1
|
Kostic M, Zivkovic N, Cvetanovic A, Basic J, Stojanovic I. Dissecting the immune response of CD4 + T cells in Alzheimer's disease. Rev Neurosci 2024:revneuro-2024-0090. [PMID: 39238424 DOI: 10.1515/revneuro-2024-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/18/2024] [Indexed: 09/07/2024]
Abstract
The formation of amyloid-β (Aβ) plaques is a neuropathological hallmark of Alzheimer's disease (AD), however, these pathological aggregates can also be found in the brains of cognitively unimpaired elderly population. In that context, individual variations in the Aβ-specific immune response could be key factors that determine the level of Aβ-induced neuroinflammation and thus the propensity to develop AD. CD4+ T cells are the cornerstone of the immune response that coordinate the effector functions of both adaptive and innate immunity. However, despite intensive research efforts, the precise role of these cells during AD pathogenesis is still not fully elucidated. Both pathogenic and beneficial effects have been observed in various animal models of AD, as well as in humans with AD. Although this functional duality of CD4+ T cells in AD can be simply attributed to the vast phenotype heterogeneity of this cell lineage, disease stage-specific effect have also been proposed. Therefore, in this review, we summarized the current understanding of the role of CD4+ T cells in the pathophysiology of AD, from the aspect of their antigen specificity, activation, and phenotype characteristics. Such knowledge is of practical importance as it paves the way for immunomodulation as a therapeutic option for AD treatment, given that currently available therapies have not yielded satisfactory results.
Collapse
Affiliation(s)
- Milos Kostic
- Department of Immunology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Nikola Zivkovic
- Department of Pathology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Ana Cvetanovic
- Department of Oncology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Jelena Basic
- Department of Biochemistry, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Ivana Stojanovic
- Department of Biochemistry, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| |
Collapse
|
2
|
Zhang Q, Yang G, Luo Y, Jiang L, Chi H, Tian G. Neuroinflammation in Alzheimer's disease: insights from peripheral immune cells. Immun Ageing 2024; 21:38. [PMID: 38877498 PMCID: PMC11177389 DOI: 10.1186/s12979-024-00445-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
Alzheimer's disease (AD) is a serious brain disorder characterized by the presence of beta-amyloid plaques, tau pathology, inflammation, neurodegeneration, and cerebrovascular dysfunction. The presence of chronic neuroinflammation, breaches in the blood-brain barrier (BBB), and increased levels of inflammatory mediators are central to the pathogenesis of AD. These factors promote the penetration of immune cells into the brain, potentially exacerbating clinical symptoms and neuronal death in AD patients. While microglia, the resident immune cells of the central nervous system (CNS), play a crucial role in AD, recent evidence suggests the infiltration of cerebral vessels and parenchyma by peripheral immune cells, including neutrophils, T lymphocytes, B lymphocytes, NK cells, and monocytes in AD. These cells participate in the regulation of immunity and inflammation, which is expected to play a huge role in future immunotherapy. Given the crucial role of peripheral immune cells in AD, this article seeks to offer a comprehensive overview of their contributions to neuroinflammation in the disease. Understanding the role of these cells in the neuroinflammatory response is vital for developing new diagnostic markers and therapeutic targets to enhance the diagnosis and treatment of AD patients.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Laboratory Medicine, Southwest Medical University, Luzhou, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, USA
| | - Yuan Luo
- Department of Laboratory Medicine, Southwest Medical University, Luzhou, China
| | - Lai Jiang
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China.
| | - Gang Tian
- Department of Laboratory Medicine, Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Sichuan, 646000, China.
