1
|
Miller JS, Rose M, Roell J, Ubhe S, Liu T, Segal BM, Bell EH. A mini review of leveraging biobanking in the identification of novel biomarkers in neurological disorders: insights from a rapid single-cell sequencing pipeline. Front Neurosci 2024; 18:1473917. [PMID: 39777270 PMCID: PMC11703919 DOI: 10.3389/fnins.2024.1473917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Recent successes in the identification of biomarkers and therapeutic targets for diagnosing and managing neurological diseases underscore the critical need for cutting-edge biobanks in the conduct of high-caliber translational neuroscience research. Biobanks dedicated to neurological disorders are particularly timely, given the increasing prevalence of neurological disability among the rising aging population. Translational research focusing on disorders of the central nervous system (CNS) poses distinct challenges due to the limited accessibility of CNS tissue pre-mortem. Nevertheless, technological breakthroughs, including single-cell and single-nucleus methodologies, offer unprecedented insights into CNS pathophysiology using minimal input such as cerebrospinal fluid (CSF) cells and brain biopsies. Moreover, assays designed to detect factors that are released by CNS resident cells and diffuse into the CSF and/or bloodstream (such as neurofilament light chain [NfL], glial fibrillar acidic protein [GFAP] and amyloid beta peptides), and systemic factors that cross the blood-brain barrier to target CNS-specific molecules (e.g., autoantibodies that bind either the NMDA receptor [NMDAR] or myelin oligodendrocyte glycoprotein [MOG]), are increasingly deployed in clinical research and practice. This review provides an overview of current biobanking practices in neurological disorders and discusses ongoing challenges to biomarker discovery. Additionally, it outlines a rapid consenting and processing pipeline ensuring fresh paired blood and CSF specimens for single-cell sequencing that might more accurately reflect in vivo pathways. In summary, augmenting biobank rigor and establishing innovative research pipelines using patient samples will undoubtedly accelerate biomarker discovery in neurological disorders.
Collapse
Affiliation(s)
- Joseph S. Miller
- Heritage College of Osteopathic Medicine, Ohio University, Dublin, OH, United States
- Department of Neurology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Michael Rose
- Department of Neurology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Neuroscience Research Institute, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Jonathan Roell
- Department of Neurology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Neuroscience Research Institute, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Samruddhi Ubhe
- Department of Neurology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Neuroscience Research Institute, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Tom Liu
- Department of Neurology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Neuroscience Research Institute, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Benjamin M. Segal
- Department of Neurology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Neuroscience Research Institute, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Erica H. Bell
- Department of Neurology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Neuroscience Research Institute, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
2
|
Waury K, de Wit R, Verberk IMW, Teunissen CE, Abeln S. Deciphering Protein Secretion from the Brain to Cerebrospinal Fluid for Biomarker Discovery. J Proteome Res 2023; 22:3068-3080. [PMID: 37606934 PMCID: PMC10476268 DOI: 10.1021/acs.jproteome.3c00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Indexed: 08/23/2023]
Abstract
Cerebrospinal fluid (CSF) is an essential matrix for the discovery of neurological disease biomarkers. However, the high dynamic range of protein concentrations in CSF hinders the detection of the least abundant protein biomarkers by untargeted mass spectrometry. It is thus beneficial to gain a deeper understanding of the secretion processes within the brain. Here, we aim to explore if and how the secretion of brain proteins to the CSF can be predicted. By combining a curated CSF proteome and the brain elevated proteome of the Human Protein Atlas, brain proteins were classified as CSF or non-CSF secreted. A machine learning model was trained on a range of sequence-based features to differentiate between CSF and non-CSF groups and effectively predict the brain origin of proteins. The classification model achieves an area under the curve of 0.89 if using high confidence CSF proteins. The most important prediction features include the subcellular localization, signal peptides, and transmembrane regions. The classifier generalized well to the larger brain detected proteome and is able to correctly predict novel CSF proteins identified by affinity proteomics. In addition to elucidating the underlying mechanisms of protein secretion, the trained classification model can support biomarker candidate selection.
Collapse
Affiliation(s)
- Katharina Waury
- Department
of Computer Science, Vrije Universiteit
Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Renske de Wit
- Department
of Computer Science, Vrije Universiteit
Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Inge M. W. Verberk
- Neurochemistry
Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
| | - Charlotte E. Teunissen
- Neurochemistry
Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
| | - Sanne Abeln
- Department
of Computer Science, Vrije Universiteit
Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
3
|
Hok‐A‐Hin YS, Bolsewig K, Ruiters DN, Lleó A, Alcolea D, Lemstra AW, van der Flier WM, Teunissen CE, del Campo M. Thimet oligopeptidase as a potential CSF biomarker for Alzheimer's disease: A cross-platform validation study. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12456. [PMID: 37502019 PMCID: PMC10369371 DOI: 10.1002/dad2.12456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/29/2023]
Abstract
INTRODUCTION Our previous antibody-based cerebrospinal fluid (CSF) proteomics study showed that Thimet oligopeptidase (THOP1), an amyloid beta (Aβ) neuropeptidase, was increased in mild cognitive impairment with amyloid pathology (MCI-Aβ+) and Alzheimer's disease (AD) dementia compared with controls and dementia with Lewy bodies (DLB), highlighting the potential of CSF THOP1 as an early specific biomarker for AD. We aimed to develop THOP1 immunoassays for large-scale analysis and validate our proteomics findings in two independent cohorts. METHODS We developed in-house CSF THOP1 immunoassays on automated Ella and Simoa platforms. The performance of the different assays were compared using Passing-Bablok regression analysis in a subset of CSF samples from the discovery cohort (n = 72). Clinical validation was performed in two independent cohorts (cohort 1: n = 200; cohort 2: n = 165) using the Ella platform. RESULTS THOP1 concentrations moderately correlated between proteomics analysis and our novel assays (Rho > 0.580). In both validation cohorts, CSF THOP1 was increased in MCI-Aβ+ (>1.3-fold) and AD (>1.2-fold) compared with controls; and between MCI-Aβ+ and DLB (>1.2-fold). Higher THOP1 concentrations were detected in AD compared with DLB only when both cohorts were analyzed together. In both cohorts, THOP1 correlated with CSF total tau (t-tau), phosphorylated tau (p-tau), and Aβ40 (Rho > 0.540) but not Aβ42. DISCUSSION Validation of our proteomics findings underpins the potential of CSF THOP1 as an early specific biomarker associated with AD pathology. The use of antibody-based platforms in both the discovery and validation phases facilitated the translation of proteomics findings, providing an additional workflow that may accelerate the development of biofluid-based biomarkers.
Collapse
Affiliation(s)
- Yanaika S. Hok‐A‐Hin
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam NeuroscienceVU University Medical Center, Amsterdam UMCAmsterdamThe Netherlands
| | - Katharina Bolsewig
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam NeuroscienceVU University Medical Center, Amsterdam UMCAmsterdamThe Netherlands
| | - Daimy N. Ruiters
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam NeuroscienceVU University Medical Center, Amsterdam UMCAmsterdamThe Netherlands
| | - Alberto Lleó
- Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau ‐ Hospital de Sant PauUniversitat Autònoma de Barcelona, Hospital de la Santa Creu i Sant PauBarcelonaSpain
| | - Daniel Alcolea
- Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau ‐ Hospital de Sant PauUniversitat Autònoma de Barcelona, Hospital de la Santa Creu i Sant PauBarcelonaSpain
| | - Afina W. Lemstra
- Alzheimer Center Amsterdam, Department of NeurologyAmsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMCAmsterdamThe Netherlands
| | - Wiesje M. van der Flier
- Alzheimer Center Amsterdam, Department of NeurologyAmsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMCAmsterdamThe Netherlands
- Department of Epidemiology and Data ScienceVU University Medical CentersAmsterdamThe Netherlands
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam NeuroscienceVU University Medical Center, Amsterdam UMCAmsterdamThe Netherlands
| | - Marta del Campo
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam NeuroscienceVU University Medical Center, Amsterdam UMCAmsterdamThe Netherlands
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de FarmaciaUniversidad San Pablo‐CEU, CEU UniversitiesMadridSpain
- Bareclonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
| |
Collapse
|
4
|
Gaetani L, Chiasserini D, Paolini Paoletti F, Bellomo G, Parnetti L. Required improvements for cerebrospinal fluid-based biomarker tests of Alzheimer's disease. Expert Rev Mol Diagn 2023; 23:1195-1207. [PMID: 37902844 DOI: 10.1080/14737159.2023.2276918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/25/2023] [Indexed: 11/01/2023]
Abstract
INTRODUCTION Cerebrospinal fluid (CSF) biomarkers represent a well-established tool for diagnosing Alzheimer's disease (AD), independently from the clinical stage, by reflecting the presence of brain amyloidosis (A+) and tauopathy (T+). In front of this important achievement, so far, (i) CSF AD biomarkers have not yet been adopted for routine clinical use in all Centers dedicated to AD, mainly due to inter-lab variation and lack of internationally accepted cutoff values; (ii) we do need to add other biomarkers more suitable to correlate with the clinical stage and disease monitoring; (iii) we also need to detect the co-presence of other 'non-AD' pathologies. AREAS COVERED Efforts to establish standardized cutoff values based on large-scale multi-center studies are discussed. The influence of aging and comorbidities on CSF biomarker levels is also analyzed, and possible solutions are presented, i.e. complementing the A/T/(N) system with markers of axonal damage and synaptic derangement. EXPERT OPINION The first, mandatory need is to reach common cutoff values and defined (automated) methodologies for CSF AD biomarkers. To properly select subjects deserving CSF analysis, blood tests might represent the first-line approach. In those subjects undergoing CSF analysis, multiple biomarkers, able to give a comprehensive and personalized pathophysiological/prognostic information, should be included.
Collapse
Affiliation(s)
- Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Davide Chiasserini
- Section of Physiology and Biochemistry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Giovanni Bellomo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
5
|
Nilsson J, Cousins KAQ, Gobom J, Portelius E, Chen-Plotkin A, Shaw LM, Grossman M, Irwin DJ, Trojanowski JQ, Zetterberg H, Blennow K, Brinkmalm A. Cerebrospinal fluid biomarker panel of synaptic dysfunction in Alzheimer's disease and other neurodegenerative disorders. Alzheimers Dement 2023; 19:1775-1784. [PMID: 36239248 PMCID: PMC10102247 DOI: 10.1002/alz.12809] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/21/2022] [Accepted: 09/02/2022] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Synaptic degeneration is a key part of the pathophysiology of neurodegenerative diseases, and biomarkers reflecting the pathological alterations are greatly needed. METHOD Seventeen synaptic proteins were quantified in a pathology-confirmed cerebrospinal fluid cohort of patients with Alzheimer's disease (AD; n = 63), frontotemporal lobar degeneration (FTLD; n = 53), and Lewy body spectrum of disorders (LBD; n = 21), as well as healthy controls (HC; n = 48). RESULTS Comparisons revealed four distinct patterns: markers decreased across all neurodegenerative conditions compared to HC (the neuronal pentraxins), markers increased across all neurodegenerative conditions (14-3-3 zeta/delta), markers selectively increased in AD compared to other neurodegenerative conditions (neurogranin and beta-synuclein), and markers selectively decreased in LBD and FTLD compared to HC and AD (AP2B1 and syntaxin-1B). DISCUSSION Several of the synaptic proteins may serve as biomarkers for synaptic dysfunction in AD, LBD, and FTLD. Additionally, differential patterns of synaptic protein alterations seem to be present across neurodegenerative diseases. HIGHLIGHTS A panel of synaptic proteins were quantified in the cerebrospinal fluid using mass spectrometry. We compared Alzheimer's disease, frontotemporal degeneration, and Lewy body spectrum of disorders. Pathology was confirmed by autopsy or familial mutations. We discovered synaptic biomarkers for synaptic degeneration and cognitive decline. We found differential patterns of synaptic proteins across neurodegenerative diseases.
