1
|
Vanmathi P, Jose D. An ensemble-based serial cascaded attention network and improved variational auto encoder for breast cancer prognosis prediction using data. Comput Methods Biomech Biomed Engin 2024; 27:98-115. [PMID: 38006210 DOI: 10.1080/10255842.2023.2280883] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023]
Abstract
Breast cancer is one of the most common types of cancer in women and it produces a huge amount of death rate in the world. Early recognition is lessening its impact. The early recognition of breast cancer could convince patients to receive surgical therapy, which will significantly improve the chance of restoration. This information is used by the machine learning technique to find links between them and appraise our forecasts of fresh occurrences. Later recognition of breast cancer can lead to death. An accurate prescient framework for breast cancer prediction is urgently needed in the current era. In order to accomplish the objective, an adaptive ensemble model is proposed for breast cancer prognosis prediction using data. At the initial stage, the raw data are fetched from benchmark datasets. It is then followed by data cleaning and preprocessing. Subsequently, the pre-processed data is fed into the Improved Variational Autoencoder (IVAE), where the deep features are extracted. Finally, the resultant features are given as input to the Ensemble-based Serial Cascaded Attention Network (ESCANet), which is built with Deep Temporal Convolution Network (DTCN), Bi-directional Long Short-Term Memory (BiLSTM), and Recurrent Neural Network (RNN). The effectiveness of the model is validated and compared with conventional methodologies. Therefore, the results elucidate that the proposed methodology achieves extensive results; thus, it increases the system's efficiency.
Collapse
Affiliation(s)
- P Vanmathi
- Full time Research Scholar, Department of ECE, KCG College of Technology, Karapakkam, Chennai, Tamil Nadu, India
| | - Deepa Jose
- Professor, Department of ECE, KCG College of Technology, Karapakkam, Chennai, Tamil Nadu, India
| |
Collapse
|
2
|
Afzaljavan F, Vahednia E, Barati Bagherabad M, Vakili F, Moezzi A, Hosseini A, Homaei Shandiz F, Kooshyar MM, Nassiri M, Pasdar A. Genetic contribution of caspase-8 variants and haplotypes to breast cancer risk and prognosis: a case-control study in Iran. BMC Med Genomics 2023; 16:72. [PMID: 37016353 PMCID: PMC10071634 DOI: 10.1186/s12920-023-01484-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 03/09/2023] [Indexed: 04/06/2023] Open
Abstract
PURPOSE Multiple genome-wide and candidate-gene association studies have been conducted to search for common risk variants of breast cancer. Recent large meta-analyses and consolidating evidence have highlighted the role of the caspase-8 gene in breast cancer pathogenesis. Therefore, this study aimed to identify common variations and haplotypes associated with risk and overall survival of breast cancer with respect to underlying susceptibility variants in the CASP8 gene region in a group of the Iranian population. METHODS In a case-control study with a total of 1008 samples (455 cases and 553 controls), genotyping of 12 candidate polymorphisms, consisting of rs3834129, rs2037815, rs7608692, rs12990906, rs3769821, rs6435074, rs3754934, rs3817578, rs10931936, rs1045485, rs1045487, and rs13113, were performed using PCR-based methods, including ARMS-PCR, AS-PCR, RFLP-PCR, HRM-PCR, and TaqMan-PCR. RESULTS rs3834129, rs3754934, rs12990906, and rs10931936 were associated with the risk and overall survival of breast cancer. Several haplotypes were also identified an associated with a higher risk of breast cancer, including a three-SNP haplotype rs3817578-rs10931936-rs1045485 [p < 0.001, OR = 1.78(1.32-2.41)]. rs3754934-C allele showed an association with a lower risk of death in all patients [p = 0.022; HR = 0.46(0.23-0.89)] and in the hormone-receptor-positive group [p = 0.038; HR = 0.37(0.14-0.95)], as well as CC genotype in the hormone-receptor-positive group [p = 0.002; HR = 0.09(0.02-0.43)]. CONCLUSION The present study suggests a diagnostic and prognostic role of CASP8 gene variations in breast cancer. The risky haplotypes are likely to have one or more underlying breast cancer susceptibility alleles. Understanding the mode of action of these alleles will aid individual-level risk prediction. It also may help identify at-risk patients to provide them with better surveillance.
