1
|
Du Q, Zhang M, Gao A, He T, Guo M. Epigenetic silencing ZSCAN23 promotes pancreatic cancer growth by activating Wnt signaling. Cancer Biol Ther 2024; 25:2302924. [PMID: 38226836 PMCID: PMC10793710 DOI: 10.1080/15384047.2024.2302924] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/04/2024] [Indexed: 01/17/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most malignant tumor. Zinc finger and SCAN domain-containing protein 23 (ZSCAN23) is a new member of the SCAN domain family. The expression regulation and biological function remain to be elucidated. In this study, we explored the epigenetic regulation and the function of ZSCAN23 in PDAC. ZSCAN23 was methylated in 60.21% (171/284) of PDAC and its expression was regulated by promoter region methylation. The expression of ZSCAN23 inhibited cell proliferation, colony formation, migration, invasion, and induced apoptosis and G1/S phase arrest. ZSCAN23 suppressed Panc10.05 cell xenograft growth in mice. Mechanistically, ZSCAN23 inhibited Wnt signaling by interacting with myosin heavy chain 9 (MYH9) in pancreatic cancer cells. ZSCAN23 is frequently methylated in PDAC and may serve as a detective marker. ZSCAN23 suppresses PDAC cell growth both in vitro and in vivo.
Collapse
Affiliation(s)
- Qian Du
- Department of Gastroenterology and Hepatology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, People's Republic of China
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Meiying Zhang
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Aiai Gao
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Tao He
- Department of Pathology, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin, People's Republic of China
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
- National Key Laboratory of Kidney Diseases, the First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
2
|
Fang S, Wang J, Liu T, Jiang Y, Hua Q. SAR1A Induces Cell Growth and Epithelial-Mesenchymal Transition Through the PI3K/AKT/mTOR Pathway in Head and Neck Squamous Cell Carcinoma: An In Vitro and In Vivo Study. Biomedicines 2024; 12:2477. [PMID: 39595043 PMCID: PMC11591717 DOI: 10.3390/biomedicines12112477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
OBJECTIVES Head and neck squamous cell carcinoma (HNSCC) ranks sixth globally, with a 50% five-year survival rate. SAR1A exhibits high expression levels in various tumor types, yet its specific role in HNSCC remains to be clarified. METHODS In vitro assays, such as CCK8, EdU, colony formation, wound-healing, transwell, and Western blotting analyses, as well as in vivo assays, such as tumor xenografts and lung metastasis models, were conducted to evaluate the impacts of SAR1A on HNSCC proliferation, migration, and invasion. Transcriptome sequencing and KEGG enrichment pathway analysis revealed evident alterations in the PI3K/AKT/mTOR(PAM) pathways. LY294002 (a PI3K/AKT inhibitor) was used to investigate the role of the PAM pathway in proliferation, migration, and invasion in HNSCC. RESULTS Univariate and multivariate Cox regression were conducted to screen SAR1A as a gene prognostic biomarker in HNSCC, and it was validated in the Cancer Genome Atlas (TCGA) database. Functional assays demonstrated that the depletion of SAR1A leads to suppressed proliferation, migration, and invasion of HNSCC cells. This is accompanied by a decrease in the expression of epithelial-mesenchymal transition (EMT)-related markers in HNSCC cell lines. In addition, the diminished capacities of proliferation, migration, and invasion observed in SAR1A knockdown cells were reversed upon the overexpression of SAR1A. Furthermore, RNA-seq and KEGG enrichment analysis demonstrated a significant alteration in the PAM pathway following SAR1A knockdown. LY294002 effectively mitigated the increased proliferation, migration, and invasion induced by SAR1A overexpression. CONCLUSIONS SAR1A facilitates HNSCC proliferation and EMT via the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Shizhen Fang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan 430060, China; (S.F.); (J.W.); (T.L.)
- Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan 430060, China
| | - Jie Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan 430060, China; (S.F.); (J.W.); (T.L.)
- Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan 430060, China
| | - Tianyi Liu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan 430060, China; (S.F.); (J.W.); (T.L.)
| | - Yang Jiang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan 430060, China; (S.F.); (J.W.); (T.L.)
| | - Qingquan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan 430060, China; (S.F.); (J.W.); (T.L.)
| |
Collapse
|
3
|
Fu Q, Wu X, Lu Z, Chang Y, Jin Q, Jin T, Zhang M. TMEM205 induces TAM/M2 polarization to promote cisplatin resistance in gastric cancer. Gastric Cancer 2024; 27:998-1015. [PMID: 38850316 PMCID: PMC11335886 DOI: 10.1007/s10120-024-01517-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/26/2024] [Indexed: 06/10/2024]
Abstract
Cisplatin (DDP) is a basic chemotherapy drug for gastric cancer (GC). With the increase of DDP drug concentration in clinical treatment, cancer cells gradually became resistant. Therefore, it is necessary to find effective therapeutic targets to enhance the sensitivity of GC to DDP. Studies have shown that Transmembrane protein 205 (TMEM205) is overexpressed in DDP-resistant human epidermoid carcinoma cells and correlates with drug resistance, and database analyses show that TMEM 205 is also overexpressed in GC, but its role in cisplatin-resistant gastric cancer remains unclear. In this study, we chose a variety of experiments in vivo and vitro, aiming to investigate the role of TMEM 205 in cisplatin resistance in gastric cancer. The results showed that TMEM 205 promoted proliferation, stemness, epithelial-mesenchymal transition (EMT), migration and angiogenesis of gastric cancer cells through activation of the Wnt/β-catenin signaling pathway. In addition, TMEM205 promotes GC progression by inducing M2 polarization of tumor-associated macrophages (TAMs). These results suggest that TMEM205 may be an effective target to regulate the sensitivity of GC to DDP, providing a new therapeutic direction for clinical treatment.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Ultrasound Medicine, Affiliated Hospital of Yanbian University, Yanji, 133000, Jilin, China
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China
- Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China
| | - Xuwei Wu
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China
- Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China
- Department of Pathology, Chifeng Municipal Hospital, Chifeng, 024000, China
| | - Zhongqi Lu
- Department of Ultrasound Medicine, Affiliated Hospital of Yanbian University, Yanji, 133000, Jilin, China
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China
- Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China
| | - Ying Chang
- Department of Ultrasound Medicine, Affiliated Hospital of Yanbian University, Yanji, 133000, Jilin, China
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China
- Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China
| | - Quanxin Jin
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Tiefeng Jin
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China
- Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China
| | - Meihua Zhang
- Department of Health Examination Centre, Yanbian University Hospital, Yanji, 133002, China.