Collapse
Affiliation(s)
- Johanna Nilsson
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, SE-43180 Mölndal, Sweden
| | - Katheryn AQ Cousins
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Johan Gobom
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, SE-43180 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-43180 Mölndal, Sweden
| | - Erik Portelius
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-43180 Mölndal, Sweden
| | - Alice Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Murray Grossman
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - David J. Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, SE-43180 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-43180 Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, SE-43180 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-43180 Mölndal, Sweden
| | - Ann Brinkmalm
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, SE-43180 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-43180 Mölndal, Sweden
| |
Collapse
|
6
|
Parra MA, Orellana P, Leon T, Victoria CG, Henriquez F, Gomez R, Avalos C, Damian A, Slachevsky A, Ibañez A, Zetterberg H, Tijms BM, Yokoyama JS, Piña-Escudero SD, Cochran JN, Matallana DL, Acosta D, Allegri R, Arias-Suárez BP, Barra B, Behrens MI, Brucki SMD, Busatto G, Caramelli P, Castro-Suarez S, Contreras V, Custodio N, Dansilio S, De la Cruz-Puebla M, de Souza LC, Diaz MM, Duque L, Farías GA, Ferreira ST, Guimet NM, Kmaid A, Lira D, Lopera F, Meza BM, Miotto EC, Nitrini R, Nuñez A, O'neill S, Ochoa J, Pintado-Caipa M, de Paula França Resende E, Risacher S, Rojas LA, Sabaj V, Schilling L, Sellek AF, Sosa A, Takada LT, Teixeira AL, Unaucho-Pilalumbo M, Duran-Aniotz C. Biomarkers for dementia in Latin American countries: Gaps and opportunities. Alzheimers Dement 2023; 19:721-735. [PMID: 36098676 PMCID: PMC10906502 DOI: 10.1002/alz.12757] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/29/2022] [Accepted: 06/14/2022] [Indexed: 12/13/2022]
Abstract
Limited knowledge on dementia biomarkers in Latin American and Caribbean (LAC) countries remains a serious barrier. Here, we reported a survey to explore the ongoing work, needs, interests, potential barriers, and opportunities for future studies related to biomarkers. The results show that neuroimaging is the most used biomarker (73%), followed by genetic studies (40%), peripheral fluids biomarkers (31%), and cerebrospinal fluid biomarkers (29%). Regarding barriers in LAC, lack of funding appears to undermine the implementation of biomarkers in clinical or research settings, followed by insufficient infrastructure and training. The survey revealed that despite the above barriers, the region holds a great potential to advance dementia biomarkers research. Considering the unique contributions that LAC could make to this growing field, we highlight the urgent need to expand biomarker research. These insights allowed us to propose an action plan that addresses the recommendations for a biomarker framework recently proposed by regional experts.
Collapse
Affiliation(s)
- Mario A. Parra
- School of Psychological Sciences and Health, University of Strathclyde. Glasgow, United Kingdom
| | - Paulina Orellana
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez. Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez. Santiago, Chile
| | - Tomas Leon
- Global Brain Health Institute, Trinity College. Dublin, Ireland
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador y Facultad de Medicina, Universidad de Chile. Santiago, Chile
| | - Cabello G. Victoria
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez. Santiago, Chile
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, Universidad de Chile. Santiago, Chile
- Unit of Brain Health, Department of Neurology and Neurosurgery, Faculty of Medicine, Universidad de Chile. Santiago, Chile
| | - Fernando Henriquez
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, Universidad de Chile. Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO). Santiago, Chile
- Laboratory for Cognitive and Evolutionary Neuroscience (LaNCE), Department of Psychiatry, Faculty of Medicine, Pontificia Universidad Católica de Chile. Santiago, Chile
| | - Rodrigo Gomez
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador y Facultad de Medicina, Universidad de Chile. Santiago, Chile
- Graduate School, Faculty of Medicine, Universidad Mayor, Chile - Centro de Apoyo Comunitario a personas con Demencia Kintun. Santiago, Chile
| | - Constanza Avalos
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez. Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez. Santiago, Chile
| | - Andres Damian
- Centro Uruguayo de Imagenología Molecular (CUDIM) - Centro de Medicina Nuclear e Imagenología Molecular, Hospital de Clínicas, Universidad de la República. Montevideo, Uruguay
| | - Andrea Slachevsky
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador y Facultad de Medicina, Universidad de Chile. Santiago, Chile
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, Universidad de Chile. Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO). Santiago, Chile
- Department of Neurology and Psyquiatry, Clínica Alemana-Universidad del Desarrollo. Santiago, Chile
| | - Agustin Ibañez
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez. Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez. Santiago, Chile
- Global Brain Health Institute, Trinity College. Dublin, Ireland
- Global Brain Health Institute and the Memory and Aging Center, Weill Institute for Neurosciences, Departments of Neurology and Radiology & Biomedical Imaging, University of California, San Francisco (UCSF). San Francisco, USA
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, & National Scientific and Technical Research Council (CONICET). Buenos Aires, Argentina
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg. Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital. Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology. Queen Square, London, UK
- UK Dementia Research Institute at UCL. London, UK
- Hong Kong Center for Neurodegenerative Diseases. Clear Water Bay, Hong Kong, China
| | - Betty M. Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience. Amsterdam UMC, The Netherlands
| | - Jennifer S. Yokoyama
- Global Brain Health Institute and the Memory and Aging Center, Weill Institute for Neurosciences, Departments of Neurology and Radiology & Biomedical Imaging, University of California, San Francisco (UCSF). San Francisco, USA
- Department of Neurology, Memory and Aging Center, UCSF. San Francisco, USA
| | - Stefanie D. Piña-Escudero
- Atlantic Fellow for Equity in Brain Health at the Global Brain Health Institute (GBHI), University of California San Francisco. San Francisco, USA
| | | | - Diana L Matallana
- Medical School, Aging Institute and Psychiatry Department, Neuroscience PhD Program, Pontificia Universidad Javeriana. Bogotá,Colombia
- Memory and Cognition Center, Intellectus, Hospital Universitario San Ignacio. Bogotá, Colombia
- Psychiatry Department, Hospital Universitario Santa Fe de Bogotá. Bogotá, Colombia
| | - Daisy Acosta
- Universidad Nacional Pedro Henriquez Urena (UNPHU). Santo Domingo, República Dominicana
| | - Ricardo Allegri
- Department of Cognitive Neurology, Neuropsychiatry and Neuropsychology, Instituto Neurológico Fleni. Buenos Aires, Argentina
- Department of Neurosciences, Universidad de la Costa. Barranquilla, Colombia
| | - Bianca P. Arias-Suárez
- Faculty of Human Medicine, Postgraduate Section, National University of San Marcos. Lima, Perú
| | - Bernardo Barra
- Mental Health Service, Clínica Universidad de los Andes. Santiago, Chile
- Department of Psychiatry, Medicine School, Andrés Bello University of Santiago (UNAB). Santiago, Chile
| | - Maria Isabel Behrens
- Department of Neurology and Psyquiatry, Clínica Alemana-Universidad del Desarrollo. Santiago, Chile
- Center for Advanced Clinical Research (CICA). Department of Neurology & Neurosurgery and Neuroscience Department, Faculty of Medicine, Universidad de Chile. Santiago, Chile
- Department of Neurology and Neurosurgery, Hospital Clínico Universidad de Chile. Santiago, Chile
- Department of Neurocience, Faculty of Medicine, Universidad de Chile. Santiago, Chile
| | - Sonia M. D. Brucki
- Cognitive and Behavioral Neurology Unit, Department of Neurology, University of São Paulo Medical School, University of São Paulo. São Paulo, Brazil
| | - Geraldo Busatto
- Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo HCFMUSP. São Paulo, Brazil
| | - Paulo Caramelli
- Behavioral and Cognitive Neurology Unit, Faculdade de Medicina, Universidade Federal de Minas Gerais. Belo Horizonte, Brazil
| | - Sheila Castro-Suarez
- Atlantic Fellow for Equity in Brain Health at the Global Brain Health Institute (GBHI), University of California San Francisco. San Francisco, USA
- Instituto Nacional de Ciencias Neurológicas. Lima, Perú
| | | | - Nilton Custodio
- Unit of diagnosis of cognitive impairment and dementia prevention, Instituto Peruano de Neurociencias.Lima, Perú
| | - Sergio Dansilio
- Department of Neuropsychology, Institut of Neurology, Hospital de Clínicas, Faculty of Medicine,Universidad de la República. Montevideo, Uruguay
| | - Myriam De la Cruz-Puebla
- Global Brain Health Institute and the Memory and Aging Center, Weill Institute for Neurosciences, Departments of Neurology and Radiology & Biomedical Imaging, University of California, San Francisco (UCSF). San Francisco, USA
- Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute. Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Neuroscience Institute, Autonomous University of Barcelona. Barcelona, Spain
- Department of Internal Medicine, Health Sciences Faculty, Technical University of Ambato. Tungurahua, Ecuador
| | - Leonardo Cruz de Souza
- Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo HCFMUSP. São Paulo, Brazil
- Neurology Service, School of Medicine, Pontifical University of Rio Grande do Sul (PUCRS). Porto Alegre, Brazil
| | - Monica M. Diaz
- Department of Neurology, University of North Carolina at Chapel Hill. North Carolina, USA
- School of Public Health, Universidad Peruana Cayetano Heredia. Lima, Peru
| | - Lissette Duque
- Unit of Cognitive diseases, Neuromedicenter. Quito, Ecuador
| | - Gonzalo A. Farías
- Center for Advanced Clinical Research (CICA). Department of Neurology & Neurosurgery and Neuroscience Department, Faculty of Medicine, Universidad de Chile. Santiago, Chile
| | - Sergio T. Ferreira
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro. Rio de Janeiro, Brazil
| | - Nahuel Magrath Guimet
- Atlantic Fellow for Equity in Brain Health at the Global Brain Health Institute (GBHI), University of California San Francisco. San Francisco, USA
- Department of Cognitive Neurology, Neuropsychiatry and Neuropsychology, Instituto Neurológico Fleni. Buenos Aires, Argentina
| | - Ana Kmaid
- Unit of Cognitive evaluation. Department of Geriatry ang Gerentology. Hospital de Clínicas. Faculty of Medicine. Universidad de la República. Montevideo, Uruguay
| | - David Lira
- Unit of diagnosis of cognitive impairment and dementia prevention, Instituto Peruano de Neurociencias.Lima, Perú
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, Universidad de Antioquia, School of Medicine. Medellín, Colombia
| | - Beatriz Mar Meza
- Atlantic Fellow for Equity in Brain Health at the Global Brain Health Institute (GBHI), University of California San Francisco. San Francisco, USA
- Department of Geriatry ang Gerentology, Hospital Central de la Fuerza Aérea del Perú. Lima, Perú
| | - Eliane C Miotto
- Cognitive and Behavioral Neurology Unit, Department of Neurology, University of São Paulo Medical School, University of São Paulo. São Paulo, Brazil
| | - Ricardo Nitrini
- Cognitive and Behavioral Neurology Unit, Department of Neurology, University of São Paulo Medical School, University of São Paulo. São Paulo, Brazil
| | - Alberto Nuñez
- Unit of Cognitive diseases, Neuromedicenter. Quito, Ecuador
| | - Santiago O'neill
- Neurosciences Institute, Favaloro Foundation University Hospital. Buenos Aires, Argentina
| | - John Ochoa
- Group of Neuropsychology and behavior, Universidad de Antioquia, School of Medicine. Medellín, Colombia
| | - Maritza Pintado-Caipa
- Atlantic Fellow for Equity in Brain Health at the Global Brain Health Institute (GBHI), University of California San Francisco. San Francisco, USA