Collapse
Affiliation(s)
- Fahimeh Afzaljavan
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Elham Vahednia
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Matineh Barati Bagherabad
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Vakili
- Midwifery department, Faculty of Nursing and Midwifery, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atefeh Moezzi
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mohammad Mahdi Kooshyar
- Department of Internal Medicine, Faculty of Medicine, Ghaem Medical Center, Mashhad University of Medical sciences, Mashhad, Iran
| | - Mohammadreza Nassiri
- Recombinant Protein Research Group, The Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Alireza Pasdar
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Bioinformatics Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Sneha S, Baker SC, Green A, Storr S, Aiyappa R, Martin S, Pors K. Intratumoural Cytochrome P450 Expression in Breast Cancer: Impact on Standard of Care Treatment and New Efforts to Develop Tumour-Selective Therapies. Biomedicines 2021; 9:biomedicines9030290. [PMID: 33809117 PMCID: PMC7998590 DOI: 10.3390/biomedicines9030290] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/13/2022] Open
Abstract
Despite significant advances in treatment strategies over the past decade, selective treatment of breast cancer with limited side-effects still remains a great challenge. The cytochrome P450 (CYP) family of enzymes contribute to cancer cell proliferation, cell signaling and drug metabolism with implications for treatment outcomes. A clearer understanding of CYP expression is important in the pathogenesis of breast cancer as several isoforms play critical roles in metabolising steroid hormones and xenobiotics that contribute to the genesis of breast cancer. The purpose of this review is to provide an update on how the presence of CYPs impacts on standard of care (SoC) drugs used to treat breast cancer as well as discuss opportunities to exploit CYP expression for therapeutic intervention. Finally, we provide our thoughts on future work in CYP research with the aim of supporting ongoing efforts to develop drugs with improved therapeutic index for patient benefit.
Collapse
Affiliation(s)
- Smarakan Sneha
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK;
| | - Simon C. Baker
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology & York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK;
| | - Andrew Green
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (A.G.); (S.S.); (R.A.); (S.M.)
| | - Sarah Storr
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (A.G.); (S.S.); (R.A.); (S.M.)
| | - Radhika Aiyappa
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (A.G.); (S.S.); (R.A.); (S.M.)
| | - Stewart Martin
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (A.G.); (S.S.); (R.A.); (S.M.)
| | - Klaus Pors
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK;
- Correspondence: ; Tel.: +44-(0)1274-236482 or +44-(0)1274-235866; Fax: +44-(0)1274-233234
| |
Collapse
|
4
|
Al-Mahayri ZN, Patrinos GP, Ali BR. Toxicity and Pharmacogenomic Biomarkers in Breast Cancer Chemotherapy. Front Pharmacol 2020; 11:445. [PMID: 32351390 PMCID: PMC7174767 DOI: 10.3389/fphar.2020.00445] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/20/2020] [Indexed: 02/05/2023] Open
Abstract
Breast cancer (BC) is one of the most prevalent types of cancer worldwide with high morbidity and mortality rates. Treatment modalities include systemic therapy, in which chemotherapy is a major component in many cases. Several chemotherapeutic agents are used in combinations or as single agents with many adverse events occurring in variable frequencies. These events can be a significant barrier in completing the treatment regimens. Germline genomic variants are thought of as potential determinants in chemotherapy response and the development of side effects. Some pharmacogenomic studies were designed to explore germline variants that can be used as biomarkers for predicting developing toxicity or adverse events during chemotherapy in BC. In this review, we reassess and summarize the major findings of pharmacogenomic studies of chemotherapy toxicity during BC management. In addition, deficiencies hampering utilizing these findings and the potential targets of future research are emphasized. Main insufficiencies in toxicity pharmacogenomics studies originate from study design, sample limitations, heterogeneity of selected genes, variants, and toxicity definitions. With the advent of high throughput genotyping techniques, researchers are expected to explore the identified as well as the potential genetic biomarkers of toxicity and efficacy to improve BC management. However, to achieve this, the limitations of previous work should be evaluated and avoided to reach more conclusive and translatable evidence for personalizing BC chemotherapy.