- Department of Ultrasound Medicine, Affiliated Hospital of Yanbian University, Yanji, 133000, Jilin, China.
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China.
| |
Collapse
|
4
|
Yao Y, Lv H, Zhang M, Li Y, Herman JG, Brock MV, Gao A, Wang Q, Fuks F, Zhang L, Guo M. Epigenetic silencing of BEND4, a novel DNA damage repair gene, is a synthetic lethal marker for ATM inhibitor in pancreatic cancer. Front Med 2024; 18:721-734. [PMID: 38926248 DOI: 10.1007/s11684-023-1053-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/04/2023] [Indexed: 06/28/2024]
Abstract
Synthetic lethality is a novel model for cancer therapy. To understand the function and mechanism of BEN domain-containing protein 4 (BEND4) in pancreatic cancer, eight cell lines and a total of 492 cases of pancreatic neoplasia samples were included in this study. Methylation-specific polymerase chain reaction, CRISPR/Cas9, immunoprecipitation assay, comet assay, and xenograft mouse model were used. BEND4 is a new member of the BEN domain family. The expression of BEND4 is regulated by promoter region methylation. It is methylated in 58.1% (176/303) of pancreatic ductal adenocarcinoma (PDAC), 33.3% (14/42) of intraductal papillary mucinous neoplasm, 31.0% (13/42) of pancreatic neuroendocrine tumor, 14.3% (3/21) of mucinous cystic neoplasm, 4.3% (2/47) of solid pseudopapillary neoplasm, and 2.7% (1/37) of serous cystic neoplasm. BEND4 methylation is significantly associated with late-onset PDAC (> 50 years, P < 0.01) and tumor differentiation (P < 0.0001), and methylation of BEND4 is an independent poor prognostic marker (P < 0.01) in PDAC. Furthermore, BEND4 plays tumor-suppressive roles in vitro and in vivo. Mechanistically, BEND4 involves non-homologous end joining signaling by interacting with Ku80 and promotes DNA damage repair. Loss of BEND4 increased the sensitivity of PDAC cells to ATM inhibitor. Collectively, the present study revealed an uncharacterized tumor suppressor BEND4 and indicated that methylation of BEND4 may serve as a potential synthetic lethal marker for ATM inhibitor in PDAC treatment.
Collapse
Affiliation(s)
- Yuanxin Yao
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Honghui Lv
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Meiying Zhang
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yuan Li
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China
| | - James G Herman
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Malcolm V Brock
- Department of surgery, School of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Aiai Gao
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qian Wang
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Francois Fuks
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Universite Libre de Bruxelles (ULB), Brussels, 1070, Belgium
| | - Lirong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
- National Key Laboratory of Kidney Diseases, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
5
|
Hong J, Du K, Jin H, Chen Y, Jiang Y, Zhang W, Chen D, Zheng S, Cao L. Evidence of promoting effects of 6:2 Cl-PFESA on hepatocellular carcinoma proliferation in humans: An ideal alternative for PFOS in terms of environmental health? ENVIRONMENT INTERNATIONAL 2024; 186:108582. [PMID: 38513556 DOI: 10.1016/j.envint.2024.108582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are synthetic chemicals, encompassing compounds like perfluorooctane sulfonate (PFOS), which have widespread applications across various industries, including food packaging and firefighting. In recent years, China has increasingly employed 6:2 Cl-PFESA as an alternative to PFOS. Although the association between PFAS exposure and hepatocellular carcinoma (HCC) has been demonstrated, the underlying mechanisms that promote HCC proliferation are uncleared. Therefore, we aimed to investigate the effects and differences of PFOS and 6:2 Cl-PFESA on HCC proliferation through in vivo and in vitro tumor models. Our results reveal that both PFOS and 6:2 Cl-PFESA significantly contribute to HCC proliferation in vitro and in vivo. Exposure led to reduced population doubling times, enlarged cell colony sizes, enhanced DNA synthesis efficiency, and a higher proportion of cells undergoing mitosis. Furthermore, both PFOS and 6:2 Cl-PFES) have been shown to activate the PI3K/AKT/mTOR signaling pathway and inhibit necroptosis. This action consequently enhances the proliferation of HCC cells. Our phenotypic assay findings suggest that the tumorigenic potential of 6:2 Cl-PFESA surpasses that of PFOS; in a subcutaneous tumor model using nude mice, the mean tumor weight for the 6:2 Cl-PFESA-treated cohort was 2.33 times that observed in the PFOS cohort (p < 0.01). Despite 6:2 Cl-PFESA being considered a safer substitute for PFOS, the pronounced effects of this chemical on HCC cell growth warrant a thorough assessment of hepatotoxicity risks linked to its usage.
Collapse
Affiliation(s)
- Jiawei Hong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Keyi Du
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China; Innovation Research Center of Advanced Environmental Technology, Eco-Industrial Innovation Institute ZJUT, Quzhou, Zhejiang 324400, China
| | - Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China; Innovation Research Center of Advanced Environmental Technology, Eco-Industrial Innovation Institute ZJUT, Quzhou, Zhejiang 324400, China
| | - Yifan Jiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Weichen Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Diyu Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Linping Cao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China.