- Unit of diagnosis of cognitive impairment and dementia prevention, Instituto Peruano de Neurociencias.Lima, Perú
| | - Elisa de Paula França Resende
- Global Brain Health Institute and the Memory and Aging Center, Weill Institute for Neurosciences, Departments of Neurology and Radiology & Biomedical Imaging, University of California, San Francisco (UCSF). San Francisco, USA
- Behavioral and Cognitive Neurology Unit, Faculdade de Medicina, Universidade Federal de Minas Gerais. Belo Horizonte, Brazil
- Neurology Service, School of Medicine, Pontifical University of Rio Grande do Sul (PUCRS). Porto Alegre, Brazil
- Brain Institute of Rio Grande do Sul, Pontifical University of Rio Grande do Sul (PUCRS). Porto Alegre, Brazil
- Faculdade de Ciências Médicas de Minas Gerais. Belo Horizonte, Brazil
| | - Shannon Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana Alzheimer’s Disease Research Center, Department of Neurology, Indiana University School of Medicine. Indianapolis, USA
| | - Luz Angela Rojas
- Research Group, MI Dneuropsy, Universidad Surcolombiana. Neiva, Colombia
| | - Valentina Sabaj
- Unit of Neuropsychogeriatry, Instituto Nacional de Geriatría. Santiago, Chile
| | - Lucas Schilling
- Neurology Service, School of Medicine, Pontifical University of Rio Grande do Sul (PUCRS). Porto Alegre, Brazil
- Brain Institute of Rio Grande do Sul, Pontifical University of Rio Grande do Sul (PUCRS). Porto Alegre, Brazil
- Graduate Program in Biomedical Gerontology, Pontifical University of Rio Grande do Sul (PUCRS). Porto Alegre, Brazil
| | | | - Ana Sosa
- Instituto Nacional de Neurología y Neurocirugía (INNN), Manuel Velasco Suarez. Ciudad de México, México
| | - Leonel T. Takada
- Cognitive and Behavioral Neurology Unit, Department of Neurology, University of São Paulo Medical School, University of São Paulo. São Paulo, Brazil
| | - Antonio L. Teixeira
- Faculdade Santa Casa BH. Belo Horizonte, Brazil
- Neuropsychiatry Program, University of Texas Health Science Center at Houston. Houston, USA
| | - Martha Unaucho-Pilalumbo
- Atlantic Fellow for Equity in Brain Health at the Global Brain Health Institute (GBHI), University of California San Francisco. San Francisco, USA
- Departamento de Neurología, Hospital Universidad Técnica Particular de Loja. Loja, Ecuador
| | - Claudia Duran-Aniotz
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez. Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez. Santiago, Chile
| |
Collapse
|
7
|
Waury K, Willemse EAJ, Vanmechelen E, Zetterberg H, Teunissen CE, Abeln S. Bioinformatics tools and data resources for assay development of fluid protein biomarkers. Biomark Res 2022; 10:83. [DOI: 10.1186/s40364-022-00425-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractFluid protein biomarkers are important tools in clinical research and health care to support diagnosis and to monitor patients. Especially within the field of dementia, novel biomarkers could address the current challenges of providing an early diagnosis and of selecting trial participants. While the great potential of fluid biomarkers is recognized, their implementation in routine clinical use has been slow. One major obstacle is the often unsuccessful translation of biomarker candidates from explorative high-throughput techniques to sensitive antibody-based immunoassays. In this review, we propose the incorporation of bioinformatics into the workflow of novel immunoassay development to overcome this bottleneck and thus facilitate the development of novel biomarkers towards clinical laboratory practice. Due to the rapid progress within the field of bioinformatics many freely available and easy-to-use tools and data resources exist which can aid the researcher at various stages. Current prediction methods and databases can support the selection of suitable biomarker candidates, as well as the choice of appropriate commercial affinity reagents. Additionally, we examine methods that can determine or predict the epitope - an antibody’s binding region on its antigen - and can help to make an informed choice on the immunogenic peptide used for novel antibody production. Selected use cases for biomarker candidates help illustrate the application and interpretation of the introduced tools.
Collapse
|
8
|
Zetterberg H. Biofluid-based biomarkers for Alzheimer's disease-related pathologies: An update and synthesis of the literature. Alzheimers Dement 2022; 18:1687-1693. [PMID: 35213777 PMCID: PMC9514308 DOI: 10.1002/alz.12618] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/05/2021] [Accepted: 01/10/2022] [Indexed: 01/24/2023]
Abstract
The past few years have seen an explosion in sensitive and specific assays for cerebrospinal fluid (CSF) and blood biomarkers for Alzheimer's disease (AD) and related disorders, as well as some novel assays based on pathological seed-induced protein misfolding in patient samples. Here, I review this exciting field that promises to transform dementia diagnostics and disease monitoring. I discuss data on biomarkers for amyloid beta (Aβ) and tau pathology, neurodegeneration, and glial activation, mention the most promising biomarkers for α-synuclein and TDP-43 pathology, and highlight the need for further research into common co-pathologies. Finally, I consider practical aspects of blood-based biomarker-supported AD diagnostics and emphasize the importance of biomarker interpretation in a full clinical context.
Collapse
Affiliation(s)
- Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
| |
Collapse
|
9
|
Mavrina E, Kimble L, Waury K, Gogishvili D, Gómez de San José N, Das S, Coppens S, Fernandes Gomes B, Mravinacová S, Wojdała AL, Bolsewig K, Bayoumy S, Burtscher F, Mohaupt P, Willemse E, Teunissen C. Multi-Omics Interdisciplinary Research Integration to Accelerate Dementia Biomarker Development (MIRIADE). Front Neurol 2022; 13:890638. [PMID: 35903119 PMCID: PMC9315267 DOI: 10.3389/fneur.2022.890638] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Proteomics studies have shown differential expression of numerous proteins in dementias but have rarely led to novel biomarker tests for clinical use. The Marie Curie MIRIADE project is designed to experimentally evaluate development strategies to accelerate the validation and ultimate implementation of novel biomarkers in clinical practice, using proteomics-based biomarker development for main dementias as experimental case studies. We address several knowledge gaps that have been identified in the field. First, there is the technology-translation gap of different technologies for the discovery (e.g., mass spectrometry) and the large-scale validation (e.g., immunoassays) of biomarkers. In addition, there is a limited understanding of conformational states of biomarker proteins in different matrices, which affect the selection of reagents for assay development. In this review, we aim to understand the decisions taken in the initial steps of biomarker development, which is done via an interim narrative update of the work of each ESR subproject. The results describe the decision process to shortlist biomarkers from a proteomics to develop immunoassays or mass spectrometry assays for Alzheimer's disease, Lewy body dementia, and frontotemporal dementia. In addition, we explain the approach to prepare the market implementation of novel biomarkers and assays. Moreover, we describe the development of computational protein state and interaction prediction models to support biomarker development, such as the prediction of epitopes. Lastly, we reflect upon activities involved in the biomarker development process to deduce a best-practice roadmap for biomarker development.
Collapse
Affiliation(s)
- Ekaterina Mavrina
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,KIN Center for Digital Innovation, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Leighann Kimble
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,KIN Center for Digital Innovation, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Katharina Waury
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,Centre for Integrative Bioinformatics VU (IBIVU) – Center for Integrative Bioinformatics, Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Dea Gogishvili
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,Centre for Integrative Bioinformatics VU (IBIVU) – Center for Integrative Bioinformatics, Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Nerea Gómez de San José
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,Department of Neurology, University of Ulm, Ulm, Germany
| | - Shreyasee Das
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,ADx NeuroSciences, Gent, Belgium
| | - Salomé Coppens
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,National Measurement Laboratory at Laboratory of the Government Chemist (LGC), Teddington, United Kingdom
| | - Bárbara Fernandes Gomes
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Sára Mravinacová
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,Division of Affinity Proteomics, Department of Protein Science, Kungliga Tekniska Högskolan (KTH) Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Anna Lidia Wojdała
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Katharina Bolsewig
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sherif Bayoumy
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Felicia Burtscher
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Pablo Mohaupt
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,Institute for Regenerative Medicine and Biotherapy - Plateforme de Protéomique Clinique (IRMB-PPC), Institute for Neurosciences of Montpellier (INM), Université de Montpellier, Centre Hospitalier Universitaire de Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM) Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Eline Willemse
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Charlotte Teunissen
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands,*Correspondence: Charlotte Teunissen
| | | |
Collapse
|
10
|
Hok-A-Hin YS, Dijkstra AA, Rábano A, Hoozemans JJ, Castillo L, Seelaar H, van Swieten JC, Pijnenburg YAL, Teunissen CE, Del Campo M. Apolipoprotein L1 is increased in frontotemporal lobar degeneration post-mortem brain but not in ante-mortem cerebrospinal fluid. Neurobiol Dis 2022; 172:105813. [PMID: 35820647 DOI: 10.1016/j.nbd.2022.105813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022] Open
Abstract
AIMS Frontotemporal Dementia (FTD) is caused by frontal-temporal lobar degeneration (FTLD), characterized mainly by brain protein aggregates of tau (FTLD-Tau) or TDP-43 (FTLD-TDP). The clinicopathological heterogeneity makes ante-mortem diagnosis of these pathological subtypes challenging. Our proteomics study showed increased Apolipoprotein L1 (APOL1) levels in CSF from FTD patients, which was prominently expressed in FTLD-Tau. We aimed to understand APOL1 expression in FTLD post-mortem brain tissue and to validate its potential as a CSF biomarker for FTD and its pathological subtypes. METHODS APOL1 levels were analyzed in the frontal cortex of FTLD (including FTLD-Tau and FTLD-TDP) and non-demented controls by immunohistochemistry (FTLD total = 18 (12 FTLD-Tau and 6 FTLD-TDP); controls = 9), western blot (WB), and a novel prototype ELISA (FTLD total = 44 (21 FTLD-Tau and 23 FTLD-TDP); controls = 9). The association of APOL1 immunoreactivity with phosphorylated Tau (pTau) and TDP-43 (pTDP-43) immunoreactivity was assessed. CSF APOL1 was analyzed in confirmed FTD patients (n = 27, including 12 FTLD-Tau and 15 FTLD-TDP) and controls (n = 15) using the same ELISA. RESULTS APOL1 levels were significantly increased in FTLD post-mortem tissue compared to controls as measured by immunohistochemistry, WB, and ELISA. However, no differences between the pathological subtypes were observed. APOL1 immunoreactivity was present in neuronal and glial cells but did not co-localize with pTau or pTDP-43. CSF APOL1 levels were comparable between FTD patients and controls and between pathological subtypes. CONCLUSION APOL1 is upregulated in FTLD pathology irrespective of the subtypes, indicating a role of this novel protein in FTD pathophysiology. The APOL1 levels detected in brain tissue were not mirrored in the CSF, limiting its potential as a specific FTD biofluid-based biomarker using our current immunoassay.
