1
|
Zaragoza MV, Bui TA, Widyastuti HP, Mehrabi M, Cang Z, Sha Y, Grosberg A, Nie Q. LMNA-Related Dilated Cardiomyopathy: Single-Cell Transcriptomics during Patient-Derived iPSC Differentiation Support Cell Type and Lineage-Specific Dysregulation of Gene Expression and Development for Cardiomyocytes and Epicardium-Derived Cells with Lamin A/C Haploinsufficiency. Cells 2024; 13:1479. [PMID: 39273049 PMCID: PMC11394257 DOI: 10.3390/cells13171479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/14/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
LMNA-related dilated cardiomyopathy (DCM) is an autosomal-dominant genetic condition with cardiomyocyte and conduction system dysfunction often resulting in heart failure or sudden death. The condition is caused by mutation in the Lamin A/C (LMNA) gene encoding Type-A nuclear lamin proteins involved in nuclear integrity, epigenetic regulation of gene expression, and differentiation. The molecular mechanisms of the disease are not completely understood, and there are no definitive treatments to reverse progression or prevent mortality. We investigated possible mechanisms of LMNA-related DCM using induced pluripotent stem cells derived from a family with a heterozygous LMNA c.357-2A>G splice-site mutation. We differentiated one LMNA-mutant iPSC line derived from an affected female (Patient) and two non-mutant iPSC lines derived from her unaffected sister (Control) and conducted single-cell RNA sequencing for 12 samples (four from Patients and eight from Controls) across seven time points: Day 0, 2, 4, 9, 16, 19, and 30. Our bioinformatics workflow identified 125,554 cells in raw data and 110,521 (88%) high-quality cells in sequentially processed data. Unsupervised clustering, cell annotation, and trajectory inference found complex heterogeneity: ten main cell types; many possible subtypes; and lineage bifurcation for cardiac progenitors to cardiomyocytes (CMs) and epicardium-derived cells (EPDCs). Data integration and comparative analyses of Patient and Control cells found cell type and lineage-specific differentially expressed genes (DEGs) with enrichment, supporting pathway dysregulation. Top DEGs and enriched pathways included 10 ZNF genes and RNA polymerase II transcription in pluripotent cells (PP); BMP4 and TGF Beta/BMP signaling, sarcomere gene subsets and cardiogenesis, CDH2 and EMT in CMs; LMNA and epigenetic regulation, as well as DDIT4 and mTORC1 signaling in EPDCs. Top DEGs also included XIST and other X-linked genes, six imprinted genes (SNRPN, PWAR6, NDN, PEG10, MEG3, MEG8), and enriched gene sets related to metabolism, proliferation, and homeostasis. We confirmed Lamin A/C haploinsufficiency by allelic expression and Western blot. Our complex Patient-derived iPSC model for Lamin A/C haploinsufficiency in PP, CM, and EPDC provided support for dysregulation of genes and pathways, many previously associated with Lamin A/C defects, such as epigenetic gene expression, signaling, and differentiation. Our findings support disruption of epigenomic developmental programs, as proposed in other LMNA disease models. We recognized other factors influencing epigenetics and differentiation; thus, our approach needs improvement to further investigate this mechanism in an iPSC-derived model.