| |
Collapse
|
6
|
Khalsa JK, Cha J, Utro F, Naeem A, Murali I, Kuang Y, Vasquez K, Li L, Tyekucheva S, Fernandes SM, Veronese L, Guieze R, Sasi BK, Wang Z, Machado JH, Bai H, Alasfour M, Rhrissorrakrai K, Levovitz C, Danysh BP, Slowik K, Jacobs RA, Davids MS, Paweletz CP, Leshchiner I, Parida L, Getz G, Brown JR. Genetic events associated with venetoclax resistance in CLL identified by whole-exome sequencing of patient samples. Blood 2023; 142:421-433. [PMID: 37146250 PMCID: PMC10447490 DOI: 10.1182/blood.2022016600] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 03/14/2023] [Accepted: 04/04/2023] [Indexed: 05/07/2023] Open
Abstract
Although BCL2 mutations are reported as later occurring events leading to venetoclax resistance, many other mechanisms of progression have been reported though remain poorly understood. Here, we analyze longitudinal tumor samples from 11 patients with disease progression while receiving venetoclax to characterize the clonal evolution of resistance. All patients tested showed increased in vitro resistance to venetoclax at the posttreatment time point. We found the previously described acquired BCL2-G101V mutation in only 4 of 11 patients, with 2 patients showing a very low variant allele fraction (0.03%-4.68%). Whole-exome sequencing revealed acquired loss(8p) in 4 of 11 patients, of which 2 patients also had gain (1q21.2-21.3) in the same cells affecting the MCL1 gene. In vitro experiments showed that CLL cells from the 4 patients with loss(8p) were more resistant to venetoclax than cells from those without it, with the cells from 2 patients also carrying gain (1q21.2-21.3) showing increased sensitivity to MCL1 inhibition. Progression samples with gain (1q21.2-21.3) were more susceptible to the combination of MCL1 inhibitor and venetoclax. Differential gene expression analysis comparing bulk RNA sequencing data from pretreatment and progression time points of all patients showed upregulation of proliferation, B-cell receptor (BCR), and NF-κB gene sets including MAPK genes. Cells from progression time points demonstrated upregulation of surface immunoglobulin M and higher pERK levels compared with those from the preprogression time point, suggesting an upregulation of BCR signaling that activates the MAPK pathway. Overall, our data suggest several mechanisms of acquired resistance to venetoclax in CLL that could pave the way for rationally designed combination treatments for patients with venetoclax-resistant CLL.
Collapse
MESH Headings
- Humans
- Antineoplastic Agents/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Drug Resistance, Neoplasm/genetics
- Exome Sequencing
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Myeloid Cell Leukemia Sequence 1 Protein/genetics
- Proto-Oncogene Proteins c-bcl-2
Collapse
Affiliation(s)
- Jasneet Kaur Khalsa
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Justin Cha
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA
| | | | - Aishath Naeem
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Ishwarya Murali
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Yanan Kuang
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA
| | - Kevin Vasquez
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA
| | - Liang Li
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Svitlana Tyekucheva
- Department of Data Sciences, Dana-Farber Cancer Institute, Harvard TH Chan School of Public Health, Boston, MA
| | - Stacey M. Fernandes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Lauren Veronese
- Service de Cytogénétique Médicale, CHU Clermont-Ferrand, Clermont-Ferrand, France
- EA7453 CHELTER, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Romain Guieze
- EA7453 CHELTER, Université Clermont Auvergne, Clermont-Ferrand, France
- Service d’Hématologie clinique et thérapie cellulaire, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Binu Kandathilparambil Sasi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Zixu Wang
- Department of Data Sciences, Dana-Farber Cancer Institute, Harvard TH Chan School of Public Health, Boston, MA
| | - John-Hanson Machado
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Harrison Bai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Maryam Alasfour
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | | | | | - Brian P. Danysh
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Kara Slowik
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Raquel A. Jacobs
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Matthew S. Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Cloud P. Paweletz
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA
| | | | | | - Gad Getz
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA
- Cancer Center, Massachusetts General Hospital, Boston, MA
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - Jennifer R. Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
7
|
Zhang Y, Zhang W, Yuan Q, Hong W, Yin P, Shen T, Fang L, Jiang J, Shi F, Chen W. Illustrating the biological functions and diagnostic value of transmembrane protein family members in glioma. Front Oncol 2023; 13:1145676. [PMID: 37064154 PMCID: PMC10102456 DOI: 10.3389/fonc.2023.1145676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023] Open
Abstract
BackgroundIt is well-established that patients with glioma have a poor prognosis. Although the past few decades have witnessed unprecedented medical advances, the 5-year survival remains dismally low.ObjectiveThis study aims to investigate the role of transmembrane protein-related genes in the development and prognosis of glioma and provide new insights into the pathogenesis of the diseaseMethodsThe datasets of glioma patients, including RNA sequencing data and relative clinical information, were obtained from The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA) and Gene Expression Omnibus (GEO) databases. Prognostic transmembrane protein-related genes were identified by univariate Cox analysis. New disease subtypes were recognized based on the consensus clustering method, and their biological uniqueness was verified via various algorithms. The prognosis signature was constructed using the LASSO-Cox regression model, and its predictive power was validated in external datasets by receiver operating characteristic (ROC) curve analysis. An independent prognostic analysis was conducted to evaluate whether the signature could be considered a prognostic factor independent of other variables. A nomogram was constructed in conjunction with traditional clinical variables. The concordance index (C-index) and Decision Curve Analysis (DCA) were used to assess the net clinical benefit of the signature over traditional clinical variables. Seven different softwares were used to compare the differences in immune infiltration between the high- and low-risk groups to explore potential mechanisms of glioma development and prognosis. Hub genes were found using the random forest method, and their expression was based on multiple single-cell datasets.ResultsFour molecular subtypes were identified, among which the C1 group had the worst prognosis. Principal Component Analysis (PCA) results and heatmaps indicated that prognosis-related transmembrane protein genes exhibited differential expression in all four groups. Besides, the microenvironment of the four groups exhibited significant heterogeneity. The 6 gene-based signatures could predict the 1-, 2-, and 3-year overall survival (OS) of glioma patients. The signature could be used as an independent prognosis factor of glioma OS and was superior to traditional clinical variables. More immune cells were infiltrated in the high-risk group, suggesting immune escape. According to our signature, many genes were associated with the content of immune cells, which revealed that transmembrane protein-related genes might influence the development and prognosis of glioma by regulating the immune microenvironment. TMEM158 was identified as the most important gene using the random forest method. The single-cell datasets consistently showed that TMEM158 was expressed in multiple malignant cells.ConclusionThe expression of transmembrane protein-related genes is closely related to the immune status and prognosis of glioma patients by regulating tumor progression in various ways. The interaction between transmembrane protein-related genes and immunity during glioma development lays the groundwork for future studies on the molecular mechanism and targeted therapy of glioma.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pathology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wei Zhang