| |
Collapse
|
3
|
Yaqub A, Khan SR, Vernooij MW, van Hagen PM, Peeters RP, Ikram MA, Chaker L, Dalm VASH. Serum immunoglobulins and biomarkers of dementia: a population-based study. Alzheimers Res Ther 2023; 15:194. [PMID: 37936180 PMCID: PMC10629143 DOI: 10.1186/s13195-023-01333-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/15/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Inflammation plays a key role in the development of dementia, but its link to early biomarkers, particularly those in plasma or neuroimaging, remains elusive. This study aimed to investigate the association between serum immunoglobulins and biomarkers of dementia. METHODS Between 1997 and 2009, serum immunoglobulins (IgA, IgG and IgM) were measured in dementia-free participants of the population-based Rotterdam Study. A random subset of participants had assessment of biomarkers in plasma (total tau (t-tau), neurofilament light chain (NfL), amyloid-β40 (Aβ-40), amyloid-β42 (Aβ-42), while another subset of participants underwent neuroimaging to quantify brain volume, white matter structural integrity and markers of cerebral small vessel disease. Linear regression models were constructed to determine cross-sectional associations between IgA, IgG, IgM and biomarkers of dementia, with adjustment for potential confounders. Multiple testing correction was applied using the false discovery rate. As a sensitivity analysis, we re-ran the models for participants within the reference range of immunoglobulins, excluding those using immunomodulating drugs, and conducted a stratified analysis by APOE-ε4 carriership and sex. RESULTS Of 8,768 participants with serum immunoglobulins, 3,455 participants (65.8 years [interquartile range (IQR): 61.5-72.0], 57.2% female) had plasma biomarkers available and 3,139 participants (57.4 years [IQR: 52.7-60.7], 54.4% female) had neuroimaging data. Overall, no associations between serum immunoglobulins and biomarkers of dementia remained significant after correction for multiple testing. However, several suggestive associations were noted: higher serum IgA levels concurred with lower plasma levels of Aβ-42 (standardized adjusted mean difference: -0.015 [95% confidence interval (CI): -0.029--0.002], p = 2.8 × 10-2), and a lower total brain volume, mainly driven by less gray matter (-0.027 [-0.046--0.008], p = 6.0 × 10-3) and more white matter hyperintensities (0.047 [0.016 - 0.077], p = 3.0 × 10-3). In sensitivity analyses, higher IgM was linked to lower t-tau, Aβ-40, and Aβ-42, but also a loss of white matter microstructural integrity. Stratified analyses indicate that these associations potentially differ between carriers and non-carriers of the APOE-ε4 allele and men and women. CONCLUSIONS While associations between serum immunoglobulins and early markers of dementia could not be established in this population-based sample, it may be valuable to consider factors such as APOE-ε4 allele carriership and sex in future investigations.
Collapse
Affiliation(s)
- Amber Yaqub
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Samer R Khan
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - P Martin van Hagen
- Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robin P Peeters
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Internal Medicine, Division of Endocrinology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Layal Chaker
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Internal Medicine, Division of Endocrinology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Virgil A S H Dalm
- Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands.
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Clement M. The association of microbial infection and adaptive immune cell activation in Alzheimer's disease. DISCOVERY IMMUNOLOGY 2023; 2:kyad015. [PMID: 38567070 PMCID: PMC10917186 DOI: 10.1093/discim/kyad015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/31/2023] [Accepted: 09/04/2023] [Indexed: 04/04/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common form of dementia. Early symptoms include the loss of memory and mild cognitive ability; however, as the disease progresses, these symptoms can present with increased severity manifesting as mood and behaviour changes, disorientation, and a loss of motor/body control. AD is one of the leading causes of death in the UK, and with an ever-increasing ageing society, patient numbers are predicted to rise posing a significant global health emergency. AD is a complex neurophysiological disorder where pathology is characterized by the deposition and aggregation of misfolded amyloid-beta (Aβ)-protein that in-turn promotes excessive tau-protein production which together drives neuronal cell dysfunction, neuroinflammation, and neurodegeneration. It is widely accepted that AD is driven by a combination of both genetic and immunological processes with recent data suggesting that adaptive immune cell activity within the parenchyma occurs throughout disease. The mechanisms behind these observations remain unclear but suggest that manipulating the adaptive immune response during AD may be an effective therapeutic strategy. Using immunotherapy for AD treatment is not a new concept as the only two approved treatments for AD use antibody-based approaches to target Aβ. However, these have been shown to only temporarily ease symptoms or slow progression highlighting the urgent need for newer treatments. This review discusses the role of the adaptive immune system during AD, how microbial infections may be contributing to inflammatory immune activity and suggests how adaptive immune processes can pose as therapeutic targets for this devastating disease.