Collapse
Affiliation(s)
- Michael V. Zaragoza
- UCI Cardiogenomics Program, Pediatrics and Biological Chemistry, UC Irvine School of Medicine, Irvine, CA 92697, USA
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Thuy-Anh Bui
- UCI Cardiogenomics Program, Pediatrics and Biological Chemistry, UC Irvine School of Medicine, Irvine, CA 92697, USA
| | - Halida P. Widyastuti
- UCI Cardiogenomics Program, Pediatrics and Biological Chemistry, UC Irvine School of Medicine, Irvine, CA 92697, USA
| | - Mehrsa Mehrabi
- Biomedical Engineering and Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Zixuan Cang
- Mathematics and NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA
| | - Yutong Sha
- Mathematics and NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA
| | - Anna Grosberg
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
- Biomedical Engineering and Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Qing Nie
- Mathematics and NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
2
|
Zaragoza MV, Bui TA, Widyastuti HP, Mehrabi M, Cang Z, Sha Y, Grosberg A, Nie Q. LMNA -Related Dilated Cardiomyopathy: Single-Cell Transcriptomics during Patient-derived iPSC Differentiation Support Cell type and Lineage-specific Dysregulation of Gene Expression and Development for Cardiomyocytes and Epicardium-Derived Cells with Lamin A/C Haploinsufficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598335. [PMID: 38915555 PMCID: PMC11195187 DOI: 10.1101/2024.06.12.598335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
LMNA -Related Dilated Cardiomyopathy (DCM) is an autosomal-dominant genetic condition with cardiomyocyte and conduction system dysfunction often resulting in heart failure or sudden death. The condition is caused by mutation in the Lamin A/C ( LMNA ) gene encoding Type-A nuclear lamin proteins involved in nuclear integrity, epigenetic regulation of gene expression, and differentiation. Molecular mechanisms of disease are not completely understood, and there are no definitive treatments to reverse progression or prevent mortality. We investigated possible mechanisms of LMNA -Related DCM using induced pluripotent stem cells derived from a family with a heterozygous LMNA c.357-2A>G splice-site mutation. We differentiated one LMNA mutant iPSC line derived from an affected female (Patient) and two non-mutant iPSC lines derived from her unaffected sister (Control) and conducted single-cell RNA sequencing for 12 samples (4 Patient and 8 Control) across seven time points: Day 0, 2, 4, 9, 16, 19, and 30. Our bioinformatics workflow identified 125,554 cells in raw data and 110,521 (88%) high-quality cells in sequentially processed data. Unsupervised clustering, cell annotation, and trajectory inference found complex heterogeneity: ten main cell types; many possible subtypes; and lineage bifurcation for Cardiac Progenitors to Cardiomyocytes (CM) and Epicardium-Derived Cells (EPDC). Data integration and comparative analyses of Patient and Control cells found cell type and lineage differentially expressed genes (DEG) with enrichment to support pathway dysregulation. Top DEG and enriched pathways included: 10 ZNF genes and RNA polymerase II transcription in Pluripotent cells (PP); BMP4 and TGF Beta/BMP signaling, sarcomere gene subsets and cardiogenesis, CDH2 and EMT in CM; LMNA and epigenetic regulation and DDIT4 and mTORC1 signaling in EPDC. Top DEG also included: XIST and other X-linked genes, six imprinted genes: SNRPN , PWAR6 , NDN , PEG10 , MEG3 , MEG8 , and enriched gene sets in metabolism, proliferation, and homeostasis. We confirmed Lamin A/C haploinsufficiency by allelic expression and Western blot. Our complex Patient-derived iPSC model for Lamin A/C haploinsufficiency in PP, CM, and EPDC provided support for dysregulation of genes and pathways, many previously associated with Lamin A/C defects, such as epigenetic gene expression, signaling, and differentiation. Our findings support disruption of epigenomic developmental programs as proposed in other LMNA disease models. We recognized other factors influencing epigenetics and differentiation; thus, our approach needs improvement to further investigate this mechanism in an iPSC-derived model.
Collapse
|
3
|
Zuela-Sopilniak N, Morival J, Lammerding J. Multi-level transcriptomic analysis of LMNA -related dilated cardiomyopathy identifies disease-driving processes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598511. [PMID: 38915720 PMCID: PMC11195185 DOI: 10.1101/2024.06.11.598511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
LMNA- related dilated cardiomyopathy ( LMNA -DCM) is one of the most severe forms of DCM. The incomplete understanding of the molecular disease mechanisms results in lacking treatment options, leading to high mortality amongst patients. Here, using an inducible, cardiomyocyte-specific lamin A/C depletion mouse model, we conducted a comprehensive transcriptomic study, combining both bulk and single nucleus RNA sequencing, and spanning LMNA -DCM disease progression, to identify potential disease drivers. Our refined analysis pipeline identified 496 genes already misregulated early in disease. The expression of these genes was largely driven by disease specific cardiomyocyte sub-populations and involved biological processes mediating cellular response to DNA damage, cytosolic pattern recognition, and innate immunity. Indeed, DNA damage in LMNA -DCM hearts was significantly increased early in disease and correlated with reduced cardiomyocyte lamin A levels. Activation of cytosolic pattern recognition in cardiomyocytes was independent of cGAS, which is rarely expressed in cardiomyocytes, but likely occurred downstream of other pattern recognition sensors such as IFI16. Altered gene expression in cardiac fibroblasts and immune cell infiltration further contributed to tissue-wide changes in gene expression. Our transcriptomic analysis further predicted significant alterations in cell-cell communication between cardiomyocytes, fibroblasts, and immune cells, mediated through early changes in the extracellular matrix (ECM) in the LMNA -DCM hearts. Taken together, our work suggests a model in which nuclear damage in cardiomyocytes leads to activation of DNA damage responses, cytosolic pattern recognition pathway, and other signaling pathways that activate inflammation, immune cell recruitment, and transcriptional changes in cardiac fibroblasts, which collectively drive LMNA -DCM pathogenesis.