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qiyou Yuan
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wenqing Hong
- Department of Health Management Center, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ping Yin
- School of Materials & Science, Beijing Institute of Technology, Beijing, China
| | - Tingting Shen
- Department of Pathology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lutong Fang
- Department of Pathology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Junlan Jiang
- Department of Pathology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Fangxiao Shi
- Department of Pathology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Weiwei Chen
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- *Correspondence: Weiwei Chen,
| |
Collapse
|
8
|
Zhang J, Jin H, Pan S, Han C, Sun Q, Han X. Immune checkpoints expression patterns in early-stage triple-negative breast cancer predict prognosis and remodel the tumor immune microenvironment. Front Immunol 2023; 14:1073550. [PMID: 36814908 PMCID: PMC9939840 DOI: 10.3389/fimmu.2023.1073550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023] Open
Abstract
Background Currently, targeting immune checkpoint molecules holds great promise for triple-negative breast cancer (TNBC). However, the expression landscape of immune checkpoint genes (ICGs) in TNBC remains largely unknown. Method Herein, we systematically investigated the ICGs expression patterns in 422 TNBC samples. We evaluated the ICGs molecular typing based on the ICGs expression profile and explored the associations between ICGs molecular subtypes and tumor immune characteristics, clinical significance, and response to immune checkpoint inhibitors (ICIs). Results Two ICGs clusters and two ICGs-related gene clusters were determined, which were involved in different survival outcomes, biological roles and infiltration levels of immune cells. We established a quantification system ICGs riskscore (named IRS) to assess the ICGs expression patterns for individuals. TNBC patients with lower IRS were characterized by increased immune cell infiltration, favorable clinical outcomes and high sensitivity to ICIs therapy. We also developed a nomogram model combining clinicopathological variables to predict overall survival in TNBC. Genomic feature analysis revealed that high IRS group presented an increased tumor mutation burden compared with the low IRS group. Conclusion Collectively, dissecting the ICGs expression patterns not only provides a new insight into TNBC subtypes but also deepens the understanding of ICGs in the tumor immune microenvironment.
Collapse
Affiliation(s)
- Jinguo Zhang
- Department of Medical Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China.,Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongwei Jin
- Department of Medical Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China.,Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.,School of Medical Oncology, Anhui Medical University, Hefei, China
| | - Shuaikang Pan
- Department of Medical Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China.,School of Medical Oncology, Wan Nan Medical College, Wuhu, China
| | - Chaoqiang Han
- Department of Medical Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Qingqing Sun
- Department of Medical Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China.,Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.,School of Medical Oncology, Anhui Medical University, Hefei, China
| | - Xinghua Han
- Department of Medical Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China.,Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.,School of Medical Oncology, Anhui Medical University, Hefei, China
| |
Collapse
|
9
|
Li M, Zhang D. DNA methyltransferase-1 in acute myeloid leukaemia: beyond the maintenance of DNA methylation. Ann Med 2022; 54:2011-2023. [PMID: 35838271 PMCID: PMC9291682 DOI: 10.1080/07853890.2022.2099578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA methylation is considered an essential epigenetic event during leukaemogenesis and the emergence of drug resistance, which is primarily regulated by DNA methyltransferases. DNA methyltransferase-1 (DNMT1) is one of the members of DNA methyltransferases, in charge of maintaining established methylation. Recently, DNMT1 is shown to promote malignant events of cancers through the epigenetic and non-epigenetic processes. Increasing studies in solid tumours have identified DNMT1 as a therapeutic target and a regulator of therapy resistance; however, it is unclear whether DNMT1 is a critical regulator in acute myeloid leukaemia (AML) and how it works. In this review, we summarized the recent understanding of DNMT1 in normal haematopoiesis and AML and discussed the possible functions of DNMT1 in promoting the development of AML and predicting the sensitivity of hypomethylation agents to better understand the relationship between DNMT1 and AML and to look for new hope to treat AML patients.Key messagesThe function of DNA methyltransferase-1 in acute myeloid leukaemia.DNA methyltransferase-1 predicts the sensitivity of drug and involves the emergence of drug resistance.
Collapse
Affiliation(s)
- Mengyuan Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Donghua Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
10
|
Mikaeili Namini A, Jahangir M, Mohseni M, Kolahi AA, Hassanian-Moghaddam H, Mazloumi Z, Motallebi M, Sheikhpour M, Movafagh A. An in silico comparative transcriptome analysis identifying hub lncRNAs and mRNAs in brain metastatic small cell lung cancer (SCLC). Sci Rep 2022; 12:18063. [PMID: 36302939 PMCID: PMC9613661 DOI: 10.1038/s41598-022-22252-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 10/12/2022] [Indexed: 01/24/2023] Open
Abstract
Small cell lung cancer (SCLC) is a particularly lethal subtype of lung cancer. Metastatic lung tumours lead to most deaths from lung cancer. Predicting and preventing tumour metastasis is crucially essential for patient survivability. Hence, in the current study, we focused on a comprehensive analysis of lung cancer patients' differentially expressed genes (DEGs) on brain metastasis cell lines. DEGs are analysed through KEGG and GO databases for the most critical biological processes and pathways for enriched DEGs. Additionally, we performed protein-protein interaction (PPI), GeneMANIA, and Kaplan-Meier survival analyses on our DEGs. This article focused on mRNA and lncRNA DEGs for LC patients with brain metastasis and underlying molecular mechanisms. The expression data was gathered from the Gene Expression Omnibus database (GSE161968). We demonstrate that 30 distinct genes are up-expressed in brain metastatic SCLC patients, and 31 genes are down-expressed. All our analyses show that these genes are involved in metastatic SCLC. PPI analysis revealed two hub genes (CAT and APP). The results of this article present three lncRNAs, Including XLOC_l2_000941, LOC100507481, and XLOC_l2_007062, also notable mRNAs, have a close relation with brain metastasis in lung cancer and may have a role in the epithelial-mesenchymal transition (EMT) in tumour cells.