Collapse
Affiliation(s)
- Mathew Clement
- Division of Infection and Immunity, Systems Immunity University Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
5
|
Sanotra MR, Kao SH, Lee CK, Hsu CH, Huang WC, Chang TC, Tu FY, Hsu IU, Lin YF. Acrolein adducts and responding autoantibodies correlate with metabolic disturbance in Alzheimer's disease. Alzheimers Res Ther 2023; 15:115. [PMID: 37349844 PMCID: PMC10286356 DOI: 10.1186/s13195-023-01261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 06/10/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is caused by many intertwining pathologies involving metabolic aberrations. Patients with metabolic syndrome (MetS) generally show hyperglycemia and dyslipidemia, which can lead to the formation of aldehydic adducts such as acrolein on peptides in the brain and blood. However, the pathogenesis from MetS to AD remains elusive. METHODS An AD cell model expressing Swedish and Indiana amyloid precursor protein (APP-Swe/Ind) in neuro-2a cells and a 3xTg-AD mouse model were used. Human serum samples (142 control and 117 AD) and related clinical data were collected. Due to the involvement of MetS in AD, human samples were grouped into healthy control (HC), MetS-like, AD with normal metabolism (AD-N), and AD with metabolic disturbance (AD-M). APP, amyloid-beta (Aß), and acrolein adducts in the samples were analyzed using immunofluorescent microscopy, histochemistry, immunoprecipitation, immunoblotting, and/or ELISA. Synthetic Aß1-16 and Aß17-28 peptides were modified with acrolein in vitro and verified using LC-MS/MS. Native and acrolein-modified Aß peptides were used to measure the levels of specific autoantibodies IgG and IgM in the serum. The correlations and diagnostic power of potential biomarkers were evaluated. RESULTS An increased level of acrolein adducts was detected in the AD model cells. Furthermore, acrolein adducts were observed on APP C-terminal fragments (APP-CTFs) containing Aß in 3xTg-AD mouse serum, brain lysates, and human serum. The level of acrolein adducts was correlated positively with fasting glucose and triglycerides and negatively with high-density lipoprotein-cholesterol, which correspond with MetS conditions. Among the four groups of human samples, the level of acrolein adducts was largely increased only in AD-M compared to all other groups. Notably, anti-acrolein-Aß autoantibodies, especially IgM, were largely reduced in AD-M compared to the MetS group, suggesting that the specific antibodies against acrolein adducts may be depleted during pathogenesis from MetS to AD. CONCLUSIONS Metabolic disturbance may induce acrolein adduction, however, neutralized by responding autoantibodies. AD may be developed from MetS when these autoantibodies are depleted. Acrolein adducts and the responding autoantibodies may be potential biomarkers for not only diagnosis but also immunotherapy of AD, especially in complication with MetS.
Collapse
Affiliation(s)
- Monika Renuka Sanotra
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
| | - Shu-Huei Kao
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
| | - Ching-Kuo Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Chun-Hsien Hsu
- Department of Family Medicine, Taipei City Hospital, Heping Fuyou Branch, Taipei, 100, Taiwan
- Department of Family Medicine, Cardinal Tien Hospital, New Taipei, 231, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, 242, Taiwan
| | - Wen-Chung Huang
- Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan
| | - Tsuei-Chuan Chang
- Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan
| | - Fang-Yu Tu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
| | - I-Uen Hsu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Yung-Feng Lin
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan.
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
6
|
Liu Y, Tan Y, Zhang Z, Li H, Yi M, Zhang Z, Hui S, Peng W. Neuroimmune mechanisms underlying Alzheimer's disease: Insights into central and peripheral immune cell crosstalk. Ageing Res Rev 2023; 84:101831. [PMID: 36565960 DOI: 10.1016/j.arr.2022.101831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is a highly life-threatening neurodegenerative disease. Dysregulation of the immune system plays a critical role in promoting AD, which has attracted extensive attention recently. Central and peripheral immune responses are involved in the pathogenesis of AD. Immune changes precede Aβ-associated senile plaque formation and tau-related neurofibrillary tangles, which are the recognised pathological features of AD. Therefore, elucidating immune-related mechanisms underlying the development of AD can help to prevent and treat AD at the source by blocking its progression before the development of pathological changes. To understand the specific pathogenesis of AD, it is important to examine the role of central and peripheral immunity in AD. This review summarises immune-related mechanisms underlying the pathogenesis of AD, focusing on the effect of various central and peripheral immune cells, and describes the possible crosstalk between central and peripheral immunity during the development of AD. This review provides novel insights into the treatment of AD and offers a new direction for immune-related research on AD in the future.