Collapse
Affiliation(s)
- Yanaika S Hok-A-Hin
- Neurochemistry Laboratory, Clinical Chemistry Department, Amsterdam Neuroscience, VU University Medical Centers, the Netherlands.
| | - Anke A Dijkstra
- Department of Pathology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, the Netherlands
| | - Alberto Rábano
- CIEN Tissue Bank, Alzheimer's Centre Reina Sofía-CIEN Foundation, Madrid, Spain
| | - Jeroen J Hoozemans
- Department of Pathology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, the Netherlands
| | - Lucía Castillo
- Neurochemistry Laboratory, Clinical Chemistry Department, Amsterdam Neuroscience, VU University Medical Centers, the Netherlands
| | - Harro Seelaar
- Department of Neurology and Alzheimer Center, Erasmus Medical Center Rotterdam, Rotterdam, the Netherlands
| | - John C van Swieten
- Department of Neurology and Alzheimer Center, Erasmus Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Yolande A L Pijnenburg
- Alzheimer Centre Amsterdam and Department of Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, the Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Clinical Chemistry Department, Amsterdam Neuroscience, VU University Medical Centers, the Netherlands
| | - Marta Del Campo
- Neurochemistry Laboratory, Clinical Chemistry Department, Amsterdam Neuroscience, VU University Medical Centers, the Netherlands; Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo- CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
11
|
Bouwman FH, Frisoni GB, Johnson SC, Chen X, Engelborghs S, Ikeuchi T, Paquet C, Ritchie C, Bozeat S, Quevenco F, Teunissen C. Clinical application of CSF biomarkers for Alzheimer's disease: From rationale to ratios. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12314. [PMID: 35496374 PMCID: PMC9044123 DOI: 10.1002/dad2.12314] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/01/2022] [Accepted: 03/28/2022] [Indexed: 12/15/2022]
Abstract
Biomarker testing is recommended for the accurate and timely diagnosis of Alzheimer's disease (AD). Using illustrative case narratives we consider how cerebrospinal fluid (CSF) biomarker tests may be used in different presentations of cognitive impairment to facilitate timely and differential diagnosis, improving diagnostic accuracy, providing prognostic information, and guiding personalized management in diverse scenarios. Evidence shows that (1) CSF ratios are superior to amyloid beta (Aβ)1-42 alone; (2) concordance of CSF ratios to amyloid positron emission tomography (PET) is better than Aβ1-42 alone; and (3) phosphorylated tau (p-tau)/Aβ1-42 ratio is superior to p-tau alone. CSF biomarkers are recommended for the exclusion of AD as the underlying cause of cognitive impairment, diagnosis of AD at an early stage, differential diagnosis of AD in individuals presenting with other neuropsychiatric symptoms, accurate diagnosis of AD in an atypical presentation, and for clinical trial enrichment. Highlights Cerebrospinal fluid (CSF) Alzheimer's disease (AD) biomarker testing may be underused outside specialist centers.CSF biomarkers improve diagnostic accuracy, guiding personalized management of AD.CSF ratios (amyloid beta [Aβ]1-42/Aβ1-40 and phosphorylated tau/Aβ1-42) perform better than single markers.CSF ratios produce fewer false-negative and false-positive results than individual markers.CSF biomarkers should be included in diagnostic work-up of AD and mild cognitive impairment due to AD.
Collapse
Affiliation(s)
- Femke H. Bouwman
- Alzheimer Center AmsterdamAmsterdam NeuroscienceAmsterdam UMCVrije Universiteit AmsterdamAmsterdamthe Netherlands
| | | | - Sterling C. Johnson
- University of Wisconsin‐Madison, and Geriatric Research Education and Clinical Center of the William S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
| | | | - Sebastiaan Engelborghs
- Center for Neurosciences (C4N)Vrije Universiteit Brussel, and Department of Neurology/Brussels Integrated Center for Brain and Memory (Bru‐BRAIN)Universitair Ziekenhuis Brussel, Brussels, and Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium
| | | | - Claire Paquet
- Université de ParisCognitive Neurology Center Lariboisière Hospital GHU APHP NordINSERMU1144ParisFrance
| | - Craig Ritchie
- University of Edinburgh, and Brain Health ScotlandEdinburghUK
| | | | | | - Charlotte Teunissen
- Department of Clinical ChemistryNeurochemistry LaboratoryAmsterdam NeuroscienceAmsterdam UMCVrije Universiteit AmsterdamAmsterdamthe Netherlands
| |
Collapse
|
12
|
Schirinzi T, Zenuni H, Grillo P, Bovenzi R, Guerrera G, Gargano F, Pieri M, Bernardini S, Biagio Mercuri N, Battistini L, Sancesario GM. Tau and Amyloid-β Peptides in Serum of Patients With Parkinson's Disease: Correlations With CSF Levels and Clinical Parameters. Front Neurol 2022; 13:748599. [PMID: 35280296 PMCID: PMC8914101 DOI: 10.3389/fneur.2022.748599] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/18/2022] [Indexed: 12/13/2022] Open
Abstract
Relevance of blood-based biomarkers is increasing into the neurodegenerative diseases field, but data on Parkinson's disease (PD) remain still scarce. In this study, we used the SiMoA technique to measure serum content of total tau protein and amyloid-β peptides (Aβ-42, Aβ-40) in 22 PD patients and ten control subjects. Serum levels of each biomarker were correlated with the respective CSF levels in both the groups; in PD patients, also the correlations between serum biomarkers and main clinical parameters were tested (motor, non-motor, cognitive scores and levodopa equivalent daily dose). Serum biomarkers did not exhibit quantitative differences between patients and controls; however, only PD patients had inter-fluids (serum-CSF) associations in tau and amyloid-β-42 levels. Moreover, serum content of tau protein was inversely correlated with cognitive performances (MoCA score). These findings, albeit preliminary, indicate that brain-derived peptides may change in parallel in both peripheral blood and CSF of PD patients, eventually even in association with some clinical features. Further studies are now needed to validate the use of blood-based biomarkers in PD.
Collapse
Affiliation(s)
- Tommaso Schirinzi
- Unit of Neurology, Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
- *Correspondence: Tommaso Schirinzi
| | - Henri Zenuni
- Unit of Neurology, Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| | - Piergiorgio Grillo
- Unit of Neurology, Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| | - Roberta Bovenzi
- Unit of Neurology, Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| | - Gisella Guerrera
- European Centre for Brain Research, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Francesca Gargano
- European Centre for Brain Research, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Massimo Pieri
- Department of Experimental Medicine, University of Roma Tor Vergata, Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine, University of Roma Tor Vergata, Rome, Italy
| | - Nicola Biagio Mercuri
- Unit of Neurology, Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
- European Centre for Brain Research, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Luca Battistini
- European Centre for Brain Research, IRCCS Fondazione Santa Lucia, Rome, Italy
| | | |
Collapse
|
13
|
Wan J, Zhou S, Mea HJ, Guo Y, Ku H, Urbina BM. Emerging Roles of Microfluidics in Brain Research: From Cerebral Fluids Manipulation to Brain-on-a-Chip and Neuroelectronic Devices Engineering. Chem Rev 2022; 122:7142-7181. [PMID: 35080375 DOI: 10.1021/acs.chemrev.1c00480] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Remarkable progress made in the past few decades in brain research enables the manipulation of neuronal activity in single neurons and neural circuits and thus allows the decipherment of relations between nervous systems and behavior. The discovery of glymphatic and lymphatic systems in the brain and the recently unveiled tight relations between the gastrointestinal (GI) tract and the central nervous system (CNS) further revolutionize our understanding of brain structures and functions. Fundamental questions about how neurons conduct two-way communications with the gut to establish the gut-brain axis (GBA) and interact with essential brain components such as glial cells and blood vessels to regulate cerebral blood flow (CBF) and cerebrospinal fluid (CSF) in health and disease, however, remain. Microfluidics with unparalleled advantages in the control of fluids at microscale has emerged recently as an effective approach to address these critical questions in brain research. The dynamics of cerebral fluids (i.e., blood and CSF) and novel in vitro brain-on-a-chip models and microfluidic-integrated multifunctional neuroelectronic devices, for example, have been investigated. This review starts with a critical discussion of the current understanding of several key topics in brain research such as neurovascular coupling (NVC), glymphatic pathway, and GBA and then interrogates a wide range of microfluidic-based approaches that have been developed or can be improved to advance our fundamental understanding of brain functions. Last, emerging technologies for structuring microfluidic devices and their implications and future directions in brain research are discussed.