Collapse
Affiliation(s)
- Arsham Mikaeili Namini
- grid.412265.60000 0004 0406 5813Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Motahareh Jahangir
- grid.412502.00000 0001 0686 4748Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Maryam Mohseni
- grid.411600.2Department of Social Medicine, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Asghar Kolahi
- grid.411600.2Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Hassanian-Moghaddam
- grid.411600.2Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Mazloumi
- grid.449262.fDepartment of Biology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Marzieh Motallebi
- grid.411600.2Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Sheikhpour
- grid.420169.80000 0000 9562 2611Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Movafagh
- grid.411600.2Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Zhang H, Huang Y, Li X, Chen W, Lun Y, Zhang J. Identifying Hub Genes and Immune Cell Infiltration for the Progression of Carotid Atherosclerotic Plaques in the Context of Predictive and Preventive Using Integrative Bioinformatics Approaches and Machine-Learning Strategies. J Immunol Res 2022; 2022:7657379. [PMID: 36304068 PMCID: PMC9596267 DOI: 10.1155/2022/7657379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 12/03/2022] Open
Abstract
Emerging evidence shows that carotid atherosclerosis is related to the activation of immune-related pathways and inflammatory cell infiltration. However, the immune-linked pathways that helped in the advancement of the carotid atherosclerotic plaque and the association of such plaques with the infiltration status of the body's immune cells still unclear. Here, the expression profiles of the genes expressed during the progression of the carotid atherosclerotic plaques were retrieved from the Gene Expression Omnibus database and 178 differentially expressed genes were examined. The Weighted Gene Coexpression Network Analysis technique identified one of the brown modules showed the greatest correlation with carotid atherosclerotic plaques. In total, 66 intersecting genes could be detected after combining the DEGs. LASSO regression analysis was subsequently performed to obtain five hub genes as potential biomarkers for carotid atherosclerotic plaques. The functional analysis emphasized the vital roles played by the inflammation- and immune system-related pathways in this disease. The immune cell infiltration results highlighted the significant correlation among the CD4+ T cells, B cells, macrophages, and CD8+ T cells. Thereafter, the gene expression levels and the diagnostic values related to every hub gene were further validated. The above results indicated that macrophages, B cells, CD4+ T cells, and CD8 + T cells were closely related to the formation of the advanced-stage carotid atherosclerotic plaques. Based on the results, it could be hypothesized that the expression of hub genes (C3AR1, SLAMF8, TMEM176A, FERMT3, and GIMAP4) assisted in the advancement of the early-stage to advanced-stage carotid atherosclerotic plaque through immune-related signaling pathways. This may help to provide novel strategies for the treatment of carotid plaque in the context of predictive, preventive, and personalized medicine.
Collapse
Affiliation(s)
- Han Zhang
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yinde Huang
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xin Li
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Wenbin Chen
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yu Lun
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Jian Zhang
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| |
Collapse
|
12
|
Chen Q, Fang J, Shen H, Chen L, Shi M, Huang X, Miao Z, Gong Y. Roles, molecular mechanisms, and signaling pathways of TMEMs in neurological diseases. Am J Transl Res 2021; 13:13273-13297. [PMID: 35035675 PMCID: PMC8748174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
Transmembrane protein family members (TMEMs) span the entire lipid bilayer and act as channels that allow the transport of specific substances through biofilms. The functions of most TMEMs are unexplored. Numerous studies have shown that TMEMs are involved in the pathophysiological processes of various nervous system diseases, but the specific mechanisms of TMEMs in the pathogenesis of diseases remain unclear. In this review, we discuss the expression, physiological functions, and molecular mechanisms of TMEMs in brain tumors, psychiatric disorders, abnormal motor activity, cobblestone lissencephaly, neuropathic pain, traumatic brain injury, and other disorders of the nervous system. Additionally, we propose that TMEMs may be used as prognostic markers and potential therapeutic targets in patients with various neurological diseases.
Collapse
Affiliation(s)
- Qinghong Chen
- Affiliated Hospital of Jiangxi University of Traditional Chinese MedicineNanchang 330006, Jiangxi, China
| | - Junlin Fang
- Department of Acupuncture and Moxibustion, Banan Hospital of Traditional Chinese MedicineChongqing 401320, China
| | - Hui Shen
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese MedicineSuzhou 215600, Jiangsu, China
| | - Liping Chen
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese MedicineSuzhou 215600, Jiangsu, China
| | - Mengying Shi
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese MedicineSuzhou 215600, Jiangsu, China
| | - Xianbao Huang
- Affiliated Hospital of Jiangxi University of Traditional Chinese MedicineNanchang 330006, Jiangxi, China
| | - Zhiwei Miao
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese MedicineSuzhou 215600, Jiangsu, China
| | - Yating Gong
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese MedicineSuzhou 215600, Jiangsu, China
| |
Collapse
|
13
|
Niu K, Qu S, Zhang X, Dai J, Wang J, Nie Y, Zhang H, Tao K, Song W. LncRNA-URHC Functions as ceRNA to Regulate DNAJB9 Expression by Competitively Binding to miR-5007-3p in Hepatocellular Carcinoma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:3031482. [PMID: 34659430 PMCID: PMC8516585 DOI: 10.1155/2021/3031482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/14/2021] [Indexed: 12/03/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is often diagnosed at a late stage, when the prognosis is poor. The regulation of long noncoding RNAs (lncRNAs) plays a crucial role in HCC. However, the precise regulatory mechanisms of lncRNA signaling in HCC remain largely unknown. Our study aims to investigate the underlying mechanisms of lncRNA (upregulated in hepatocellular carcinoma) URHC in HCC. OBJECTIVE To study the in vivo and in vitro localization and biological effects of URHC on liver cancer cells. Through bioinformatics analysis, dual-luciferase reporter gene analysis and rescue experiments revealed the possible mechanism of URHC. METHODS RT-qPCR, fluorescence in situ hybridization (FISH) staining, EdU, colony formation, and tumor xenograft experiments were used to identify localized and biological effects of URHC on HCC cells in vitro and in vivo. The bioinformatics analysis, dual-luciferase reporter assay, and rescue experiments revealed the potential mechanism of URHC. RESULTS URHC silencing may inhibit the HCC cells' proliferation in vitro and in vivo. We found that URHC was mainly localized in the cytoplasm. The expression of miR-5007-3p was negatively regulated by URHC. And miR-5007-3p could reverse the effect of URHC in HCC cells. The expression of DNAJB9 was negatively regulated by miR-5007-3p but positively regulated by URHC. These suggestive of lncRNA-URHC positively regulated the level of DNAJB9 by sponging miR-5007-3p. CONCLUSION Together, our study elucidated the role of URHC as a miRNA sponge in HCC and shed new light on lncRNA-directed diagnostics and therapeutics in HCC.