Collapse
Affiliation(s)
- Zeina N Al-Mahayri
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - George P Patrinos
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.,Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece.,Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.,Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
5
|
Chan CWH, Miaskowski C, McCarthy A, Waye MMY, Yeo W, So WKW, Choi KC, Tsui SKW, Chan JYW. Tamoxifen-related endocrine symptoms in Chinese patients with breast cancer: Study protocol clinical trial (SPIRIT Compliant). Medicine (Baltimore) 2020; 99:e19083. [PMID: 32080081 PMCID: PMC7034730 DOI: 10.1097/md.0000000000019083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Breast cancer is the most prevalent cancer in females and disease recurrence remains a significant problem. To prevent recurrence, tamoxifen is prescribed for at least 5 years. However, among patients who receive tamoxifen, individual responses are highly variable. These responses are affected by the type, frequency, and severity of endocrine symptoms, as well as adherence rates. Polymorphisms in genes involved in the metabolism of tamoxifen (ie, CYP3A4, CYP2D6) may influence responses to tamoxifen. In this study, the inter-relationships among endocrine symptoms, drug adherence, and genetic polymorphisms in Chinese breast cancer patients receiving tamoxifen therapy will be examined. We hypothesize that patients with more severe endocrine symptoms will be less likely to adhere to tamoxifen treatment. In addition, we hypothesize that a relationship will exist between the severity of tamoxifen-induced symptoms and allelic variations in tamoxifen metabolism-related genes. Although many association studies have determined that select genotypes influence the efficacy of tamoxifen, very few studies have investigated for associations between tamoxifen-induced endocrine symptoms and these polymorphisms. OBJECTIVES The aim of this study was to characterize genetic polymorphisms in tamoxifen metabolism-associated genes in Chinese women with breast cancer and to explore the inter-relationships between genetic polymorphisms, endocrine symptoms, and adherence to tamoxifen. METHOD We will conduct a prospective cohort study that follows 200 Chinese women over 18 months and assess treatment-related symptoms and genetic variations. Endocrine symptoms and drug adherence will be determined through interview-administered standardized questionnaires. Polymorphisms in drug metabolism genes will be determined using real-time polymerase chain reaction based genotyping method. Data will be analyzed to determine associations between allelic variations, endocrine symptoms, and adherence. DISCUSSION The proposed study will evaluate for polymorphisms in gene(s) that are associated with tamoxifen-related endocrine symptoms and adherence with tamoxifen. We will explore the relationships between genotypes, endocrine symptoms, and drug adherence in Chinese breast cancer patients. Findings from this study may assist clinicians to identify patients at higher risk for a worse symptom experience and lower adherence rates and enable them to initiate appropriate interventions. In the long term, the findings from this study may be used to develop and test tailored symptom management interventions for these patients.
Collapse
Affiliation(s)
- Carmen Wing Han Chan
- The Nethersole School of Nursing, The Chinese University of Hong Kong, Hong Kong
| | | | - Alexandra McCarthy
- School of Nursing, Midwifery and Social Work, University of Queensland, Queensland, Australia
| | - Mary Miu Yee Waye
- The Nethersole School of Nursing, The Chinese University of Hong Kong, Hong Kong
- The Croucher Laboratory for Human Genomics, The Chinese University of Hong Kong
| | | | - Winnie Kwok Wai So
- The Nethersole School of Nursing, The Chinese University of Hong Kong, Hong Kong
| | - Kai Chow Choi
- The Nethersole School of Nursing, The Chinese University of Hong Kong, Hong Kong
| | | | - Judy Yuet Wa Chan
- The Nethersole School of Nursing, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
6
|
Samec M, Liskova A, Koklesova L, Mestanova V, Franekova M, Kassayova M, Bojkova B, Uramova S, Zubor P, Janikova K, Danko J, Samuel SM, Büsselberg D, Kubatka P. Fluctuations of Histone Chemical Modifications in Breast, Prostate, and Colorectal Cancer: An Implication of Phytochemicals as Defenders of Chromatin Equilibrium. Biomolecules 2019; 9:E829. [PMID: 31817446 PMCID: PMC6995638 DOI: 10.3390/biom9120829] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023] Open
Abstract
Natural substances of plant origin exert health beneficiary efficacy due to the content of various phytochemicals. Significant anticancer abilities of natural compounds are mediated via various processes such as regulation of a cell's epigenome. The potential antineoplastic activity of plant natural substances mediated by their action on posttranslational histone modifications (PHMs) is currently a highly evaluated area of cancer research. PHMs play an important role in maintaining chromatin structure and regulating gene expression. Aberrations in PHMs are directly linked to the process of carcinogenesis in cancer such as breast (BC), prostate (PC), and colorectal (CRC) cancer, common malignant diseases in terms of incidence and mortality among both men and women. This review summarizes the effects of plant phytochemicals (isolated or mixtures) on cancer-associated PHMs (mainly modulation of acetylation and methylation) resulting in alterations of chromatin structure that are related to the regulation of transcription activity of specific oncogenes, which are crucial in the development of BC, PC, and CRC. Significant effectiveness of natural compounds in the modulation of aberrant PHMs were confirmed by a number of in vitro or in vivo studies in preclinical cancer research. However, evidence concerning PHMs-modulating abilities of plant-based natural substances in clinical trials is insufficient.