Collapse
Affiliation(s)
- Yuqing Liu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, China; National Clinical Research Center for Metabolic Diseases, Changsha 410011, China.
| | - Yejun Tan
- School of Mathematics, University of Minnesota Twin Cities, Minneapolis, MN, USA.
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, China; National Clinical Research Center for Metabolic Diseases, Changsha 410011, China.
| | - Hongli Li
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, China; National Clinical Research Center for Metabolic Diseases, Changsha 410011, China.
| | - Min Yi
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, China; National Clinical Research Center for Metabolic Diseases, Changsha 410011, China.
| | - Zhen Zhang
- YangSheng College of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China.
| | - Shan Hui
- Department of Geratology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, China.
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, China; National Clinical Research Center for Metabolic Diseases, Changsha 410011, China.
| |
Collapse
|
7
|
Khan SR, Yaqub A, Ikram MK, van Hagen PM, Peeters RP, Dalm VASH, Chaker L, Ikram MA. The association of serum immunoglobulins with cognition and dementia: the Rotterdam Study. J Neurol 2023; 270:423-432. [PMID: 36123443 DOI: 10.1007/s00415-022-11374-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/06/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Chronic inflammation is involved in the pathophysiology of dementia, but the association of serum immunoglobulins with dementia has been understudied and longitudinal data are currently lacking. We investigated the association of serum immunoglobulin (Ig) A, G, and M with cognition and dementia in a population-based cohort. METHODS This study was embedded in the Rotterdam Study. Participants with information on serum immunoglobulin levels, measured between 1997 and 2009, were followed for incident dementia until 2016. Assessment of cognitive function and dementia was performed according to validated tests and clinical criteria respectively. We studied the association between serum immunoglobulins with prevalent and incident dementia using logistic regression and Cox proportional hazards regression analyses respectively. We performed linear regression analyses to quantify the cross-sectional association of serum immunoglobulins with global cognition as well as separate cognitive tests. Analyses were adjusted for age, sex, lifestyle, and cardiovascular factors. RESULTS We included 8768 participants (median age of 62.2 years, 57% women, median follow-up 10.7 years). Overall, none of the immunoglobulins was associated with prevalent or incident dementia. Higher IgG levels were associated with lower scores of global cognition (adjusted standardized mean difference - 0.04; 95% confidence interval:- 0.06; - 0.02) and separate cognitive tests. CONCLUSION In middle-aged and older individuals from the general population, serum Igs were not associated with prevalent or incident dementia, which may imply that serum Igs are not involved in the pathophysiology of dementia. Although higher IgG levels were associated with worse cognitive function, studies with longitudinal data should exclude reverse causation.
Collapse
Affiliation(s)
- Samer R Khan
- Department of Epidemiology, Erasmus University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Division of Allergy and Clinical Immunology, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Amber Yaqub
- Department of Epidemiology, Erasmus University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - M Kamran Ikram
- Department of Epidemiology, Erasmus University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Neurology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - P Martin van Hagen
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Robin P Peeters
- Department of Epidemiology, Erasmus University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Division of Endocrinology, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Virgil A S H Dalm
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Layal Chaker
- Department of Epidemiology, Erasmus University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Division of Endocrinology, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
8
|
Agrawal S, Baulch JE, Madan S, Salah S, Cheeks SN, Krattli RP, Subramanian VS, Acharya MM, Agrawal A. Impact of IL-21-associated peripheral and brain crosstalk on the Alzheimer's disease neuropathology. Cell Mol Life Sci 2022; 79:331. [PMID: 35648273 PMCID: PMC9160131 DOI: 10.1007/s00018-022-04347-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/20/2022] [Accepted: 05/03/2022] [Indexed: 11/30/2022]
Abstract
Alzheimer’s disease (AD) is associated with dysregulated immune and inflammatory responses. Emerging evidence indicates that peripheral immune activation is linked to neuroinflammation and AD pathogenesis. The present study focuses on determining the role of IL-21 in the pathogenesis of AD using human samples and the 5xFAD mice model. We find that the levels of IL-21 are increased in the periphery of both humans and mice in AD. In addition, the proportions of IL-21 target cells, Tfh and B plasma cells as well as activation of monocytes is increased in PBMCs from AD and mild cognitively impaired (MCI) subjects as compared to age-matched controls, indicating immune activation. In contrast, the percentage of B1 cells that control inflammation is decreased. These changes are due to IL-21 as the expression of IL-21 receptor (IL-21R) is higher on all these cells in AD. Furthermore, treatment with recombinant IL-21 in AD mice also leads to similar alterations in Tfh, B, B1, and macrophages. The effect of IL-21 is not confined to the periphery since increased expression of IL-21R is also observed in both humans and mice hippocampus derived from the AD brains. In addition, mice injected with IL-21 display increased deposition of amyloid beta (Aβ) plaques in the brain which is reduced following anti-IL-21R antibody that blocks the IL-21 signaling. Moreover, activation of microglia was enhanced in IL-21-injected mice. In keeping with enhanced microglial activation, we also observed increased production of pro-inflammatory cytokines, IL-18 and IL-6 in IL-21-injected mice. The microglial activation and cytokines were both inhibited following IL-21R blockage. Altogether, IL-21 escalates AD pathology by enhancing peripheral and brain immune and inflammatory responses leading to increased Aβ plaque deposition.