Collapse
Affiliation(s)
- Kunwei Niu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle Road, Xi'an, Shaanxi 710032, China
| | - Shibin Qu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle Road, Xi'an, Shaanxi 710032, China
| | - Xuan Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle Road, Xi'an, Shaanxi 710032, China
| | - Jimin Dai
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle Road, Xi'an, Shaanxi 710032, China
| | - Jianlin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle Road, Xi'an, Shaanxi 710032, China
| | - Ye Nie
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle Road, Xi'an, Shaanxi 710032, China
| | - Hong Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle Road, Xi'an, Shaanxi 710032, China
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle Road, Xi'an, Shaanxi 710032, China
| | - Wenjie Song
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle Road, Xi'an, Shaanxi 710032, China
| |
Collapse
|
14
|
Li H, Yang W, Zhang M, He T, Zhou F, G Herman J, Hu L, Guo M. Methylation of TMEM176A, a key ERK signaling regulator, is a novel synthetic lethality marker of ATM inhibitors in human lung cancer. Epigenomics 2021; 13:1403-1419. [PMID: 34558311 DOI: 10.2217/epi-2021-0217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: The role of TMEM176A methylation in lung cancer and its therapeutic application remains unclear. Materials and methods: Nine lung cancer cell lines and 123 cases of cancer tissue samples were employed. Results: TMEM176A was methylated in 53.66% of primary lung cancer. Restoration of TMEM176A expression induced cell apoptosis and G2/M phase arrest, and inhibited colony formation, cell proliferation, migration and invasion. TMEM176A suppressed H1299 cell xenograft growth in mice. Methylation of TMEM176A activated ERK signaling and sensitized H1299 and H23 cells to AZD0156, an ATM inhibitor. Conclusion: The expression of TMEM176A is regulated by promoter region methylation. Methylation of TMEM176A is a potential lung cancer diagnostic marker and a novel synthetic lethal therapeutic marker for AZD0156.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.,Faculty of Environmental & Life Science, Beijing Key Laboratory of Environmental & Oncology, Beijing University of Technology, Beijing, 100124, China
| | - Weili Yang
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Meiying Zhang
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Tao He
- Department of Pathology, Characteristic Medical Center of The Chinese People's Armed Police Force, Tianjin, 300162, China
| | - Fuyou Zhou
- Department of Thoracic Surgery, Anyang Tumor Hospital, Anyang, 455000, Henan, China
| | - James G Herman
- The Hillman Cancer Center, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Suite 2.18/Research, Pittsburgh, PA 15213, USA
| | - Liming Hu
- Faculty of Environmental & Life Science, Beijing Key Laboratory of Environmental & Oncology, Beijing University of Technology, Beijing, 100124, China
| | - Mingzhou Guo
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.,Henan Key Laboratory for Esophageal Cancer Research, Zhengzhou University, 40 Daxue Road, Zhengzhou, Henan, 450052, China.,State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853, China
| |
Collapse
|
15
|
Zhang D, Guo S, Schrodi SJ. Mechanisms of DNA Methylation in Virus-Host Interaction in Hepatitis B Infection: Pathogenesis and Oncogenetic Properties. Int J Mol Sci 2021; 22:9858. [PMID: 34576022 PMCID: PMC8466338 DOI: 10.3390/ijms22189858] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV), the well-studied oncovirus that contributes to the majority of hepatocellular carcinomas (HCC) worldwide, can cause a severe inflammatory microenvironment leading to genetic and epigenetic changes in hepatocyte clones. HBV replication contributes to the regulation of DNA methyltransferase gene expression, particularly by X protein (HBx), and subsequent methylation changes may lead to abnormal transcription activation of adjacent genes and genomic instability. Undoubtedly, the altered expression of these genes has been known to cause diverse aspects of infected hepatocytes, including apoptosis, proliferation, reactive oxygen species (ROS) accumulation, and immune responses. Additionally, pollutant-induced DNA methylation changes and aberrant methylation of imprinted genes in hepatocytes also complicate the process of tumorigenesis. Meanwhile, hepatocytes also contribute to epigenetic modification of the viral genome to affect HBV replication or viral protein production. Meanwhile, methylation levels of HBV integrants and surrounding host regions also play crucial roles in their ability to produce viral proteins in affected hepatocytes. Both host and viral changes can provide novel insights into tumorigenesis, individualized responses to therapeutic intervention, disease progress, and early diagnosis. As such, DNA methylation-mediated epigenetic silencing of cancer-related genes and viral replication is a compelling therapeutic goal to reduce morbidity and mortality from liver cancer caused by chronic HBV infection. In this review, we summarize the most recent research on aberrant DNA methylation associated with HBV infection, which is involved in HCC development, and provide an outlook on the future direction of the research.
Collapse
Affiliation(s)
- Dake Zhang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Shicheng Guo
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Steven J. Schrodi
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA;
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
16
|
Li B, Zhou M, Wang J, Xu H, Yang M. Suppressing ERK Pathway Impairs Glycochenodeoxycholate-Mediated Survival and Drug-Resistance in Hepatocellular Carcinoma Cells. Front Oncol 2021; 11:663944. [PMID: 34327135 PMCID: PMC8313996 DOI: 10.3389/fonc.2021.663944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/22/2021] [Indexed: 12/02/2022] Open
Abstract
Glycochenodeoxycholate (GCDA), a toxic component in bile salts, is involved in carcinogenesis of gastrointestinal tumors. The objective of this research was to study the function of ERK1/2 in the GCDA-mediated survival and drug-resistance in hepatocellular carcinoma cells (HCCs). Firstly, extracellular signal-regulated kinase 1/2 (ERK1/2) was detected extensively expressed in liver cancer cells, and silencing ERK1/2 by RNA interference could suppress GCDA-stimulated survival and promote apoptosis. Furthermore, phosphorylation of endogenous ERK1/2 could be potently stimulated by GCDA in combination with enhanced chemoresistance in QGY-7703 hepatocellular carcinoma cells. The GCDA-mediated proliferation and chemoresistance could be impaired by PD98059, which acted as an inhibitor to block the phosphorylation of ERK1/2. Mechanistically, PD98059 was able to potently suppress GCDA-stimulated nuclear aggregation of ERK1/2 and p-ERK1/2, upregulate pro-survival protein Mcl-1 and downregulate pro-apoptotic protein Bim. The results of this study indicated that disruption of ERK1/2 by blocking phosphorylation or nuclear translocation may put forward new methods for solving the problem of GCDA-related proliferation and drug-resistance in liver cancer treatment.
