1
|
Gholamalizadeh H, Amiri-Shahri M, Rasouli F, Ansari A, Baradaran Rahimi V, Reza Askari V. DNA Methylation in Autism Spectrum Disorders: Biomarker or Pharmacological Target? Brain Sci 2024; 14:737. [PMID: 39199432 PMCID: PMC11352561 DOI: 10.3390/brainsci14080737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 09/01/2024] Open
Abstract
Autism spectrum disorder (ASD) is a group of heterogeneous neurodevelopmental disabilities with persistent impairments in cognition, communication, and social behavior. Although environmental factors play a role in ASD etiopathogenesis, a growing body of evidence indicates that ASD is highly inherited. In the last two decades, the dramatic rise in the prevalence of ASD has interested researchers to explore the etiologic role of epigenetic marking and incredibly abnormal DNA methylation. This review aimed to explain the current understanding of the association between changes in DNA methylation signatures and ASD in patients or animal models. We reviewed studies reporting alterations in DNA methylation at specific genes as well as epigenome-wide association studies (EWASs). Finally, we hypothesized that specific changes in DNA methylation patterns could be considered a potential biomarker for ASD diagnosis and prognosis and even a target for pharmacological intervention.
Collapse
Affiliation(s)
- Hanieh Gholamalizadeh
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad 13131-99137, Iran;
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran
| | - Maedeh Amiri-Shahri
- Student Research Committee, North Khorasan University of Medical Sciences, Bojnurd 94149-75516, Iran; (M.A.-S.); (F.R.); (A.A.)
- Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd 94149-75516, Iran
| | - Fatemeh Rasouli
- Student Research Committee, North Khorasan University of Medical Sciences, Bojnurd 94149-75516, Iran; (M.A.-S.); (F.R.); (A.A.)
- Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd 94149-75516, Iran
| | - Arina Ansari
- Student Research Committee, North Khorasan University of Medical Sciences, Bojnurd 94149-75516, Iran; (M.A.-S.); (F.R.); (A.A.)
- Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd 94149-75516, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran;
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran
| |
Collapse
|
2
|
Bowman WS, Schmidt RJ, Sanghar GK, Thompson GR, Ji H, Zeki AA, Haczku A. "Air That Once Was Breath" Part 1: Wildfire-Smoke-Induced Mechanisms of Airway Inflammation - "Climate Change, Allergy and Immunology" Special IAAI Article Collection: Collegium Internationale Allergologicum Update 2023. Int Arch Allergy Immunol 2024; 185:600-616. [PMID: 38452750 PMCID: PMC11487202 DOI: 10.1159/000536578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/23/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Wildfires are a global concern due to their wide-ranging environmental, economic, and public health impacts. Climate change contributes to an increase in the frequency and intensity of wildfires making smoke exposure a more significant and recurring health concern for individuals with airway diseases. Some of the most prominent effects of wildfire smoke exposure are asthma exacerbations and allergic airway sensitization. Likely due to the delayed recognition of its health impacts in comparison with cigarette smoke and industrial or traffic-related air pollution, research on the composition, the mechanisms of toxicity, and the cellular/molecular pathways involved is poor or non-existent. SUMMARY This review discusses potential underlying pathological mechanisms of wildfire-smoke-related allergic airway disease and asthma. We focused on major gaps in understanding the role of wildfire smoke composition in the development of airway disease and the known and potential mechanisms involving cellular and molecular players of oxidative injury at the epithelial barrier in airway inflammation. We examine how PM2.5, VOCs, O3, endotoxin, microbes, and toxic gases may affect oxidative stress and inflammation in the respiratory mucosal barrier. We discuss the role of AhR in mediating smoke's effects in alarmin release and IL-17A production and how glucocorticoid responsiveness may be impaired by IL-17A-induced signaling and epigenetic changes leading to steroid-resistant severe airway inflammation. KEY MESSAGE Effective mitigation of wildfire-smoke-related respiratory health effects would require comprehensive research efforts aimed at a better understanding of the immune regulatory effects of wildfire smoke in respiratory health and disease.