Collapse
Affiliation(s)
- Sudhanshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Janet E Baulch
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, 92697, USA
| | - Shreya Madan
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, 92697, USA
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, 92697, USA
| | - Seher Salah
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, 92697, USA
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, 92697, USA
| | - Samantha N Cheeks
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, 92697, USA
| | - Robert P Krattli
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, 92697, USA
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, 92697, USA
| | - Veedamali S Subramanian
- Division of Gastroenterology, Department of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Munjal M Acharya
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, 92697, USA
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, 92697, USA
| | - Anshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
9
|
Lekhraj R, Lalezari S, Aguilan JT, Qin J, Sidoli S, Mowrey W, Gollamudi S, Lalezari P. Altered abundances of human immunoglobulin M and immunoglobulin G subclasses in Alzheimer's disease frontal cortex. Sci Rep 2022; 12:6934. [PMID: 35484384 PMCID: PMC9050688 DOI: 10.1038/s41598-022-10793-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
The immune system has been described to play a role in the development of Alzheimer’s disease (AD), but the distribution of immunoglobulins and their subclasses in brain tissue has not been explored. In this study, examination of pathologically diagnosed frontal cortex gray matter revealed significantly higher levels of IgM and IgG in late-stage AD (Braak and Braak stages V and VI) compared to age-matched controls. While levels of IgG2 and IgG4 constant region fragments were higher in late-stage AD, concentration of native–state IgG4 with free Fc regions was increased in AD III and VI. RNA analysis did not support parenchymal B-cell production of IgG4 in AD III and V, indicating possible peripheral or meningeal B-cell involvement. Changes in the profile of IgM, IgG and IgG subclasses in AD frontal cortex may provide insight into understanding disease pathogenesis and progression.
Collapse
Affiliation(s)
- Rukmani Lekhraj
- Neurological Surgery Research Laboratory, Department of Neurosurgery, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Shirin Lalezari
- Neurological Surgery Research Laboratory, Department of Neurosurgery, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jennifer T Aguilan
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jiyue Qin
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Wenzhu Mowrey
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Seema Gollamudi
- Neurological Surgery Research Laboratory, Department of Neurosurgery, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Parviz Lalezari
- Neurological Surgery Research Laboratory, Department of Neurosurgery, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
10
|
Busse S, Hoffmann J, Michler E, Hartig R, Frodl T, Busse M. Dementia-associated changes of immune cell composition within the cerebrospinal fluid. Brain Behav Immun Health 2021; 14:100218. [PMID: 34589754 PMCID: PMC8474581 DOI: 10.1016/j.bbih.2021.100218] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 11/17/2022] Open
Abstract
Inflammation and alterations in essential protein structures in the brain might also change the cellular distribution in the cerebrospinal fluid (CSF). Using flow cytometry, we analyzed cell populations of the innate and adaptive immune system associated with the most frequent forms of dementias. We included patients with mild cognitive impairment (MCI; N = 33), Alzheimer’s disease (AD; N = 90), vascular dementia (VD; N = 35) and frontotemporal dementia (FTD; N = 17) at the time of diagnosis, before onset of treatment and 11 elderly non-demented individuals. Dependent on the form of dementia, an increased frequency of CD14+ monocytes, NK cells and NKT cells was measured. Within the T cell population, a dementia-associated shift from central memory towards (late-stage) effector cells was detected. T cells and NKT cells were correlated with MMSE, NK and NKT cells were correlated with ptau, CD14+ monocytes and NK cells were correlated with Amyloid-β 1–40. Our data suggest that each investigated immune cell type is involved in dementia-associated alterations within the CSF, possibly having distinct functions in their pathogenesis.