Collapse
Affiliation(s)
- Jiandi Wan
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Sitong Zhou
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Hing Jii Mea
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Yaojun Guo
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, United States
| | - Hansol Ku
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, United States
| | - Brianna M Urbina
- Biochemistry, Molecular, Cellular and Developmental Biology Program, University of California, Davis, California 95616, United States
| |
Collapse
|
14
|
Blomqvist M, Zetterberg H, Blennow K, Månsson JE. Sulfatide in health and disease. The evaluation of sulfatide in cerebrospinal fluid as a possible biomarker for neurodegeneration. Mol Cell Neurosci 2021; 116:103670. [PMID: 34562592 DOI: 10.1016/j.mcn.2021.103670] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022] Open
Abstract
Sulfatide (3-O-sulfogalactosylceramide, SM4) is a glycosphingolipid, highly multifunctional and particularly enriched in the myelin sheath of neurons. The role of sulfatide has been implicated in various biological fields such as the nervous system, immune system, host-pathogen recognition and infection, beta cell function and haemostasis/thrombosis. Thus, alterations in sulfatide metabolism and production are associated with several human diseases such as neurological and immunological disorders and cancers. The unique lipid-rich composition of myelin reflects the importance of lipids in this specific membrane structure. Sulfatide has been shown to be involved in the regulation of oligodendrocyte differentiation and in the maintenance of the myelin sheath by influencing membrane dynamics involving sorting and lateral assembly of myelin proteins as well as ion channels. Sulfatide is furthermore essential for proper formation of the axo-glial junctions at the paranode together with axonal glycosphingolipids. Alterations in sulfatide metabolism are suggested to contribute to myelin deterioration as well as synaptic dysfunction, neurological decline and inflammation observed in different conditions associated with myelin pathology (mouse models and human disorders). Body fluid biomarkers are of importance for clinical diagnostics as well as for patient stratification in clinical trials and treatment monitoring. Cerebrospinal fluid (CSF) is commonly used as an indirect measure of brain metabolism and analysis of CSF sulfatide might provide information regarding whether the lipid disruption observed in neurodegenerative disorders is reflected in this body fluid. In this review, we evaluate the diagnostic utility of CSF sulfatide as a biomarker for neurodegenerative disorders associated with dysmyelination/demyelination by summarising the current literature on this topic. We can conclude that neither CSF sulfatide levels nor individual sulfatide species consistently reflect the lipid disruption observed in many of the demyelinating disorders. One exception is the lysosomal storage disorder metachromatic leukodystrophy, possibly due to the genetically determined accumulation of non-metabolised sulfatide. We also discuss possible explanations as to why myelin pathology in brain tissue is poorly reflected by the CSF sulfatide concentration. The previous suggestion that CSF sulfatide is a marker of myelin damage has thereby been challenged by more recent studies using more sophisticated laboratory techniques for sulfatide analysis as well as improved sample selection criteria due to increased knowledge on disease pathology.
Collapse
Affiliation(s)
- Maria Blomqvist
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Jan-Eric Månsson
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
15
|
Wang Y, Wang J, Zuo YC, Jiang J, Tu T, Yan XX, Liu F. Elevation of CSF Sortilin Following Subarachnoid Hemorrhage in Patients and Experimental Model Rats. Neuroscience 2021; 470:23-36. [PMID: 34273414 DOI: 10.1016/j.neuroscience.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
Subarachnoid hemorrhage (SAH) can cause acute neuronal injury and chronic neurocognitive deficits; biomarkers reflecting its associated neuronal injury are of potential prognostic value. Sortilin, a member of the vacuolar protein sorting 10p (Vps10p) family, is enriched in neurons and is likely involved in neurodegenerative diseases. Here, we explored sortilin in the cerebrospinal fluid (CSF) as a potential biomarker for early neuronal injury after SAH. Sortilin levels in the CSF of SAH patients (n = 11) and controls (n = 6) were analyzed by immunoblot. SAH rats surviving 3-72 h (h) were evaluated neurologically, with their brain and CSF samples examined histologically and biochemically. Sortilin protein ~100 kDa was detected in the CSF from SAH patients only, with its levels correlated to Hunt-Hess scale. Rats in the SAH groups showed poorer Garcia score and beam balancing capability than sham controls. Sortilin ~100 kDa was detectable in the CSF of the SAH, but not sham, animals. Levels of sortilin ~100 kDa and fragments ~40 kDa in cortical lysates were elevated in the SAH relative to control rats. Levels of cortical glial fibrillary acidic protein (GFAP) were also elevated in the SAH rats. In immunohistochemistry, the pattern of sortilin labeling in the brain was largely comparable between the SAH and control rats, whereas an increased astrocytic GFAP immunolabeling was evident in the former. Together, these results suggest that SAH can cause an early and remarkable rise of sortilin products in CSF, likely reflecting neuronal change. Sortilin could be further explored as a potential biomarker in some brain disorders.
Collapse
Affiliation(s)
- Yiping Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Jikai Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Yu-Chun Zuo
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, Hunan 410008, China
| | - Juan Jiang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan 410013, China
| | - Tian Tu
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan 410013, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan 410013, China.
| | - Fei Liu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China.
| |
Collapse
|
16
|
Design of an Innovative Methodology for Cerebrospinal Fluid Analysis: Preliminary Results. SENSORS 2021; 21:s21113767. [PMID: 34071694 PMCID: PMC8198196 DOI: 10.3390/s21113767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022]
Abstract
Cerebrospinal fluid (CSF) analysis supports diagnosis of neurodegenerative diseases (NDs), however a number of issues limits its potentialities in clinical practice. Here, a newly developed technique for fluid voltammetry, relying on a simple sensor (BIOsensor-based multisensorial system for mimicking Nose, Tongue and Eyes, BIONOTE), was used to test the applicability for CSF analysis. BIONOTE was initially calibrated on an artificial CSF-like solution and then applied on human CSF, either immediately after collection or after refrigerated storage. Following optimization, it was used to evaluate 11 CSF samples correlating the electrochemical dataset with CSF routine parameters and biomarkers of neurodegeneration. Multivariate data analysis was performed for model elaboration and calibration using principal component analysis and partial least squares discriminant analysis. BIONOTE presented a high capacity to predict both physiological and pathological constituents of artificial CSF. It differentiated distinct fresh human CSF samples well but lost accuracy after refrigerated storage. The electrochemical analysis-derived data correlated with either CSF routine cytochemical indexes or a biomarker of neurodegeneration. BIONOTE resulted as being a reliable system for electrochemical analysis of CSF. The CSF fingerprint provided by the sensor has shown itself to be sensitive to CSF modification, thus it is potentially representative of CSF alteration. This result opens the way to its testing in further study addressed at assessing the clinical relevance of the methodology. Because of its advantages due to the ease and rapidity of the methodology, a validation study is now required to translate the technique into clinical practice and improve diagnostic workup of NDs.
Collapse
|
17
|
Insights into the Pathophysiology of Psychiatric Symptoms in Central Nervous System Disorders: Implications for Early and Differential Diagnosis. Int J Mol Sci 2021; 22:ijms22094440. [PMID: 33922780 PMCID: PMC8123079 DOI: 10.3390/ijms22094440] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
Different psychopathological manifestations, such as affective, psychotic, obsessive-compulsive symptoms, and impulse control disturbances, may occur in most central nervous system (CNS) disorders including neurodegenerative and neuroinflammatory diseases. Psychiatric symptoms often represent the clinical onset of such disorders, thus potentially leading to misdiagnosis, delay in treatment, and a worse outcome. In this review, psychiatric symptoms observed along the course of several neurological diseases, namely Alzheimer’s disease, fronto-temporal dementia, Parkinson’s disease, Huntington’s disease, and multiple sclerosis, are discussed, as well as the involved brain circuits and molecular/synaptic alterations. Special attention has been paid to the emerging role of fluid biomarkers in early detection of these neurodegenerative diseases. The frequent occurrence of psychiatric symptoms in neurological diseases, even as the first clinical manifestations, should prompt neurologists and psychiatrists to share a common clinico-biological background and a coordinated diagnostic approach.
Collapse
|
18
|
Use of Alzheimer's Disease Cerebrospinal Fluid Biomarkers in A Tertiary Care Memory Clinic. Can J Neurol Sci 2021; 49:203-209. [PMID: 33845924 DOI: 10.1017/cjn.2021.67] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD) cerebrospinal fluid (CSF) biomarkers are promising tools to help identify the underlying pathology of neurocognitive disorders. In this manuscript, we report our experience with AD CSF biomarkers in 262 consecutive patients in a tertiary care memory clinic. METHODS We retrospectively reviewed 262 consecutive patients who underwent lumbar puncture (LP) and CSF measurement of AD biomarkers (Aβ1-42, total tau or t-tau, and p-tau181). We studied the safety of the procedure and its impact on patient's diagnosis and management. RESULTS The LP allowed to identify underlying AD pathology in 72 of the 121 patients (59%) with early onset amnestic mild cognitive impairment (aMCI) with a high probability of progression to AD; to distinguish the behavioral/dysexecutive variant of AD from the behavioral variant of frontotemporal dementia (bvFTD) in 25 of the 45 patients (55%) with an atypical neurobehavioral profile; to identify AD as the underlying pathology in 15 of the 27 patients (55%) with atypical or unclassifiable primary progressive aphasia (PPA); and to distinguish AD from other disorders in 9 of the 29 patients (31%) with psychiatric differential diagnoses and 19 of the 40 patients (47%) with lesional differential diagnoses (normal pressure hydrocephalus, encephalitis, prion disease, etc.). No major complications occurred following the LP. INTERPRETATION Our results suggest that CSF analysis is a safe and effective diagnostic tool in select patients with neurocognitive disorders. We advocate for a wider use of this biomarker in tertiary care memory clinics in Canada.
Collapse
|
19
|
Van Thanh Nguyen N, Taverna M, Smadja C, Mai TD. Recent Electrokinetic and Microfluidic Strategies for Detection of Amyloid Beta Peptide Biomarkers: Towards Molecular Diagnosis of Alzheimer's Disease. CHEM REC 2020; 21:149-161. [PMID: 33112020 DOI: 10.1002/tcr.202000103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/05/2020] [Indexed: 11/06/2022]
Abstract
Among all neurodegenerative diseases, Alzheimer's Disease (AD) is the most prevalent worldwide, with a huge burden to the society and no efficient AD treatment so far. Continued efforts have been being made towards early and powerful diagnosis of AD, in the hope for a successful set of clinical trials and subsequently AD curative treatment. Towards this aim, detection and quantification of amyloid beta (Aβ) peptides in cerebrospinal fluid (CSF) and other biofluids, which are established and validated biomarkers for AD, have drawn attention of the scientific community and industry over almost two decades. In this work, an overview on our major contributions over 15 years to develop different electrokinetic and microfluidic strategies for Aβ peptides detection and quantification is reported. Accordingly, discussions and viewpoints on instrumental and methodological developments for microscale electrophoresis, microfluidic designs and immuno-enrichment / assays on magnetic beads in microchannels for tracing Aβ peptides in CSF are given in this review.