Collapse
|
4
|
Sengupta D, Sengupta K. Lamin A K97E leads to NF-κB-mediated dysfunction of inflammatory responses in dilated cardiomyopathy. Biol Cell 2024; 116:e2300094. [PMID: 38404031 DOI: 10.1111/boc.202300094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/07/2023] [Accepted: 01/04/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND INFORMATION Lamins are type V intermediate filament proteins underlying the inner nuclear membrane which provide structural rigidity to the nucleus, tether the chromosomes, maintain nuclear homeostasis, and remain dynamically associated with developmentally regulated regions of the genome. A large number of mutations particularly in the LMNA gene encoding lamin A/C results in a wide array of human diseases, collectively termed as laminopathies. Dilated Cardiomyopathy (DCM) is one such laminopathic cardiovascular disease which is associated with systolic dysfunction of left or both ventricles leading to cardiac arrhythmia which ultimately culminates into myocardial infarction. RESULTS In this work, we have unraveled the epigenetic landscape to address the regulation of gene expression in mouse myoblast cell line in the context of the missense mutation LMNA 289A CONCLUSIONS We report here for the first time that there is a significant downregulation of the NF-κB pathway, which has been implicated in cardio-protection elsewhere. SIGNIFICANCE This provides a new pathophysiological explanation that correlates an LMNA mutation and dilated cardiomyopathy.
Collapse
Affiliation(s)
- Duhita Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Kaushik Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
5
|
Cordoba-Caballero J, Perkins JR, García-Criado F, Gallego D, Navarro-Sánchez A, Moreno-Estellés M, Garcés C, Bonet F, Romá-Mateo C, Toro R, Perez B, Sanz P, Kohl M, Rojano E, Seoane P, Ranea JAG. Exploring miRNA-target gene pair detection in disease with coRmiT. Brief Bioinform 2024; 25:bbae060. [PMID: 38436559 PMCID: PMC10939301 DOI: 10.1093/bib/bbae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 03/05/2024] Open
Abstract
A wide range of approaches can be used to detect micro RNA (miRNA)-target gene pairs (mTPs) from expression data, differing in the ways the gene and miRNA expression profiles are calculated, combined and correlated. However, there is no clear consensus on which is the best approach across all datasets. Here, we have implemented multiple strategies and applied them to three distinct rare disease datasets that comprise smallRNA-Seq and RNA-Seq data obtained from the same samples, obtaining mTPs related to the disease pathology. All datasets were preprocessed using a standardized, freely available computational workflow, DEG_workflow. This workflow includes coRmiT, a method to compare multiple strategies for mTP detection. We used it to investigate the overlap of the detected mTPs with predicted and validated mTPs from 11 different databases. Results show that there is no clear best strategy for mTP detection applicable to all situations. We therefore propose the integration of the results of the different strategies by selecting the one with the highest odds ratio for each miRNA, as the optimal way to integrate the results. We applied this selection-integration method to the datasets and showed it to be robust to changes in the predicted and validated mTP databases. Our findings have important implications for miRNA analysis. coRmiT is implemented as part of the ExpHunterSuite Bioconductor package available from https://bioconductor.org/packages/ExpHunterSuite.