Collapse
Affiliation(s)
- Stefan Busse
- Department of Psychiatry, University of Magdeburg, Magdeburg, Germany
| | - Jessica Hoffmann
- Department of Psychiatry, University of Magdeburg, Magdeburg, Germany
| | - Enrico Michler
- Department of Psychiatry, University of Magdeburg, Magdeburg, Germany
| | - Roland Hartig
- Institute of Immunology, University of Magdeburg, Magdeburg, Germany
| | - Thomas Frodl
- Department of Psychiatry, University of Magdeburg, Magdeburg, Germany
| | - Mandy Busse
- Department of Psychiatry, University of Magdeburg, Magdeburg, Germany
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Corresponding author. Department of Psychiatry, University of Magdeburg, Leipziger Str. 44, D-39120, Magdeburg, Germany.
| |
Collapse
|
11
|
Patel AG, Nehete PN, Krivoshik SR, Pei X, Cho EL, Nehete BP, Ramani MD, Shao Y, Williams LE, Wisniewski T, Scholtzova H. Innate immunity stimulation via CpG oligodeoxynucleotides ameliorates Alzheimer's disease pathology in aged squirrel monkeys. Brain 2021; 144:2146-2165. [PMID: 34128045 PMCID: PMC8502485 DOI: 10.1093/brain/awab129] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 11/15/2022] Open
Abstract
Alzheimer's disease is the most common cause of dementia and the only illness among the top 10 causes of death for which there is no disease-modifying therapy. The failure rate of clinical trials is very high, in part due to the premature translation of successful results in transgenic mouse models to patients. Extensive evidence suggests that dysregulation of innate immunity and microglia/macrophages plays a key role in Alzheimer's disease pathogenesis. Activated resident microglia and peripheral macrophages can display protective or detrimental phenotypes depending on the stimulus and environment. Toll-like receptors (TLRs) are a family of innate immune regulators known to play an important role in governing the phenotypic status of microglia. We have shown in multiple transgenic Alzheimer's disease mouse models that harnessing innate immunity via TLR9 agonist CpG oligodeoxynucleotides (ODNs) modulates age-related defects associated with immune cells and safely reduces amyloid plaques, oligomeric amyloid-β, tau pathology, and cerebral amyloid angiopathy (CAA) while promoting cognitive benefits. In the current study we have used a non-human primate model of sporadic Alzheimer's disease pathology that develops extensive CAA-elderly squirrel monkeys. The major complications in current immunotherapeutic trials for Alzheimer's disease are amyloid-related imaging abnormalities, which are linked to the presence and extent of CAA; hence, the prominence of CAA in elderly squirrel monkeys makes them a valuable model for studying the safety of the CpG ODN-based concept of immunomodulation. We demonstrate that long-term use of Class B CpG ODN 2006 induces a favourable degree of innate immunity stimulation without producing excessive or sustained inflammation, resulting in efficient amelioration of both CAA and tau Alzheimer's disease-related pathologies in association with behavioural improvements and in the absence of microhaemorrhages in aged elderly squirrel monkeys. CpG ODN 2006 has been well established in numerous human trials for a variety of diseases. The present evidence together with our earlier, extensive preclinical research, validates the beneficial therapeutic outcomes and safety of this innovative immunomodulatory approach, increasing the likelihood of CpG ODN therapeutic efficacy in future clinical trials.