Collapse
Affiliation(s)
- Bingxin Li
- Department of Hepatobiliary and Pancreatic Surgery, National Health Commission (NHC) Key Laboratory of Nanobiological Technology, Xiangya Hospital, Central South University, Changsha, China
| | - Maojun Zhou
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, National Center for Geriatrics Clinical Research, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Jue Wang
- Department of Hepatobiliary and Pancreatic Surgery, National Health Commission (NHC) Key Laboratory of Nanobiological Technology, Xiangya Hospital, Central South University, Changsha, China
| | - Hongjuan Xu
- Department of Hepatobiliary and Pancreatic Surgery, National Health Commission (NHC) Key Laboratory of Nanobiological Technology, Xiangya Hospital, Central South University, Changsha, China
| | - Manyi Yang
- Department of Hepatobiliary and Pancreatic Surgery, National Health Commission (NHC) Key Laboratory of Nanobiological Technology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
17
|
Segovia M, Russo S, Girotti MR, Rabinovich GA, Hill M. Role of inflammasome activation in tumor immunity triggered by immune checkpoint blockers. Clin Exp Immunol 2020; 200:155-162. [PMID: 32297328 DOI: 10.1111/cei.13433] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint blockers improve the overall survival of a limited number of patients among different cancers. Identifying pathways that influence the immunological and clinical response to treatment is critical to improve the therapeutic efficacy and predict clinical responses. Recently, a key role has been assigned to innate immune mechanisms in checkpoint blockade-driven anti-tumor responses. However, inflammatory pathways can both improve and impair anti-tumor immunity. In this review, we discuss how different inflammatory pathways, particularly inflammasome activation, can influence the clinical outcome of immune checkpoint blockers. Inflammasome activation may reinforce anti-tumor immunity by boosting CD8+ T cell priming as well as by enhancing T helper type 17 (Th17) responses. In particular, we focus on the modulation of the cation channel transmembrane protein 176B (TMEM176B) and the ectonucleotidase CD39 as potential targets to unleash inflammasome activation leading to reinforced anti-tumor immunity and improved efficacy of immune checkpoint blockers. Future studies should be aimed at investigating the mechanisms and cell subsets involved in inflammasome-driven anti-tumor responses.
Collapse
Affiliation(s)
- M Segovia
- Laboratory of Immunoregulation and Inflammation, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Immunobiology Department, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| | - S Russo
- Laboratory of Immunoregulation and Inflammation, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Immunobiology Department, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| | - M R Girotti
- Laboratory of Translational Immuno-Oncology, Institute of Biology and Experimental Medicine (IBYME), National Council of Scientific and Technical Investigations (CONICET), Buenos Aires, Argentina
| | - G A Rabinovich
- Laboratory of Immunopathology, Institute of Biology and Experimental Medicine (IBYME), National Council of Scientific and Technical Investigations (CONICET), Buenos Aires, Argentina.,School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - M Hill
- Laboratory of Immunoregulation and Inflammation, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Immunobiology Department, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| |
Collapse
|
18
|
Gao A, Guo M. Epigenetic based synthetic lethal strategies in human cancers. Biomark Res 2020; 8:44. [PMID: 32974031 PMCID: PMC7493427 DOI: 10.1186/s40364-020-00224-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 09/04/2020] [Indexed: 02/08/2023] Open
Abstract
Over the past decades, it is recognized that loss of DNA damage repair (DDR) pathways is an early and frequent event in tumorigenesis, occurring in 40-50% of many cancer types. The basis of synthetic lethality in cancer therapy is DDR deficient cancers dependent on backup DNA repair pathways. In cancer, the concept of synthetic lethality has been extended to pairs of genes, in which inactivation of one by deletion or mutation and pharmacological inhibition of the other leads to death of cancer cells whereas normal cells are spared the effect of the drug. The paradigm study is to induce cell death by inhibiting PARP in BRCA1/2 defective cells. Since the successful application of PARP inhibitor, a growing number of developed DDR inhibitors are ongoing in preclinical and clinical testing, including ATM, ATR, CHK1/2 and WEE1 inhibitors. Combination of PARP inhibitors and other DDR inhibitors, or combination of multiple components of the same pathway may have great potential synthetic lethality efficiency. As epigenetics joins Knudson’s two hit theory, silencing of DDR genes by aberrant epigenetic changes provide new opportunities for synthetic lethal therapy in cancer. Understanding the causative epigenetic changes of loss-of-function has led to the development of novel therapeutic agents in cancer. DDR and related genes were found frequently methylated in human cancers, including BRCA1/2, MGMT, WRN, MLH1, CHFR, P16 and APC. Both genetic and epigenetic alterations may serve as synthetic lethal therapeutic markers.