Collapse
Affiliation(s)
- Ngoc Van Thanh Nguyen
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Myriam Taverna
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296, Châtenay-Malabry, France.,Institut Universitaire de France
| | - Claire Smadja
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Thanh Duc Mai
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296, Châtenay-Malabry, France
| |
Collapse
|
20
|
Gaetani L, Paolini Paoletti F, Bellomo G, Mancini A, Simoni S, Di Filippo M, Parnetti L. CSF and Blood Biomarkers in Neuroinflammatory and Neurodegenerative Diseases: Implications for Treatment. Trends Pharmacol Sci 2020; 41:1023-1037. [PMID: 33127098 DOI: 10.1016/j.tips.2020.09.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022]
Abstract
Neuroinflammatory and neurodegenerative diseases are characterized by the interplay of a number of molecular pathways that can be assessed through biofluids, especially cerebrospinal fluid and blood. Accordingly, the definition and classification of these disorders will move from clinical and pathological to biological criteria. The consequences of this biomarker-based diagnostic and prognostic approach are highly relevant to the field of drug development. Indeed, in view of the availability of disease-modifying drugs, fluid biomarkers offer a unique opportunity for improving the quality and applicability of results from clinical trials. Herein, we discuss the benefits of using fluid biomarkers for patient stratification, target engagement, and outcome assessment, as well as the most recent developments in neuroinflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Lorenzo Gaetani
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | | | - Giovanni Bellomo
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Andrea Mancini
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Simone Simoni
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | | | - Lucilla Parnetti
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy.
| |
Collapse
|
21
|
Zucchi E, Bonetto V, Sorarù G, Martinelli I, Parchi P, Liguori R, Mandrioli J. Neurofilaments in motor neuron disorders: towards promising diagnostic and prognostic biomarkers. Mol Neurodegener 2020; 15:58. [PMID: 33059698 PMCID: PMC7559190 DOI: 10.1186/s13024-020-00406-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Motor neuron diseases (MNDs) are etiologically and biologically heterogeneous diseases. The pathobiology of motor neuron degeneration is still largely unknown, and no effective therapy is available. Heterogeneity and lack of specific disease biomarkers have been appointed as leading reasons for past clinical trial failure, and biomarker discovery is pivotal in today's MND research agenda.In the last decade, neurofilaments (NFs) have emerged as promising biomarkers for the clinical assessment of neurodegeneration. NFs are scaffolding proteins with predominant structural functions contributing to the axonal cytoskeleton of myelinated axons. NFs are released in CSF and peripheral blood as a consequence of axonal degeneration, irrespective of the primary causal event. Due to the current availability of highly-sensitive automated technologies capable of precisely quantify proteins in biofluids in the femtomolar range, it is now possible to reliably measure NFs not only in CSF but also in blood.In this review, we will discuss how NFs are impacting research and clinical management in ALS and other MNDs. Besides contributing to the diagnosis at early stages by differentiating between MNDs with different clinical evolution and severity, NFs may provide a useful tool for the early enrolment of patients in clinical trials. Due to their stability across the disease, NFs convey prognostic information and, on a larger scale, help to stratify patients in homogenous groups. Shortcomings of NFs assessment in biofluids will also be discussed according to the available literature in the attempt to predict the most appropriate use of the biomarker in the MND clinic.
Collapse
Affiliation(s)
- Elisabetta Zucchi
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Valentina Bonetto
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Gianni Sorarù
- Neuromuscular Center, Department of Neurosciences, University of Padova, Padua, Italy.,Clinica Neurologica, Azienda Ospedaliera di Padova, Padua, Italy
| | - Ilaria Martinelli
- Department of Neurosciences, Azienda Ospedaliero Universitaria Modena, Modena, Italy
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche, Ospedale Bellaria, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche, Ospedale Bellaria, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Jessica Mandrioli
- Department of Neurosciences, Azienda Ospedaliero Universitaria Modena, Modena, Italy.
| |
Collapse
|
22
|
Bjorkli C, Sandvig A, Sandvig I. Bridging the Gap Between Fluid Biomarkers for Alzheimer's Disease, Model Systems, and Patients. Front Aging Neurosci 2020; 12:272. [PMID: 32982716 PMCID: PMC7492751 DOI: 10.3389/fnagi.2020.00272] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is a debilitating neurodegenerative disease characterized by the accumulation of two proteins in fibrillar form: amyloid-β (Aβ) and tau. Despite decades of intensive research, we cannot yet pinpoint the exact cause of the disease or unequivocally determine the exact mechanism(s) underlying its progression. This confounds early diagnosis and treatment of the disease. Cerebrospinal fluid (CSF) biomarkers, which can reveal ongoing biochemical changes in the brain, can help monitor developing AD pathology prior to clinical diagnosis. Here we review preclinical and clinical investigations of commonly used biomarkers in animals and patients with AD, which can bridge translation from model systems into the clinic. The core AD biomarkers have been found to translate well across species, whereas biomarkers of neuroinflammation translate to a lesser extent. Nevertheless, there is no absolute equivalence between biomarkers in human AD patients and those examined in preclinical models in terms of revealing key pathological hallmarks of the disease. In this review, we provide an overview of current but also novel AD biomarkers and how they relate to key constituents of the pathological cascade, highlighting confounding factors and pitfalls in interpretation, and also provide recommendations for standardized procedures during sample collection to enhance the translational validity of preclinical AD models.
Collapse
Affiliation(s)
- Christiana Bjorkli
- Sandvig Group, Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Axel Sandvig
- Sandvig Group, Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Institute of Neuromedicine and Movement Science, Department of Neurology, St. Olavs Hospital, Trondheim, Norway.,Department of Pharmacology and Clinical Neurosciences, Division of Neuro, Head, and Neck, University Hospital of Umeå, Umeå, Sweden
| | - Ioanna Sandvig
- Sandvig Group, Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
23
|
Ismail Z, Black SE, Camicioli R, Chertkow H, Herrmann N, Laforce R, Montero‐Odasso M, Rockwood K, Rosa‐Neto P, Seitz D, Sivananthan S, Smith EE, Soucy J, Vedel I, Gauthier S. Recommendations of the 5th Canadian Consensus Conference on the diagnosis and treatment of dementia. Alzheimers Dement 2020; 16:1182-1195. [PMID: 32725777 PMCID: PMC7984031 DOI: 10.1002/alz.12105] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/03/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022]
Abstract
Since 1989, four Canadian Consensus Conferences on the Diagnosis and Treatment of Dementia (CCCDTD) have provided evidence-based dementia guidelines for Canadian clinicians and researchers. We present the results of the 5th CCCDTD, which convened in October 2019, to address topics chosen by the steering committee to reflect advances in the field, and build on previous guidelines. Topics included: (1) utility of the National Institute on Aging research framework for clinical Alzheimer's disease (AD) diagnosis; (2) updating diagnostic criteria for vascular cognitive impairment, and its management; (3) dementia case finding and detection; (4) neuroimaging and fluid biomarkers in diagnosis; (5) use of non-cognitive markers of dementia for better dementia detection; (6) risk reduction/prevention; (7) psychosocial and non-pharmacological interventions; and (8) deprescription of medications used to treat dementia. We hope the guidelines are useful for clinicians, researchers, policy makers, and the lay public, to inform a current and evidence-based approach to dementia.
Collapse
Affiliation(s)
- Zahinoor Ismail
- Department of PsychiatryHotchkiss Brain Institute and O'Brien Institute for Public HealthUniversity of CalgaryCalgaryAlbertaCanada
| | - Sandra E. Black
- Department of Medicine (Neurology) Sunnybrook Health Sciences CentreUniversity of TorontoTorontoOntarioCanada
| | - Richard Camicioli
- Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonAlbertaCanada
| | - Howard Chertkow
- University of TorontoBaycrest Health SciencesTorontoOntarioCanada
| | | | - Robert Laforce
- Clinique Interdisciplinaire de MémoireDépartement des Sciences NeurologiquesCHU de Québec, and Faculté de MédecineUniversité LavalLavalQuébecCanada
| | - Manuel Montero‐Odasso
- Departments of Medicine, and Epidemiology and BiostatisticsUniversity of Western OntarioLondonOntarioCanada
- Gait and Brain Lab, Parkwood InstituteLondonOntarioCanada
| | | | - Pedro Rosa‐Neto
- Neurosurgery and PsychiatryMcGill Centre for Studies in AgingMontrealQuebecCanada
| | - Dallas Seitz
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | | | - Eric E. Smith
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Jean‐Paul Soucy
- McConnell Brain Imaging CentreMontreal Neurological InstituteMcGill UniversityPERFORM CentreConcordia UniversityMontrealQuebecCanada
| | - Isabelle Vedel
- Department of Family MedicineMcGill UniversityMontrealQuebecCanada
| | - Serge Gauthier
- Alzheimer Disease Research UnitMcGill Center for Studies in AgingMontrealQuebecCanada
| | | |
Collapse
|
24
|
van Steenoven I, Koel-Simmelink MJA, Vergouw LJM, Tijms BM, Piersma SR, Pham TV, Bridel C, Ferri GL, Cocco C, Noli B, Worley PF, Xiao MF, Xu D, Oeckl P, Otto M, van der Flier WM, de Jong FJ, Jimenez CR, Lemstra AW, Teunissen CE. Identification of novel cerebrospinal fluid biomarker candidates for dementia with Lewy bodies: a proteomic approach. Mol Neurodegener 2020; 15:36. [PMID: 32552841 PMCID: PMC7301448 DOI: 10.1186/s13024-020-00388-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Diagnosis of dementia with Lewy bodies (DLB) is challenging, largely due to a lack of diagnostic tools. Cerebrospinal fluid (CSF) biomarkers have been proven useful in Alzheimer's disease (AD) diagnosis. Here, we aimed to identify novel CSF biomarkers for DLB using a high-throughput proteomic approach. METHODS We applied liquid chromatography/tandem mass spectrometry with label-free quantification to identify biomarker candidates to individual CSF samples from a well-characterized cohort comprising patients with DLB (n = 20) and controls (n = 20). Validation was performed using (1) the identical proteomic workflow in an independent cohort (n = 30), (2) proteomic data from patients with related neurodegenerative diseases (n = 149) and (3) orthogonal techniques in an extended cohort consisting of DLB patients and controls (n = 76). Additionally, we utilized random forest analysis to identify the subset of candidate markers that best distinguished DLB from all other groups. RESULTS In total, we identified 1995 proteins. In the discovery cohort, 69 proteins were differentially expressed in DLB compared to controls (p < 0.05). Independent cohort replication confirmed VGF, SCG2, NPTX2, NPTXR, PDYN and PCSK1N as candidate biomarkers for DLB. The downregulation of the candidate biomarkers was somewhat more pronounced in DLB in comparison with related neurodegenerative diseases. Using random forest analysis, we identified a panel of VGF, SCG2 and PDYN to best differentiate between DLB and other clinical groups (accuracy: 0.82 (95%CI: 0.75-0.89)). Moreover, we confirmed the decrease of VGF and NPTX2 in DLB by ELISA and SRM methods. Low CSF levels of all biomarker candidates, except PCSK1N, were associated with more pronounced cognitive decline (0.37 < r < 0.56, all p < 0.01). CONCLUSION We identified and validated six novel CSF biomarkers for DLB. These biomarkers, particularly when used as a panel, show promise to improve diagnostic accuracy and strengthen the importance of synaptic dysfunction in the pathophysiology of DLB.