Collapse
Affiliation(s)
- Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.); (J.D.)
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.); (J.D.)
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.); (J.D.)
| | - Veronika Mestanova
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Maria Franekova
- Department of Medical Biology and Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Monika Kassayova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University, 04001 Kosice, Slovakia; (M.K.); (B.B.)
| | - Bianka Bojkova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University, 04001 Kosice, Slovakia; (M.K.); (B.B.)
| | - Sona Uramova
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Pavol Zubor
- OBGY Health & Care, Ltd., 01026 Zilina, Slovakia;
| | - Katarina Janikova
- Department of Pathological Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Jan Danko
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.); (J.D.)
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Peter Kubatka
- Department of Medical Biology and Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| |
Collapse
|
7
|
Rani A, Stebbing J, Giamas G, Murphy J. Endocrine Resistance in Hormone Receptor Positive Breast Cancer-From Mechanism to Therapy. Front Endocrinol (Lausanne) 2019; 10:245. [PMID: 31178825 PMCID: PMC6543000 DOI: 10.3389/fendo.2019.00245] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/28/2019] [Indexed: 12/24/2022] Open
Abstract
The importance and role of the estrogen receptor (ER) pathway has been well-documented in both breast cancer (BC) development and progression. The treatment of choice in women with metastatic breast cancer (MBC) is classically divided into a variety of endocrine therapies, 3 of the most common being: selective estrogen receptor modulators (SERM), aromatase inhibitors (AI) and selective estrogen receptor down-regulators (SERD). In a proportion of patients, resistance develops to endocrine therapy due to a sophisticated and at times redundant interference, at the molecular level between the ER and growth factor. The progression to endocrine resistance is considered to be a gradual, step-wise process. Several mechanisms have been proposed but thus far none of them can be defined as the complete explanation behind the phenomenon of endocrine resistance. Although multiple cellular, molecular and immune mechanisms have been and are being extensively studied, their individual roles are often poorly understood. In this review, we summarize current progress in our understanding of ER biology and the molecular mechanisms that predispose and determine endocrine resistance in breast cancer patients.
Collapse
Affiliation(s)
- Aradhana Rani
- School of Life Sciences, University of Westminster, London, United Kingdom
- *Correspondence: Aradhana Rani
| | - Justin Stebbing
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - John Murphy
- School of Life Sciences, University of Westminster, London, United Kingdom
| |
Collapse
|
8
|
Uramova S, Kubatka P, Dankova Z, Kapinova A, Zolakova B, Samec M, Zubor P, Zulli A, Valentova V, Kwon TK, Solar P, Kello M, Kajo K, Busselberg D, Pec M, Danko J. Plant natural modulators in breast cancer prevention: status quo and future perspectives reinforced by predictive, preventive, and personalized medical approach. EPMA J 2018; 9:403-419. [PMID: 30538792 DOI: 10.1007/s13167-018-0154-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/25/2018] [Indexed: 12/21/2022]
Abstract
In contrast to the genetic component in mammary carcinogenesis, epigenetic alterations are particularly important for the development of sporadic breast cancer (BC) comprising over 90% of all BC cases worldwide. Most of the DNA methylation processes are physiological and essential for human cellular and tissue homeostasis, playing an important role in a number of key mechanisms. However, if dysregulated, DNA methylation contributes to pathological processes such as cancer development and progression. A global hypomethylation of oncogenes and hypermethylation of tumor-suppressor genes are characteristic of most cancer types. Moreover, histone chemical modifications and non-coding RNA-associated multi-gene controls are considered as the key epigenetic mechanisms governing the cellular homeostasis and differentiation states. A number of studies demonstrate dietary plant products as actively affecting the development and progression of cancer. "Nutri-epigenetics" focuses on the influence of dietary agents on epigenetic mechanisms. This approach has gained considerable attention; since in contrast to genetic alterations, epigenetic modifications are reversible affect early carcinogenesis. Currently, there is an evident lack of papers dedicated to the phytochemicals/plant extracts as complex epigenetic modulators, specifically in BC. Our paper highlights the role of plant natural compounds in targeting epigenetic alterations associated with BC development, progression, as well as its potential chemoprevention in the context of preventive medicine. Comprehensive measures are stated with a great potential to advance the overall BC management in favor of predictive, preventive, and personalized medical services and can be considered as "proof-of principle" model, for their potential application to other multifactorial diseases.