Collapse
Affiliation(s)
- Jose Cordoba-Caballero
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Bulevar Louis Pasteur, 31, Málaga, 29010, Spain
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, Cádiz, Spain
| | - James R Perkins
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Bulevar Louis Pasteur, 31, Málaga, 29010, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), C/ Severo Ochoa, 35, Parque Tecnológico de Andalucía (PTA), Campanillas, Málaga, 29590, Spain
| | - Federico García-Criado
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Bulevar Louis Pasteur, 31, Málaga, 29010, Spain
| | - Diana Gallego
- CIBER de Enfermedades Raras (CIBERER), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, Madrid, 28029, Spain
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid, Spain
- Instituto de Investigación Sanitaria IdiPaZ, Madrid, Spain
| | - Alicia Navarro-Sánchez
- CIBER de Enfermedades Raras (CIBERER), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, Madrid, 28029, Spain
- Departament de Fisiologia, Facultat de Medicina i Odontologia, Universitat de València, Av. Blasco Ibáñez 15, 46010, València, Spain
| | - Mireia Moreno-Estellés
- CIBER de Enfermedades Raras (CIBERER), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, Madrid, 28029, Spain
- Consejo Superior de Investigaciones Científicas, Instituto de Biomedicina de Valencia, Jaime Roig 11, 46010, Valencia, Spain
| | - Concepción Garcés
- CIBER de Enfermedades Raras (CIBERER), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, Madrid, 28029, Spain
- Departament de Fisiologia, Facultat de Medicina i Odontologia, Universitat de València, Av. Blasco Ibáñez 15, 46010, València, Spain
| | - Fernando Bonet
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, Cádiz, Spain
- Medicine Department, School of Medicine, University of Cádiz, Cádiz, Spain
| | - Carlos Romá-Mateo
- CIBER de Enfermedades Raras (CIBERER), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, Madrid, 28029, Spain
- Departament de Fisiologia, Facultat de Medicina i Odontologia, Universitat de València, Av. Blasco Ibáñez 15, 46010, València, Spain
- Incliva Biomedical Research Institute, 46010, València, Spain
| | - Rocio Toro
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, Cádiz, Spain
- Medicine Department, School of Medicine, University of Cádiz, Cádiz, Spain
| | - Belén Perez
- CIBER de Enfermedades Raras (CIBERER), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, Madrid, 28029, Spain
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid, Spain
- Instituto de Investigación Sanitaria IdiPaZ, Madrid, Spain
| | - Pascual Sanz
- CIBER de Enfermedades Raras (CIBERER), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, Madrid, 28029, Spain
- Consejo Superior de Investigaciones Científicas, Instituto de Biomedicina de Valencia, Jaime Roig 11, 46010, Valencia, Spain
| | - Matthias Kohl
- Faculty of Medical and Life Sciences, Furtwangen University, Germany
| | - Elena Rojano
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Bulevar Louis Pasteur, 31, Málaga, 29010, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), C/ Severo Ochoa, 35, Parque Tecnológico de Andalucía (PTA), Campanillas, Málaga, 29590, Spain
| | - Pedro Seoane
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Bulevar Louis Pasteur, 31, Málaga, 29010, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), C/ Severo Ochoa, 35, Parque Tecnológico de Andalucía (PTA), Campanillas, Málaga, 29590, Spain
- CIBER de Enfermedades Raras (CIBERER), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, Madrid, 28029, Spain
| | - Juan A G Ranea
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Bulevar Louis Pasteur, 31, Málaga, 29010, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), C/ Severo Ochoa, 35, Parque Tecnológico de Andalucía (PTA), Campanillas, Málaga, 29590, Spain
- CIBER de Enfermedades Raras (CIBERER), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, Madrid, 28029, Spain
- Instituto Nacional de Bioinformática (INB/ELIXIR-ES), Instituto de Salud Carlos III (ISCIII), C/ Sinesio Delgado, 4, Madrid, 28029, Spain
| |
Collapse
|
6
|
Chang L, Huang R, Chen J, Li G, Shi G, Xu B, Wang L. An alpha-helix variant p.Arg156Pro in LMNA as a cause of hereditary dilated cardiomyopathy: genetics and bioinfomatics exploration. BMC Med Genomics 2023; 16:229. [PMID: 37784143 PMCID: PMC10544607 DOI: 10.1186/s12920-023-01661-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 09/12/2023] [Indexed: 10/04/2023] Open
Abstract
LMNA gene encodes lamin A/C protein which participates in the construction of nuclear lamina, the mutations of LMNA result in a wide variety of diseases known as laminopathies. LMNA-related dilated cardiomyopathy(LMNA-DCM) is one of the more common laminopathy which characterized by progressive heart failure and arrhythmia. However, the mutation features of LMNA-DCM are yet to be elucidated. Herein we described a dilated cardiomyopathy family carrying novel variant c.467G > C(p.Arg156Pro) of LMNA as heterozygous pathogenic variant identified by whole-exome sequencing. With the help of Alphafold2, we predicted mutant protein structure and found an interrupted α-helix region in lamin A/C. In the analysis of 49 confirmed pathogenic missense of laminopathies, Chi-square test showed the DCM phenotype was related to the α-helix region mutation (p < 0.017). After screening the differentially expressed genes (DEGs) in both mice models and human patients in Gene Expression Omnibus database, we found the variation of α-helix-coding region in LMNA caused abnormal transcriptomic features in cell migration, collagen-containing extracellular matrix, and PI3K-Akt signaling pathway. Subsequently we constructed (TF)-mRNA-microRNA (miRNA) regulatory network and identified 7 key genes (FMOD, CYP1B1, CA3, F2RL1, HAPLIN1, SNAP91, and KANSL1) as potential biomarkers or therapeutic targets in LMNA-DCM patients.