Collapse
Affiliation(s)
- Inger van Steenoven
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Marleen J. A. Koel-Simmelink
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Leonie J. M. Vergouw
- Alzheimer Center Erasmus MC, Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Betty M. Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Sander R. Piersma
- OncoProteomics Laboratory, Department of Medical Oncology, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Thang V. Pham
- OncoProteomics Laboratory, Department of Medical Oncology, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Claire Bridel
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Gian-Luca Ferri
- NEF-laboratory, Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Cristina Cocco
- NEF-laboratory, Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Barbara Noli
- NEF-laboratory, Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Paul F. Worley
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Mei-Fang Xiao
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Desheng Xu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Patrick Oeckl
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Markus Otto
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Wiesje M. van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
- Department of Epidemiology and Biostatistics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Frank Jan de Jong
- Alzheimer Center Erasmus MC, Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Connie R. Jimenez
- OncoProteomics Laboratory, Department of Medical Oncology, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Afina W. Lemstra
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Biessels GJ, Nobili F, Teunissen CE, Simó R, Scheltens P. Understanding multifactorial brain changes in type 2 diabetes: a biomarker perspective. Lancet Neurol 2020; 19:699-710. [PMID: 32445622 DOI: 10.1016/s1474-4422(20)30139-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/20/2020] [Accepted: 04/08/2020] [Indexed: 12/14/2022]
Abstract
People with type 2 diabetes are at an increased risk of cognitive impairment and dementia (including Alzheimer's disease), as well as subtle forms of cognitive dysfunction. Current diabetes guidelines recommend screening for cognitive impairment in groups at high risk and providing guidance for diabetes management in patients with diabetes and cognitive impairment. Yet, no disease-modifying treatment is available and important questions remain about the mechanisms underlying diabetes-associated cognitive dysfunction. These mechanisms are likely to be multifactorial and different for subtle and more severe forms of diabetes-associated cognitive dysfunction. Over the past years, research on dementia, brain ageing, diabetes, and vascular disease has identified novel biomarkers of specific dementia aetiologies, brain parenchymal injury, and cerebral blood flow and metabolism. These markers shed light on the processes underlying diabetes-associated cognitive dysfunction, have clear applications in current research and increasingly in clinical diagnosis, and might ultimately guide targeted treatment.
Collapse
Affiliation(s)
- Geert Jan Biessels
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands.
| | - Flavio Nobili
- Department of Neuroscience, Ophthalmology, Genetics, and Child and Mother Health, University of Genoa, Genoa, Italy; Clinical Neurology Unit, IRCSS Ospedale Policlinico San Martino, Genoa, Italy
| | - Charlotte E Teunissen
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam, Netherlands
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Philip Scheltens
- Department of Neurology and Alzheimer Center, VU University Medical Center Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
26
|
Day GS, Rappai T, Sathyan S, Morris JC. Deciphering the factors that influence participation in studies requiring serial lumbar punctures. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12003. [PMID: 32211499 PMCID: PMC7085282 DOI: 10.1002/dad2.12003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/15/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Cerebrospinal fluid biomarkers increasingly inform the causes of dementia and may provide objective markers of disease progression. There is a need to decipher participant and procedural factors that promote participation in studies incorporating longitudinal biomarker measures. METHODS Participant and procedural factors associated with participation in longitudinal biomarker studies were determined in individuals enrolled in studies of memory and aging at the Knight Alzheimer Disease Research Center (Saint Louis, MO, USA). RESULTS Complications were encountered following 331 of 1484 lumbar punctures (22.3%; LPs), affecting 280 of 929 participants (30.1%); in >95% complications were minor. Three hundred fifteen of 679 eligible participants (46.4%) completed multiple LPs. Younger age (odds ratio [OR] 2.08 per decade [95% confidence interval (CI) 1.61-2.94]), normal cognition (OR 21.4 [2.85-160.1]), and the absence of heart disease (OR 2.0 [1.01-3.85]) or seizures at study entry identified participants with increased odds of completing three or more LPs. DISCUSSION Factors influencing participation may be leveraged to improve recruitment and retention within observational and therapeutic studies requiring serial LPs.
Collapse
Affiliation(s)
- Gregory S Day
- The Charles F. and Joanne Knight Alzheimer Disease Research Center Washington University School of Medicine St. Louis Missouri USA
- Washington University School of Medicine St. Louis Missouri USA
| | - Tracy Rappai
- The Charles F. and Joanne Knight Alzheimer Disease Research Center Washington University School of Medicine St. Louis Missouri USA
- Washington University School of Medicine St. Louis Missouri USA
| | - Sushila Sathyan
- The Charles F. and Joanne Knight Alzheimer Disease Research Center Washington University School of Medicine St. Louis Missouri USA
- Washington University School of Medicine St. Louis Missouri USA
| | - John C Morris
- The Charles F. and Joanne Knight Alzheimer Disease Research Center Washington University School of Medicine St. Louis Missouri USA
- Washington University School of Medicine St. Louis Missouri USA
| |
Collapse
|
27
|
Special Issue CCA for the proceedings of the 2nd symposium of the Society of CSF analysis and Clinical Neurochemistry. Clin Chim Acta 2019; 502:199-200. [PMID: 31812757 DOI: 10.1016/j.cca.2019.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Vanderstichele HM, Teunissen CE, Vanmechelen E. Critical Steps to be Taken into Consideration Before Quantification of β-Amyloid and Tau Isoforms in Blood can be Implemented in a Clinical Environment. Neurol Ther 2019; 8:129-145. [PMID: 31833029 PMCID: PMC6908532 DOI: 10.1007/s40120-019-00166-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Indexed: 12/14/2022] Open
Abstract
This review aims to document difficulties, limitations, and pitfalls when considering protein analysis in blood samples. It proposes an improved workflow for design, development, and validation of (immuno)assays for blood proteins, without providing reflections on a potential hypothesis of the origin of protein mismetabolism and deposition. There is a special focus on assay development for quantification of β-amyloid (Aβ) and tau in blood for diagnostic use or for integration in clinical trials in the field of Alzheimer's disease (AD).
Collapse
|
29
|
Calderón-Garcidueñas L, Mukherjee PS, Waniek K, Holzer M, Chao CK, Thompson C, Ruiz-Ramos R, Calderón-Garcidueñas A, Franco-Lira M, Reynoso-Robles R, Gónzalez-Maciel A, Lachmann I. Non-Phosphorylated Tau in Cerebrospinal Fluid is a Marker of Alzheimer's Disease Continuum in Young Urbanites Exposed to Air Pollution. J Alzheimers Dis 2019; 66:1437-1451. [PMID: 30412505 DOI: 10.3233/jad-180853] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Long-term exposure to fine particulate matter (PM2.5) and ozone (O3) above USEPA standards is associated with Alzheimer's disease (AD) risk. Metropolitan Mexico City (MMC) children exhibit subcortical pretangles in infancy and cortical tau pre-tangles, NFTs, and amyloid phases 1-2 by the 2nd decade. Given their AD continuum, we measured in 507 normal cerebrospinal fluid (CSF) samples (MMC 354, controls 153, 12.82±6.73 y), a high affinity monoclonal non-phosphorylated tau antibody (non-P-Tau), as a potential biomarker of AD and axonal damage. In 81 samples, we also measured total tau (T-Tau), tau phosphorylated at threonine 181 (P-Tau), amyloid-β1-42, BDNF, and vitamin D. We documented by electron microscopy myelinated axonal size and the pathology associated with combustion-derived nanoparticles (CDNPs) in anterior cingulate cortex white matter in 6 young residents (16.25±3.34 y). Non-P-Tau showed a strong increase with age significantly faster among MMC versus controls (p = 0.0055). Aβ1 - 42 and BDNF concentrations were lower in MMC children (p = 0.002 and 0.03, respectively). Anterior cingulate cortex showed a significant decrease (p = <0.0001) in the average axonal size and CDNPs were associated with organelle pathology. Significant age increases in non-P-Tau support tau changes early in a population with axonal pathology and evolving AD hallmarks in the first two decades of life. Non-P-Tau is an early biomarker of axonal damage and potentially valuable to monitor progressive longitudinal changes along with AD multianalyte classical CSF markers. Neuroprotection of young urbanites with PM2.5 and CDNPs exposures ought to be a public health priority to halt the development of AD in the first two decades of life.
Collapse
Affiliation(s)
| | | | | | - Max Holzer
- Paul-Flechsig-Institute for Brain Research, Leipzig, Germany
| | | | | | - Rubén Ruiz-Ramos
- Instituto de Medicina Forense, Universidad Veracruzana, Boca del Rio, Mexico
| | | | | | | | | | | |
Collapse
|
30
|
Bharucha T, Gangadharan B, Kumar A, de Lamballerie X, Newton PN, Winterberg M, Dubot-Pérès A, Zitzmann N. Mass spectrometry-based proteomic techniques to identify cerebrospinal fluid biomarkers for diagnosing suspected central nervous system infections. A systematic review. J Infect 2019; 79:407-418. [PMID: 31404562 PMCID: PMC6838782 DOI: 10.1016/j.jinf.2019.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/04/2019] [Accepted: 08/05/2019] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Central nervous system (CNS) infections account for considerable death and disability every year. An urgent research priority is scaling up diagnostic capacity, and introduction of point-of-care tests. We set out to assess current evidence for the application of mass spectrometry (MS) peptide sequencing in identification of diagnostic biomarkers for CNS infections. METHODS We performed a systematic review (PROSPEROCRD42018104257) using PRISMA guidelines on use of MS to identify cerebrospinal fluid (CSF) biomarkers for diagnosing CNS infections. We searched PubMed, Embase, Web of Science, and Cochrane for articles published from 1 January 2000 to 1 February 2019, and contacted experts. Inclusion criteria involved primary research except case reports, on the diagnosis of infectious diseases except HIV, applying MS to human CSF samples, and English language. RESULTS 4,620 papers were identified, of which 11 were included, largely confined to pre-clinical biomarker discovery, and eight (73%) published in the last five years. 6 studies performed further work termed verification or validation. In 2 of these studies, it was possible to extract data on sensitivity and specificity of the biomarkers detected by ELISA, ranging from 89-94% and 58-92% respectively. CONCLUSIONS The findings demonstrate feasibility and potential of the methods in a variety of infectious diseases, but emphasise the need for strong interdisciplinary collaborations to ensure appropriate study design and biomarker validation.
