherlands.
| |
Collapse
|