Collapse
Affiliation(s)
- Lei Chang
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210008, China
- Department of Cardiology, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, 215000, China
| | - Rong Huang
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Jianzhou Chen
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Guannan Li
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Guangfei Shi
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210008, China.
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, 210008, China.
| | - Lian Wang
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210008, China.
- Department of Cardiology, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
7
|
Benarroch L, Madsen-Østerbye J, Abdelhalim M, Mamchaoui K, Ohana J, Bigot A, Mouly V, Bonne G, Bertrand AT, Collas P. Cellular and Genomic Features of Muscle Differentiation from Isogenic Fibroblasts and Myoblasts. Cells 2023; 12:1995. [PMID: 37566074 PMCID: PMC10417614 DOI: 10.3390/cells12151995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
The ability to recapitulate muscle differentiation in vitro enables the exploration of mechanisms underlying myogenesis and muscle diseases. However, obtaining myoblasts from patients with neuromuscular diseases or from healthy subjects poses ethical and procedural challenges that limit such investigations. An alternative consists in converting skin fibroblasts into myogenic cells by forcing the expression of the myogenic regulator MYOD. Here, we directly compared cellular phenotype, transcriptome, and nuclear lamina-associated domains (LADs) in myo-converted human fibroblasts and myotubes differentiated from myoblasts. We used isogenic cells from a 16-year-old donor, ruling out, for the first time to our knowledge, genetic factors as a source of variations between the two myogenic models. We show that myo-conversion of fibroblasts upregulates genes controlling myogenic pathways leading to multinucleated cells expressing muscle cell markers. However, myotubes are more advanced in myogenesis than myo-converted fibroblasts at the phenotypic and transcriptomic levels. While most LADs are shared between the two cell types, each also displays unique domains of lamin A/C interactions. Furthermore, myotube-specific LADs are more gene-rich and less heterochromatic than shared LADs or LADs unique to myo-converted fibroblasts, and they uniquely sequester developmental genes. Thus, myo-converted fibroblasts and myotubes retain cell type-specific features of radial and functional genome organization. Our results favor a view of myo-converted fibroblasts as a practical model to investigate the phenotypic and genomic properties of muscle cell differentiation in normal and pathological contexts, but also highlight current limitations in using fibroblasts as a source of myogenic cells.
Collapse
Affiliation(s)
- Louise Benarroch
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France; (L.B.); (K.M.); (J.O.); (A.B.); (V.M.); (G.B.)
| | - Julia Madsen-Østerbye
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (J.M.-Ø.); (M.A.)
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0372 Oslo, Norway
| | - Mohamed Abdelhalim
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (J.M.-Ø.); (M.A.)
| | - Kamel Mamchaoui
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France; (L.B.); (K.M.); (J.O.); (A.B.); (V.M.); (G.B.)
| | - Jessica Ohana
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France; (L.B.); (K.M.); (J.O.); (A.B.); (V.M.); (G.B.)
| | - Anne Bigot
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France; (L.B.); (K.M.); (J.O.); (A.B.); (V.M.); (G.B.)
| | - Vincent Mouly
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France; (L.B.); (K.M.); (J.O.); (A.B.); (V.M.); (G.B.)
| | - Gisèle Bonne
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France; (L.B.); (K.M.); (J.O.); (A.B.); (V.M.); (G.B.)
| | - Anne T. Bertrand
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France; (L.B.); (K.M.); (J.O.); (A.B.); (V.M.); (G.B.)
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (J.M.-Ø.); (M.A.)