Collapse
Affiliation(s)
- Tehmina Bharucha
- Institute of Glycobiology, Department of Biochemistry, South Parks Road, Oxford OX1 3RQ, United Kingdom; Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao Democratic People's Republic.
| | - Bevin Gangadharan
- Institute of Glycobiology, Department of Biochemistry, South Parks Road, Oxford OX1 3RQ, United Kingdom
| | - Abhinav Kumar
- Institute of Glycobiology, Department of Biochemistry, South Parks Road, Oxford OX1 3RQ, United Kingdom
| | - Xavier de Lamballerie
- Unité des Virus Émergents (UVE: Aix-Marseille Univ - IRD 190 - Inserm 1207 - IHU Méditerranée Infection), Marseille, France
| | - Paul N Newton
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao Democratic People's Republic; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Markus Winterberg
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Churchill Hospital, Oxford, United Kingdom; Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 3/F, 60th Anniversary Chalermprakiat Building, 420/6 Rajvithi Road, Bangkok 10400, Thailand
| | - Audrey Dubot-Pérès
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao Democratic People's Republic; Unité des Virus Émergents (UVE: Aix-Marseille Univ - IRD 190 - Inserm 1207 - IHU Méditerranée Infection), Marseille, France; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Nicole Zitzmann
- Institute of Glycobiology, Department of Biochemistry, South Parks Road, Oxford OX1 3RQ, United Kingdom
| |
Collapse
|
31
|
Mai TD, Hauser PC, Descroix S, Crosnier de Lassichère C, Taverna M, Smadja C. In-capillary immuno-preconcentration with circulating bio-functionalized magnetic beads for capillary electrophoresis. Anal Chim Acta 2019; 1062:156-164. [DOI: 10.1016/j.aca.2019.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/22/2019] [Accepted: 02/11/2019] [Indexed: 11/17/2022]
|
32
|
Antibody-free detection of amyloid beta peptides biomarkers in cerebrospinal fluid using capillary isotachophoresis coupled with mass spectrometry. J Chromatogr A 2019; 1601:350-356. [PMID: 31101465 DOI: 10.1016/j.chroma.2019.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/26/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022]
Abstract
This study reports a capillary isotachophoresis (ITP) - electrospray ionization mass spectrometry (ESI-MS) method for the determination of several amyloid β (Aβ) peptides, which are biomarkers of Alzheimer's disease (AD) in cerebrospinal fluids (CSF). For the first time, these peptides have been detected directly from CSF by MS without recourse to an immunocapture-based sample pre-treatment. The antibody-free approach is based on the marriage between capillary ITP, a powerful on-line electrokinetic preconcentration technique, and MS for simultaneous detection of different Aβ peptides. To ensure a good performance, the ITP process of fluorescently labelled Aβ peptides was for the first time implemented and verified with laser induced fluorescent detection, prior to methodology transfer to MS detection. Better detection sensitivity was achieved with labelled Aβ peptides for both detection modes. Using hydroxyl ions as the terminating and acetate as the leading ions, our method allows efficient ITP preconcentration under alkaline conditions of the slowly migrating Aβ peptides to reach quantifiable concentration down to 50 pM. The developed ITP-MS approach allows reliable quantification of different fluorescently derivatized Aβ peptides, i.e. Aβ 1-42, Aβ 1-40 and Aβ 1-38 down to sub nM ranges in CSF samples from AD and non-demented (healthy control) patients. Good agreement (<20% deviation) for the determination of Aβ 1-42/Aβ 1-40 ratio in CSF was achieved between results obtained with this new ITP-MS and our recently developed method based on large volume sample stacking coupled to CE. Discrimination of one AD patient from two healthy controls was successfully made with the Aβ 1-42/Aβ 1-40 ratio obtained by the developed ITP-MS method for the tested cerebrospinal fluid samples.
Collapse
|
33
|
Keep RF, Jones HC, Drewes LR. The year in review: progress in brain barriers and brain fluid research in 2018. Fluids Barriers CNS 2019; 16:4. [PMID: 30717760 PMCID: PMC6362595 DOI: 10.1186/s12987-019-0124-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 12/17/2022] Open
Abstract
This editorial focuses on the progress made in brain barrier and brain fluid research in 2018. It highlights some recent advances in knowledge and techniques, as well as prevalent themes and controversies. Areas covered include: modeling, the brain endothelium, the neurovascular unit, the blood–CSF barrier and CSF, drug delivery, fluid movement within the brain, the impact of disease states, and heterogeneity.
Collapse
Affiliation(s)
- Richard F Keep
- Department of Neurosurgery, University of Michigan, R5018 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| | - Hazel C Jones
- Gagle Brook House, Chesterton, Bicester, OX26 1UF, UK
| | - Lester R Drewes
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, MN, 55812, USA
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Alzheimer disease (AD) is the most common cause of late-onset dementia. This article describes the epidemiology, genetic and environmental risk factors, clinical diagnosis, biomarkers, and treatment of late-onset AD, defined by age of onset of 65 years or older. RECENT FINDINGS An estimated 5.7 million Americans are living with AD dementia, with the number of affected individuals growing rapidly because of an aging population. Vascular risk factors, sleep disorders, and traumatic brain injury are associated with an increased risk of AD, while increased cognitive and physical activity throughout the lifespan reduce the risk of disease. The primary genetic risk factor for late-onset AD is the apolipoprotein E (APOE) ε4 allele. AD typically presents with early and prominent episodic memory loss, although this clinical syndrome is neither sensitive nor specific for underlying AD neuropathology. Emerging CSF and imaging biomarkers can now detect the key neuropathologic features of the disease (amyloid plaques, neurofibrillary tangles, and neurodegeneration) in living people, allowing for characterization of patients based on biological measures. A comprehensive treatment plan for AD includes use of symptomatic medications, optimal treatment of comorbid conditions and neuropsychiatric symptoms, counseling about safety and future planning, and referrals to community resources. SUMMARY AD is very common in older neurologic patients. Neurologists should set the standard for the diagnosis and care of patients with AD and should be familiar with emerging biomarkers that have transformed AD research and are primed to enter the clinical arena.
Collapse
|
35
|
Lleó A, Parnetti L, Belbin O, Wiltfang J. Has the time arrived for cerebrospinal fluid biomarkers in psychiatric disorders? Clin Chim Acta 2019; 491:81-84. [PMID: 30682327 DOI: 10.1016/j.cca.2019.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 01/13/2023]
Abstract
Psychiatric disorders are currently classified, in the majority of cases, by clinical syndromes. However, advances over the last decade in imaging and biochemical biomarkers in several Central Nervous System (CNS) disorders anticipate the incorporation of some of these markers in the diagnostic work-up of psychiatric conditions. In particular, CSF biomarkers offer the possibility of detecting a wide range of pathophysiological processes in the CNS. Newer CSF markers can measure axonal and synaptic damage, glial activation, and oxidative stress in CNS disorders with high precision. The possibility that these markers can be applied in the differential diagnosis of common psychiatric disorders such as Schizophrenia, Major Depressive or Bipolar Disorders not only to rule out neurodegenerative diseases but also to identify specific biomarker signatures has yet to be explored. In particular, synaptic proteins in CSF could be useful as markers of synaptic and neurotransmitter transmission impairment since these are key molecular features of psychiatric conditions. In this paper we outline the current and potential applications of CSF biomarkers in psychiatric disorders.
Collapse
Affiliation(s)
- Alberto Lleó
- Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; Centre of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| | - Lucilla Parnetti
- Centre for Memory Disturbances, Section of Neurology, Lab of Clinical Neurochemistry, University of Perugia, Perugia, Italy
| | - Olivia Belbin
- Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; Centre of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Goettingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
| |
Collapse
|
36
|
Vlahou A. Implementation of Clinical Proteomics: A Step Closer to Personalized Medicine? Proteomics Clin Appl 2018; 13:e1800088. [DOI: 10.1002/prca.201800088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/23/2018] [Indexed: 01/19/2023]
Affiliation(s)
- Antonia Vlahou
- Biomedical Research FoundationAcademy of Athens Soranou Efessiou 4 11527 Athens Greece
| |
Collapse
|
37
|
Alosco ML, Tripodis Y, Fritts NG, Heslegrave A, Baugh CM, Conneely S, Mariani M, Martin BM, Frank S, Mez J, Stein TD, Cantu RC, McKee AC, Shaw LM, Trojanowski JQ, Blennow K, Zetterberg H, Stern RA. Cerebrospinal fluid tau, Aβ, and sTREM2 in Former National Football League Players: Modeling the relationship between repetitive head impacts, microglial activation, and neurodegeneration. Alzheimers Dement 2018; 14:1159-1170. [PMID: 30049650 PMCID: PMC6131058 DOI: 10.1016/j.jalz.2018.05.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/20/2018] [Accepted: 05/15/2018] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Cerebrospinal fluid (CSF) protein analysis may facilitate detection and elucidate mechanisms of neurological consequences from repetitive head impacts (RHI), such as chronic traumatic encephalopathy. We examined CSF concentrations of total tau (t-tau), phosphorylated tau, and amyloid β1-42 and their association with RHI in former National Football League (NFL) players. The role of microglial activation (using sTREM2) was examined as a pathogenic mechanism of chronic traumatic encephalopathy. METHODS Sixty-eight former NFL players and 21 controls underwent lumbar puncture to quantify t-tau, p-tau181, amyloid β1-42, and sTREM2 in the CSF using immunoassays. The cumulative head impact index estimated RHI. RESULTS No between-group differences for CSF analytes emerged. In the former NFL players, the cumulative head impact index predicted higher t-tau concentrations (P = .041), and higher sTREM2 levels were associated with higher t-tau concentrations (P = .009). DISCUSSION In this sample of former NFL players, greater RHI and increased microglial activation were associated with higher CSF t-tau concentrations.
Collapse
Affiliation(s)
- Michael L Alosco
- Boston University Alzheimer's Disease Center and Boston University CTE Center, Boston University School of Medicine, Boston, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Yorghos Tripodis
- Boston University Alzheimer's Disease Center and Boston University CTE Center, Boston University School of Medicine, Boston, MA, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Nathan G Fritts
- Boston University Alzheimer's Disease Center and Boston University CTE Center, Boston University School of Medicine, Boston, MA, USA
| | - Amanda Heslegrave
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Christine M Baugh
- Interfaculty Initiative in Health Policy, Harvard University, Boston, MA, USA
| | - Shannon Conneely
- Boston University Alzheimer's Disease Center and Boston University CTE Center, Boston University School of Medicine, Boston, MA, USA
| | - Megan Mariani
- Boston University Alzheimer's Disease Center and Boston University CTE Center, Boston University School of Medicine, Boston, MA, USA
| | - Brett M Martin
- Boston University Alzheimer's Disease Center and Boston University CTE Center, Boston University School of Medicine, Boston, MA, USA; Data Coordinating Center, Boston University School of Public Health, Boston, MA, USA
| | - Samuel Frank
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Jesse Mez
- Boston University Alzheimer's Disease Center and Boston University CTE Center, Boston University School of Medicine, Boston, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease Center and Boston University CTE Center, Boston University School of Medicine, Boston, MA, USA; Departments of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA; VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA; Department of Veterans Affairs Medical Center, Bedford, MA, USA
| | - Robert C Cantu
- Boston University Alzheimer's Disease Center and Boston University CTE Center, Boston University School of Medicine, Boston, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Concussion Legacy Foundation, Boston, MA, USA; Department of Neurosurgery, Boston University School of Medicine, Boston, MA, USA; Department of Neurosurgery, Emerson Hospital, Concord, MA, USA
| | - Ann C McKee
- Boston University Alzheimer's Disease Center and Boston University CTE Center, Boston University School of Medicine, Boston, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Departments of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA; VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA; Department of Veterans Affairs Medical Center, Bedford, MA, USA
| | - Leslie M Shaw
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Robert A Stern
- Boston University Alzheimer's Disease Center and Boston University CTE Center, Boston University School of Medicine, Boston, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Department of Neurosurgery, Boston University School of Medicine, Boston, MA, USA; Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
38
|
Clinical value of CSF amyloid-beta-42 and tau proteins in Progressive Supranuclear Palsy. J Neural Transm (Vienna) 2018; 125:1373-1379. [DOI: 10.1007/s00702-018-1893-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/09/2018] [Indexed: 11/25/2022]
|