Collapse
Affiliation(s)
- Sona Uramova
- 1Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Kubatka
- 2Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia.,3Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Zuzana Dankova
- 3Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Andrea Kapinova
- 3Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Barbora Zolakova
- 3Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Marek Samec
- 1Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Pavol Zubor
- 1Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Anthony Zulli
- 4Institute for Health and Sport (IHES), Victoria University, Melbourne, Australia
| | | | - Taeg Kyu Kwon
- 6Department of Immunology, School of Medicine, Keimyung University, Daegu, South Korea
| | - Peter Solar
- 7Department of Medical Biology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovakia
| | - Martin Kello
- 8Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovakia
| | - Karol Kajo
- Department of Pathology, St. Elisabeth Oncology Institute, Bratislava, Slovakia
| | - Dietrich Busselberg
- 10Qatar Foundation, Weill Cornell Medical College in Qatar, Education City, Doha Qatar
| | - Martin Pec
- 2Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia
| | - Jan Danko
- 1Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
9
|
Differentially expressed genes related to major depressive disorder and antidepressant response: genome-wide gene expression analysis. Exp Mol Med 2018; 50:1-11. [PMID: 30076325 PMCID: PMC6076250 DOI: 10.1038/s12276-018-0123-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/25/2018] [Accepted: 04/17/2018] [Indexed: 12/15/2022] Open
Abstract
Treatment response to antidepressants is limited and varies among patients with major depressive disorder (MDD). To discover genes and mechanisms related to the pathophysiology of MDD and antidepressant treatment response, we performed gene expression analyses using peripheral blood specimens from 38 MDD patients and 14 healthy individuals at baseline and at 6 weeks after the initiation of either selective serotonin reuptake inhibitor (SSRI) or mirtazapine treatment. The results were compared with results from public microarray data. Seven differentially expressed genes (DEGs) between MDD patients and controls were identified in our study and in the public microarray data: CD58, CXCL8, EGF, TARP, TNFSF4, ZNF583, and ZNF587. CXCL8 was among the top 10 downregulated genes in both studies. Eight genes related to SSRI responsiveness, including BTNL8, showed alterations in gene expression in MDD. The expression of the FCRL6 gene differed between SSRI responders and nonresponders and changed after SSRI treatment compared to baseline. In evaluating the response to mirtazapine, 21 DEGs were identified when comparing MDD patients and controls and responders and nonresponders. These findings suggest that the pathophysiology of MDD and treatment response to antidepressants are associated with a number of processes, including DNA damage and apoptosis, that can be induced by immune activation and inflammation. Differences in the expression of several genes before and after different antidepressant treatments were found in patients with major depressive disorder (MDD), and may help identify patients most likely to benefit from specific drugs. Researchers in South Korea led by Doh Kwan Kim and Soo-Youn Lee at Samsung Medical Center, Seoul, examined gene expression across the 28,869 genes in 38 patients with MDD and 14 healthy individuals. They also validated their findings using existing databases of gene expression in patients with MDD and healthy controls. The research suggests that genes involved in the immune response and inflammation are significantly alternated in MDD and are predictable in which patients respond well to antidepressants. These findings may help develop new approaches to antidepressant therapies, and assist tailoring of treatment to the specific needs of different patients.