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0372 Oslo, Norway
| |
Collapse
|
8
|
Koslow M, Mondaca-Ruff D, Xu X. Transcriptome studies of inherited dilated cardiomyopathies. Mamm Genome 2023; 34:312-322. [PMID: 36749382 PMCID: PMC10426000 DOI: 10.1007/s00335-023-09978-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023]
Abstract
Dilated cardiomyopathy (DCM) is a group of heart muscle diseases that often lead to heart failure, with more than 50 causative genes have being linked to DCM. The heterogenous nature of the inherited DCMs suggest the need of precision medicine. Consistent with this emerging concept, transcriptome studies in human patients with DCM indicated distinct molecular signature for DCMs of different genetic etiology. To facilitate this line of research, we reviewed the status of transcriptome studies of inherited DCMs by focusing on three predominant DCM causative genes, TTN, LMNA, and BAG3. Besides studies in human patients, we summarized transcriptomic analysis of these inherited DCMs in a variety of model systems ranging from iPSCs to rodents and zebrafish. We concluded that the RNA-seq technology is a powerful genomic tool that has already led to the discovery of new modifying genes, signaling pathways, and related therapeutic avenues. We also pointed out that both temporal (different pathological stages) and spatial (different cell types) information need to be considered for future transcriptome studies. While an important bottle neck is the low throughput in experimentally testing differentially expressed genes, new technologies in efficient animal models such as zebrafish starts to be developed. It is anticipated that the RNA-seq technology will continue to uncover both unique and common pathological events, aiding the development of precision medicine for inherited DCMs.
Collapse
Affiliation(s)
- Matthew Koslow
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - David Mondaca-Ruff
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
9
|
Kong Q, Zhou J, Ma C, Wei Z, Chen Y, Cheng Y, Wu W, Zhou Z, Tang Y, Liu X. Inhibition of long noncoding RNA Gm41724 alleviates pressure overload-induced cardiac fibrosis by regulating lamina-associated polypeptide 2α. Pharmacol Res 2023; 188:106677. [PMID: 36702426 DOI: 10.1016/j.phrs.2023.106677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/15/2023] [Accepted: 01/22/2023] [Indexed: 01/24/2023]
Abstract
Cardiac fibrosis is a pathological process underlying myocardial remodeling and is characterized by excessive deposition of the myocardial extracellular matrix. Long noncoding RNAs (lncRNAs) have emerged as critical regulators of various biological processes. In this study, we investigated the role of a novel lncRNA, Gm41724, in cardiac fibrosis induced by pressure overload. High-throughput whole transcriptome sequencing analysis was performed to detect differentially expressed lncRNAs in cardiac fibroblasts (CFs) with or without TGF-β1 treatment. Differential expression analysis and gene set enrichment analysis identified Gm41724 as a potential molecule targeting fibrosis. Gm41724 positively regulated the activation of CFs induced by TGF-β1 and pressure overload. Knocking down Gm41724 could inhibit the differentiation of CFs into myofibroblasts and alleviate cardiac fibrosis induced by pressure overload. Mechanistically, comprehensive identification of RNA-binding proteins by mass spectrometry (CHIRP-MS) and RNA immunoprecipitation (RIP) assay combined with other methods of molecular biological revealed the important role of Gm41724 binding to lamina-associated polypeptide 2α (lap2α) for the activation of CFs. Further mechanistic studies indicated that the regulator of G protein signaling 4 (Rgs4), as the downstream effector of Gm41724/lap2α, regulated CFs activation. Our results implicated the involvement of Gm41724 in cardiac fibrosis induced by pressure overload and it is expected to be a promising target for anti-fibrotic therapy.
Collapse
Affiliation(s)
- Qihang Kong
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junteng Zhou
- Health Management Center, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Cardiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chi Ma
- Laboratory Animal Center, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Zisong Wei
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Chen
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yue Cheng
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenchao Wu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm 17176, Sweden
| | - Yong Tang
- School of Health and Rehabilitation, International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu 610075, China.
| | - Xiaojing Liu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Cardiology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
10
|
Kervella M, Jahier M, Meli AC, Muchir A. Genome organization in cardiomyocytes expressing mutated A-type lamins. Front Cell Dev Biol 2022; 10:1030950. [PMID: 36274847 PMCID: PMC9585167 DOI: 10.3389/fcell.2022.1030950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiomyopathy is a myocardial disorder, in which the heart muscle is structurally and functionally abnormal, often leading to heart failure. Dilated cardiomyopathy is characterized by a compromised left ventricular function and contributes significantly to the heart failure epidemic, which represents a staggering clinical and public health problem worldwide. Gene mutations have been identified in 35% of patients with dilated cardiomyopathy. Pathogenic variants in LMNA, encoding nuclear A-type lamins, are one of the major causative causes of dilated cardiomyopathy (i.e. CardioLaminopathy). A-type lamins are type V intermediate filament proteins, which are the main components of the nuclear lamina. The nuclear lamina is connected to the cytoskeleton on one side, and to the chromatin on the other side. Among the models proposed to explain how CardioLaminopathy arises, the “chromatin model” posits an effect of mutated A-type lamins on the 3D genome organization and thus on the transcription activity of tissue-specific genes. Chromatin contacts with the nuclear lamina via specific genomic regions called lamina-associated domains lamina-associated domains. These LADs play a role in the chromatin organization and gene expression regulation. This review focuses on the identification of LADs and chromatin remodeling in cardiac muscle cells expressing mutated A-type lamins and discusses the methods and relevance of these findings in disease.