Collapse
Affiliation(s)
- Aiai Gao
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China.,Henan Key Laboratory for Esophageal Cancer Research, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052 Henan China.,State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| |
Collapse
|
19
|
Šekoranja D, Zupan A, Mavčič B, Martinčič D, Salapura V, Snoj Ž, Limpel Novak AK, Pižem J. Novel ASAP1-USP6, FAT1-USP6, SAR1A-USP6, and TNC-USP6 fusions in primary aneurysmal bone cyst. Genes Chromosomes Cancer 2020; 59:357-365. [PMID: 32011035 DOI: 10.1002/gcc.22836] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 12/24/2022] Open
Abstract
Aneurysmal bone cyst (ABC) is a benign but locally aggressive neoplasm, with a tendency for local recurrence. In contrast to other bone tumors with secondary cystic change, ABC is characterized by USP6 gene rearrangement. There is a growing list of known USP6 fusion partners, characterization of which has been enabled with the advent of next-generation sequencing (NGS). The list of known fusion partners includes CDH11, CNBP, COL1A1, CTNNB1, EIF1, FOSL2, OMD, PAFAH1B1, RUNX2, SEC31A, SPARC, STAT3, THRAP3, and USP9X. Using NGS, we analyzed a series of 11 consecutive ABCs and identified USP6 fusions in all cases, providing further evidence that USP6 fusions are universally present in primary ABCs. We identified four novel fusion partners in five ABCs and confirmed them by RT-PCR and Sanger sequencing, ASAP1, FAT1, SAR1A, and TNC (in two cases). Because of high sensitivity and specificity, detection of a USP6 fusion by NGS may assist in differentiating between ABC and its mimics, especially in small biopsy samples when a definite diagnosis cannot be achieved on morphological grounds alone. Further studies with a large number of cases and follow-up are needed to determine whether different fusion partners are associated with specific clinical and pathologic features of ABCs.
Collapse
Affiliation(s)
- Daja Šekoranja
- Institute of Pathology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Andrej Zupan
- Institute of Pathology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Blaž Mavčič
- Department of Orthopedic Surgery, University Medical Centre Ljubljana, Ljubljana, Slovenia.,University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - David Martinčič
- Department of Orthopedic Surgery, University Medical Centre Ljubljana, Ljubljana, Slovenia.,University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Vladka Salapura
- University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia.,Institute of Radiology, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Žiga Snoj
- University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia.,Institute of Radiology, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Ana K Limpel Novak
- Institute of Radiology, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Jože Pižem
- Institute of Pathology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| |
Collapse
|
20
|
Marx S, Dal Maso T, Chen JW, Bury M, Wouters J, Michiels C, Le Calvé B. Transmembrane (TMEM) protein family members: Poorly characterized even if essential for the metastatic process. Semin Cancer Biol 2019; 60:96-106. [PMID: 31454669 DOI: 10.1016/j.semcancer.2019.08.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 01/02/2023]
Abstract
The majority of cancer-associated deaths are related to secondary tumor formation. This multistep process involves the migration of cancer cells to anatomically distant organs. Metastasis formation relies on cancer cell dissemination and survival in the circulatory system, as well as adaptation to the new tissue notably through genetic and/or epigenetic alterations. A large number of proteins are clearly identified to play a role in the metastatic process but the structures and modes of action of these proteins are essentially unknown or poorly described. In this review, we detail the involvement of members of the transmembrane (TMEM) protein family in the formation of metastases or in the mechanisms leading to cancer cell dissemination such as migration and extra-cellular matrix remodelling. While the phenotype associated with TMEM over or down-expression is clear, the mechanisms by which these proteins allow cancer cell spreading remain, for most of them, unclear. In parallel, the 3D structures of these proteins are presented. Moreover, we proposed that TMEM proteins could be used as prognostic markers in different types of cancers and could represent potential targets for cancer treatment. A better understanding of this heterogeneous family of poorly characterized proteins thus opens perspectives for better cancer patient care.
Collapse
Affiliation(s)
- Sébastien Marx
- Department of Chemistry, NAmur MEdicine & Drug Innovation Center (NAMEDIC-NARILIS), University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Thomas Dal Maso
- Department of Chemistry, NAmur MEdicine & Drug Innovation Center (NAMEDIC-NARILIS), University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Jia-Wei Chen
- URBC - NARILIS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Marina Bury
- de Duve Institute, 75 Avenue Hippocrate, 1200 Bruxelles, Belgium
| | - Johan Wouters
- Department of Chemistry, NAmur MEdicine & Drug Innovation Center (NAMEDIC-NARILIS), University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Carine Michiels
- URBC - NARILIS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Benjamin Le Calvé
- URBC - NARILIS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium.
| |
Collapse
|
21
|
Yu Q, Wu L, Liu T, Li S, Feng J, Mao Y, Fan X, Guo C, Wu J. Protective effects of levo-tetrahydropalmatine on hepatic ischemia/reperfusion injury are mediated by inhibition of the ERK/NF-κB pathway. Int Immunopharmacol 2019; 70:435-445. [PMID: 30856394 DOI: 10.1016/j.intimp.2019.02.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/13/2019] [Accepted: 02/13/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Hepatic ischemia/reperfusion (IR) injury is a common medical phenomenon that occurs during a number of clinical conditions, such as liver transplantation, severe injuries, and shock. In our study, we determined the protective functions of levo-tetrahydropalmatine (L-THP) on hepatic IR injury in mice by inhibiting the ERK/NF-κB signaling pathway. METHOD BALB/c mice were randomly divided into six groups as follows: normal control (NC); sham; L-THP (40 mg/kg); IR; L-THP (20 mg/kg) + IR; and L-THP (40 mg/kg) + IR. Liver tissues and sera were collected at three time points after reperfusion (2, 8, and 24 h). The liver enzyme, inflammatory factor, and other protein levels in the serum and liver tissues were detected. RESULTS L-THP pretreatment alleviated hepatocyte injury caused by IR and reduced the production of proinflammatory cytokines, such as IL-6 and TNF-α. Furthermore, L-THP could inhibit the ERK/NF-κB signaling pathway to attenuate hepatocyte apoptosis and autophagy. And the protective effect of L-THP is positively correlated with its dose. CONCLUSION L-THP protects the liver from IR injury by inhibiting the release of inflammatory factors and alleviating liver cell apoptosis and autophagy. The protective functions of L-THP may be partly based on the downregulation of the ERK/NF-κB pathway.
Collapse
Affiliation(s)
- Qiang Yu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China; Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai 200072, China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Tong Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Sainan Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yuqing Mao
- Department of Gerontology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China.
| | - Xiaoming Fan
- Department of Gastroenterology, Jinshan Hospital of Fudan University, Jinshan, Shanghai 201508, China
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China; Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China.
| |
Collapse
|