Collapse
Affiliation(s)
- Willis S. Bowman
- UC Davis Lung Center, University of California, Davis, CA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Sacramento, CA, USA
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, School of Medicine, Sacramento, CA, USA
| | - Gursharan K. Sanghar
- UC Davis Lung Center, University of California, Davis, CA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Sacramento, CA, USA
| | - George R. Thompson
- UC Davis Lung Center, University of California, Davis, CA, USA
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Sacramento, CA, USA
| | - Hong Ji
- UC Davis Lung Center, University of California, Davis, CA, USA
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, Davis, CA, USA
| | - Amir A. Zeki
- UC Davis Lung Center, University of California, Davis, CA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Sacramento, CA, USA
| | - Angela Haczku
- UC Davis Lung Center, University of California, Davis, CA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Sacramento, CA, USA
| |
Collapse
|
3
|
Rodulfo-Cárdenas R, Ruiz-Sobremazas D, Biosca-Brull J, Cabré M, Blanco J, López-Granero C, Sánchez-Santed F, Colomina MT. The influence of environmental particulate matter exposure during late gestation and early life on the risk of neurodevelopmental disorders: A systematic review of experimental evidences. ENVIRONMENTAL RESEARCH 2023; 236:116792. [PMID: 37527744 DOI: 10.1016/j.envres.2023.116792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023]
Abstract
Particulate matter (PM) is a major component of ambient air pollution (AAP), being widely associated with adverse health effects. Epidemiological and experimental studies point towards a clear implication of AAP on the development of central nervous system (CNS) diseases. In this sense, the period of most CNS susceptibility is early life, when the CNS is maturing. In humans the last trimester of gestation is crucial for brain maturation while in rodents, due to the shorter gestational period, the brain is still immature at birth, and early postnatal development plays a significant role. The present systematic review provides an updated overview and discusses the existing literature on the relationship between early exposure to PM and neurodevelopmental outcomes in experimental studies. We included 11 studies with postnatal exposure and 9 studies with both prenatal and postnatal exposure. Consistent results between studies suggest that PM exposure could alter normal development, triggering impairments in short-term memory, sociability, and impulsive-like behavior. This is also associated with alterations in synaptic plasticity and in the immune system. Interestingly, differences have been observed between sexes, although not all studies included females. Furthermore, the developmental window of exposure seems to be crucial for effects to be observed in the future. In summary, air pollution exposure during development affects subjects in a time- and sex-dependent manner, the postnatal period being more important and being males apparently more sensitive to exposure than females. Nevertheless, additional experimental investigations should prioritize the examination of learning, impulsivity, and biochemical parameters, with particular attention provided to disparities between sexes.
Collapse
Affiliation(s)
- Rocío Rodulfo-Cárdenas
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira i Virgili, Center of Environmental, Food and Toxicological Technology (TECNATOX), Reus, Spain
| | - Diego Ruiz-Sobremazas
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120, Almeria, Spain
| | - Judit Biosca-Brull
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira i Virgili, Center of Environmental, Food and Toxicological Technology (TECNATOX), Reus, Spain
| | - Maria Cabré
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, Tarragona, Spain
| | - Jordi Blanco
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Center of Environmental, Food and Toxicological Technology (TECNATOX), Reus, Spain; Universitat Rovira i Virgili, Department of Basic Medical Sciences, Reus, Spain
| | | | - Fernando Sánchez-Santed
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120, Almeria, Spain
| | - Maria Teresa Colomina
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira i Virgili, Center of Environmental, Food and Toxicological Technology (TECNATOX), Reus, Spain.