Collapse
Affiliation(s)
- Marie Kervella
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Maureen Jahier
- Sorbonne Université, INSERM U974, Institute of Myology, Center of Research in Myology, Paris, France
| | - Albano C. Meli
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Antoine Muchir
- Sorbonne Université, INSERM U974, Institute of Myology, Center of Research in Myology, Paris, France
- *Correspondence: Antoine Muchir,
| |
Collapse
|
11
|
Xintarakou A, Kariki O, Doundoulakis I, Arsenos P, Soulaidopoulos S, Laina A, Xydis P, Kordalis A, Nakas N, Theofilou A, Vlachopoulos C, Tsioufis K, Gatzoulis KA. The Role of Genetics in Risk Stratification Strategy of Dilated Cardiomyopathy. Rev Cardiovasc Med 2022; 23:305. [PMID: 39077708 PMCID: PMC11262384 DOI: 10.31083/j.rcm2309305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 07/31/2024] Open
Abstract
Dilated cardiomyopathy (DCM) is a heart disorder of diverse etiologies that affects millions of people worldwide, associated with increased mortality rate and high risk of sudden cardiac death. Patients with DCM are characterized by a wide range of clinical and pre-clinical phenotypes which are related with different outcomes. Dominant studies have failed to demonstrate the value of the left ventricular ejection fraction as the only indicator for patients' assessment and arrhythmic events prediction, thus making sudden cardiac death (SCD) risk stratification strategy improvement, more crucial than ever. The multifactorial two-step approach, examining non-invasive and invasive risk factors, represents an alternative process that enhances the accurate diagnosis and the individualization of patients' management. The role of genetic testing, regarding diagnosis and decision making, is of great importance, as pathogenic variants have been detected in several patients either they had a disease relative family history or not. At the same time there are specific genes mutations that have been associated with the prognosis of the disease. The aim of this review is to summarize the latest data regarding the genetic substrate of DCM and the value of genetic testing in patients' assessment and arrhythmic risk evaluation. Undoubtedly, the appropriate application of genetic testing and the thoughtful analysis of the results will contribute to the identification of patients who will receive major benefit from an implantable defibrillator as preventive treatment of SCD.
Collapse
Affiliation(s)
- Anastasia Xintarakou
- First Cardiology Department, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Ourania Kariki
- Department of Cardiology, Onassis Cardiac Surgery Center, Athens, 17674 Kallithea, Greece
| | - Ioannis Doundoulakis
- First Cardiology Department, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Petros Arsenos
- First Cardiology Department, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Stergios Soulaidopoulos
- First Cardiology Department, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Aggeliki Laina
- First Cardiology Department, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Panagiotis Xydis
- First Cardiology Department, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Athanasios Kordalis
- First Cardiology Department, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Nikolaos Nakas
- Department of Cardiology, General Hospital of Nikaia-Piraeus “Agios Panteleimon”, Piraeus, 18454 Nikaia, Greece
| | - Alexia Theofilou
- Department of Cardiology, General Hospital of Nikaia-Piraeus “Agios Panteleimon”, Piraeus, 18454 Nikaia, Greece
| | - Charalampos Vlachopoulos
- First Cardiology Department, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Konstantinos Tsioufis
- First Cardiology Department, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Konstantinos A Gatzoulis
- First Cardiology Department, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| |
Collapse
|
12
|
van Andel E, Roosjen M, van der Zanden S, Lange SC, Weijers D, Smulders MMJ, Savelkoul HFJ, Zuilhof H, Tijhaar EJ. Highly Specific Protein Identification by Immunoprecipitation-Mass Spectrometry Using Antifouling Microbeads. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23102-23116. [PMID: 35536557 PMCID: PMC9136845 DOI: 10.1021/acsami.1c22734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
A common method to study protein complexes is immunoprecipitation (IP), followed by mass spectrometry (thus labeled: IP-MS). IP-MS has been shown to be a powerful tool to identify protein-protein interactions. It is, however, often challenging to discriminate true protein interactors from contaminating ones. Here, we describe the preparation of antifouling azide-functionalized polymer-coated beads that can be equipped with an antibody of choice via click chemistry. We show the preparation of generic immunoprecipitation beads that target the green fluorescent protein (GFP) and show how they can be used in IP-MS experiments targeting two different GFP-fusion proteins. Our antifouling beads were able to efficiently identify relevant protein-protein interactions but with a strong reduction in unwanted nonspecific protein binding compared to commercial anti-GFP beads.