Collapse
|
10
|
Postmenopausal Breast Cancer, Aromatase Inhibitors, and Bone Health: What the Surgeon Should Know. World J Surg 2017; 40:2149-56. [PMID: 27189076 DOI: 10.1007/s00268-016-3555-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Breast cancer, as the most common malignancy in women, remains a major public health issue despite countless advances across decades. Endocrine therapy is the cornerstone of treatment of the hormone-sensitive subtype of breast cancer. The use of aromatase inhibitors (AIs) in the postmenopausal women has extended the survival beyond that of Tamoxifen, but harbors a subset of side effects, most notably accelerated bone loss. This, however, does not occur in all women undergoing treatment. It is vital to identify susceptible patients early, to limit such events, employ early treatment thereof, or alter drug therapy. International trials on AIs, predominantly performed in North American and European females, provide little information on what to expect in women in developing countries. Here, surgeons often prescribe and manage endocrine therapy. The prescribing surgeon should be aware of the adverse effect of the endocrine therapy and be able to attend to side effects. This review highlights clinical and biochemical factors associated with decrease in bone mineral density in an, as yet, unidentified subgroup of postmenopausal women. In the era of personalized medical care, appropriate management of bone health by surgeons based on these factors becomes increasingly important.
Collapse
|
11
|
Woo HI, Lee SK, Kim J, Kim SW, Yu J, Bae SY, Lee JE, Nam SJ, Lee SY. Variations in plasma concentrations of tamoxifen metabolites and the effects of genetic polymorphisms on tamoxifen metabolism in Korean patients with breast cancer. Oncotarget 2017; 8:100296-100311. [PMID: 29245979 PMCID: PMC5725021 DOI: 10.18632/oncotarget.22220] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/12/2017] [Indexed: 12/16/2022] Open
Abstract
Inter-individual variation in tamoxifen metabolism in breast cancer patients is caused by various genetic and clinical factors. We measured the plasma concentrations of tamoxifen and its metabolites and investigated genetic polymorphisms influencing those concentrations. We measured the concentrations of tamoxifen, endoxifen, N-desmethyltamoxifen (NDM), and 4-hydroxytamoxifen (4-OH tamoxifen) in 550 plasma specimens from 281 breast cancer patients treated with tamoxifen. Duplicate or triplicate specimens were obtained from 179 patients at 3-month intervals. In 80 patients, genotyping for tamoxifen metabolizing enzymes was performed using the DMET Plus array and long-range PCR. Plasma concentrations of tamoxifen and its metabolites showed wide variations among patients. The following genetic polymorphisms were associated with the plasma concentrations when body mass index and tamoxifen concentrations were considered as co-variables: CYP1A2 -2467delT, CYP2B6 genotype, CYP2D6 activity score (AS), and FMO3 441C>T. CYP2D6 AS and three variants in the SULT1E1 gene showed correlation with ratios of tamoxifen metabolites. CYP2D6 AS was the only variable that showed associations with both metabolite concentration and ratio: endoxifen (P < 0.001), NDM (P < 0.001), endoxifen/NDM (P < 0.001), NDM/tamoxifen (P < 0.001), and 4-OH tamoxifen/tamoxifen (P = 0.005). Serial measurements of 448 plasma concentrations in 179 patients at 3-month intervals showed wide intra-individual variation. Our study showed that genetic polymorphisms can in part determine the baseline concentrations of tamoxifen and its metabolites. However, marked intra-individual variations during follow-up monitoring were observed, and this could not be explained by genotype. Therefore, serial measurements of tamoxifen and its metabolites would be helpful in monitoring in vivo tamoxifen metabolic status.
Collapse
Affiliation(s)
- Hye In Woo
- Department of Laboratory Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Se Kyung Lee
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jiyoung Kim
- Department of Surgery, Jeju National University School of Medicine, Jeju National University Hospital, Jeju, Korea
| | - Seok Won Kim
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jonghan Yu
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo Youn Bae
- Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Jeong Eon Lee
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seok Jin Nam
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo-Youn Lee
- Department of Clinical Pharmacology & Therapeutics, Samsung Medical Center, Seoul, Korea.,Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
12
|
Rossi L, Pagani O. Adjuvant Endocrine Therapy in Breast Cancer: Evolving Paradigms in Premenopausal Women. Curr Treat Options Oncol 2017; 18:28. [DOI: 10.1007/s11864-017-0473-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Pagani O. Endocrine Therapies in the Adjuvant and Advanced Disease Settings. Breast Cancer 2017. [DOI: 10.1007/978-3-319-48848-6_45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|