| |
Collapse
|
4
|
Ruiz-Sobremazas D, Rodulfo-Cárdenas R, Ruiz-Coca M, Morales-Navas M, Teresa Colomina M, López-Granero C, Sánchez-Santed F, Perez-Fernandez C. Uncovering the link between air pollution and neurodevelopmental alterations during pregnancy and early life exposure: A systematic review. Neurosci Biobehav Rev 2023; 152:105314. [PMID: 37442496 DOI: 10.1016/j.neubiorev.2023.105314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/09/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023]
Abstract
Air pollution plays, nowadays, a huge role in human's health and in the personal economy. Moreover, there has been a rise in the prevalence of neurodevelopmental disorders like the Autism Spectrum Disorder (ASD) in recent years. Current scientific studies have established a link between prenatal or perinatal exposure to environmental pollutants and ASD. This systematic review summarizes the current literature available about the relationship between exposure to air pollutants (particulate matter [PM], Second Organic Aerosols [SOA], Diesel Exhaust [DE], and Traffic Related Air Pollution [TRAP]) and neurodevelopmental disorders in preclinical models using rats and mice. The articles were selected and filtered using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology, and bias-evaluated using the SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE) tool. Overall, our findings suggest that air pollutants are associated with negative developmental outcomes characterized by ASD-like behaviors, abnormal biochemical patterns, and impaired achievement of developmental milestones in rodents. However, there is not sufficient information in certain domains to establish a clear relationship. Short phrases for indexing terms: Air pollution affects neurodevelopment; PM exposure modifies glutamate system; Prenatal exposure combined with postnatal affect more to behavioral / cognitive domain; Air pollution modifies social behavior in rodents; Cognitive deficits can be detected after gestational exposure to air pollution.
Collapse
Affiliation(s)
- Diego Ruiz-Sobremazas
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120 Almeria, Spain
| | - Rocío Rodulfo-Cárdenas
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Reus, Spain
| | - Mario Ruiz-Coca
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120 Almeria, Spain
| | - Miguel Morales-Navas
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120 Almeria, Spain
| | - Maria Teresa Colomina
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Reus, Spain
| | | | - Fernando Sánchez-Santed
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120 Almeria, Spain
| | - Cristian Perez-Fernandez
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120 Almeria, Spain.
| |
Collapse
|
5
|
Li K, Liang X, Xie X, Tian L, Yan J, Lin B, Liu H, Lai W, Liu X, Xi Z. Role of SHANK3 in concentrated ambient PM2. 5 exposure induced autism-like phenotype. Heliyon 2023; 9:e14328. [PMID: 36938421 PMCID: PMC10018567 DOI: 10.1016/j.heliyon.2023.e14328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Perinatal air pollution plays an important role in the development of autism. However, research on the pathogenic mechanism remains limited. In this study, the model of systemic inhalation of concentrated approximately 8-fold the level (mean concentration was 224 μg/m3) reported in ambient outdoor air of PM2.5 (particulate matters that are 2.5 μm or less in diameter)in early-postnatal male Sprague-Dawley (SD) rats was established. Through a series of autism-related behavioral tests, it was identified that young rats (postnatal day 1-day21, named PND1-PND21) exposed to PM2.5 exhibited typical autistic phenotypes, such as impaired language communication, abnormal repetitive and stereotyped behaviors, and impaired social skills. Moreover, synaptic abnormalities have been found in the brain tissues of young rats exposed to PM2.5. In terms of the molecular mechanism, we found that the levels of SH3 and multiple ankyrin repeat domains 3 (SHANK3) expression and key molecular proteins in the downstream signaling pathways were decreased in the brain tissues of the exposed rats. Finally, at the epigenetic level, SHANK3 methylation levels were increased in young rats exposed to PM2.5. In conclusion, the study revealed that PM2.5 exposure might induce the early postnatal autism through the SHANK3 signaling pathway by affecting the SHANK3 methylation levels and reducing the SHANK3 expression levels. The study could provide new ideas for autism etiology and a theoretical basis for the prevention and treatment of autism in children.
Collapse
Affiliation(s)
- Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Xiaotian Liang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
- Binzhou Medical College, Yantai, 264000, China
| | - Xiaoqian Xie
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
- Binzhou Medical College, Yantai, 264000, China
| | - Lei Tian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Jun Yan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Bencheng Lin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Huanliang Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Wenqin Lai
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Xiaohua Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
- Corresponding author.
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
- Binzhou Medical College, Yantai, 264000, China
- Corresponding author. Tianjin Institute of Environmental and Operational Medicine, No. 1, Dali Road, Heping District, Tianjin, 300050, PR China.
| |
Collapse
|