Collapse
Affiliation(s)
- Esther van Andel
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Cell
Biology and Immunology group, Wageningen
University, De Elst 1, 6709 PG Wageningen, The Netherlands
| | - Mark Roosjen
- Laboratory
of Biochemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Stef van der Zanden
- Cell
Biology and Immunology group, Wageningen
University, De Elst 1, 6709 PG Wageningen, The Netherlands
| | - Stefanie C. Lange
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Dolf Weijers
- Laboratory
of Biochemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Maarten M. J. Smulders
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Huub F. J. Savelkoul
- Cell
Biology and Immunology group, Wageningen
University, De Elst 1, 6709 PG Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- School
of Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, People’s Republic of China
- Department
of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Edwin J. Tijhaar
- Cell
Biology and Immunology group, Wageningen
University, De Elst 1, 6709 PG Wageningen, The Netherlands
| |
Collapse
|
13
|
Bridger JM, Pereira RT, Pina C, Tosi S, Lewis A. Alterations to Genome Organisation in Stem Cells, Their Differentiation and Associated Diseases. Results Probl Cell Differ 2022; 70:71-102. [PMID: 36348105 DOI: 10.1007/978-3-031-06573-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The organisation of the genome in its home, the cell nucleus, is reliant on a number of different aspects to establish, maintain and alter its functional non-random positioning. The genome is dispersed throughout a cell nucleus in specific chromosome territories which are further divided into topologically associated domains (TADs), where regions of the genome from different and the same chromosomes come together. This organisation is both controlled by DNA and chromatin epigenetic modification and the association of the genome with nuclear structures such as the nuclear lamina, the nucleolus and nuclear bodies and speckles. Indeed, sequences that are associated with the first two structures mentioned are termed lamina-associated domains (LADs) and nucleolar-associated domains (NADs), respectively. The modifications and nuclear structures that regulate genome function are altered through a cell's life from stem cell to differentiated cell through to reversible quiescence and irreversible senescence, and hence impacting on genome organisation, altering it to silence specific genes and permit others to be expressed in a controlled way in different cell types and cell cycle statuses. The structures and enzymes and thus the organisation of the genome can also be deleteriously affected, leading to disease and/or premature ageing.
Collapse
Affiliation(s)
- Joanna M Bridger
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance (cenGEM), College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK.
| | - Rita Torres Pereira
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance (cenGEM), College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Cristina Pina
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance (cenGEM), College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Sabrina Tosi
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance (cenGEM), College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Annabelle Lewis
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance (cenGEM), College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| |
Collapse
|
14
|
Lityagina O, Dobreva G. The LINC Between Mechanical Forces and Chromatin. Front Physiol 2021; 12:710809. [PMID: 34408666 PMCID: PMC8365421 DOI: 10.3389/fphys.2021.710809] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/14/2021] [Indexed: 12/26/2022] Open
Abstract
The heart continually senses and responds to mechanical stimuli that balance cardiac structure and activity. Tensile forces, compressive forces, and shear stress are sensed by the different cardiac cell types and converted into signals instructing proper heart morphogenesis, postnatal growth, and function. Defects in mechanotransduction, the ability of cells to convert mechanical stimuli into biochemical signals, are implicated in cardiovascular disease development and progression. In this review, we summarize the current knowledge on how mechanical forces are transduced to chromatin through the tensed actomyosin cytoskeleton, the linker of nucleoskeleton and cytoskeleton (LINC) complex and the nuclear lamina. We also discuss the functional significance of the LINC complex in cardiovascular disease.
Collapse
Affiliation(s)
- Olga Lityagina
- Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gergana Dobreva
- Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
| |
Collapse
|