Collapse
Affiliation(s)
- Akash G Patel
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Pramod N Nehete
- Department of Comparative Medicine, the University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Sara R Krivoshik
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Xuewei Pei
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Elizabeth L Cho
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Bharti P Nehete
- Department of Comparative Medicine, the University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Margish D Ramani
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Yongzhao Shao
- Division of Biostatistics, Departments of Population Health and Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Lawrence E Williams
- Department of Comparative Medicine, the University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Thomas Wisniewski
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| | - Henrieta Scholtzova
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
- Department of Comparative Medicine, the University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| |
Collapse
|
12
|
Wang D, Chen F, Han Z, Yin Z, Ge X, Lei P. Relationship Between Amyloid-β Deposition and Blood-Brain Barrier Dysfunction in Alzheimer's Disease. Front Cell Neurosci 2021; 15:695479. [PMID: 34349624 PMCID: PMC8326917 DOI: 10.3389/fncel.2021.695479] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022] Open
Abstract
Amyloid-β (Aβ) is the predominant pathologic protein in Alzheimer's disease (AD). The production and deposition of Aβ are important factors affecting AD progression and prognosis. The deposition of neurotoxic Aβ contributes to damage of the blood-brain barrier. However, the BBB is also crucial in maintaining the normal metabolism of Aβ, and dysfunction of the BBB aggravates Aβ deposition. This review characterizes Aβ deposition and BBB damage in AD, summarizes their interactions, and details their respective mechanisms.
Collapse
Affiliation(s)
- Dong Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin, China
| | | | - Zhaoli Han
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin, China
| | - Zhenyu Yin
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin, China
| | - Xintong Ge
- Tianjin Neurological Institute, Tianjin, China
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin, China
| |
Collapse
|
13
|
Lutshumba J, Nikolajczyk BS, Bachstetter AD. Dysregulation of Systemic Immunity in Aging and Dementia. Front Cell Neurosci 2021; 15:652111. [PMID: 34239415 PMCID: PMC8258160 DOI: 10.3389/fncel.2021.652111] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation and the tissue-resident innate immune cells, the microglia, respond and contribute to neurodegenerative pathology. Although microglia have been the focus of work linking neuroinflammation and associated dementias like Alzheimer's Disease, the inflammatory milieu of brain is a conglomerate of cross-talk amongst microglia, systemic immune cells and soluble mediators like cytokines. Age-related changes in the inflammatory profile at the levels of both the brain and periphery are largely orchestrated by immune system cells. Strong evidence indicates that both innate and adaptive immune cells, the latter including T cells and B cells, contribute to chronic neuroinflammation and thus dementia. Neurodegenerative hallmarks coupled with more traditional immune system stimuli like infection or injury likely combine to trigger and maintain persistent microglial and thus brain inflammation. This review summarizes age-related changes in immune cell function, with special emphasis on lymphocytes as a source of inflammation, and discusses how such changes may potentiate both systemic and central nervous system inflammation to culminate in dementia. We recap the understudied area of AD-associated changes in systemic lymphocytes in greater detail to provide a unifying perspective of inflammation-fueled dementia, with an eye toward evidence of two-way communication between the brain parenchyma and blood immune cells. We focused our review on human subjects studies, adding key data from animal models as relevant.
Collapse
Affiliation(s)
- Jenny Lutshumba
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - Barbara S. Nikolajczyk
- Department of Pharmacology and Nutritional Science, University of Kentucky, Lexington, KY, United States
- Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, United States
| | - Adam D. Bachstetter
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
14
|
Gallart-Palau X, Guo X, Serra A, Sze SK. Alzheimer's disease progression characterized by alterations in the molecular profiles and biogenesis of brain extracellular vesicles. Alzheimers Res Ther 2020; 12:54. [PMID: 32384937 PMCID: PMC7210691 DOI: 10.1186/s13195-020-00623-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The contributions of brain intercellular communication mechanisms, specifically extracellular vesicles (EV), to the progression of Alzheimer's disease (AD) remain poorly understood. METHODS Here, we investigated the role(s) of brain EV in the progressive course of AD through unbiased proteome-wide analyses of temporal lobe-derived EV and proteome-label quantitation of complementary remaining brain portions. Furthermore, relevant proteins identified were further screened by multiple reaction monitoring. RESULTS Our data indicate that EV biogenesis was altered during preclinical AD with the genesis of a specific population of EV containing MHC class-type markers. The significant presence of the prion protein PrP was also manifested in these brain vesicles during preclinical AD. Similarly, sequestration of amyloid protein APP in brain EV coincided with the observed PrP patterns. In contrast, active incorporation of the mitophagy protein GABARAP in these brain vesicles was disrupted as AD progressed. Likewise, disrupted incorporation of LAMP1 in brain EV was evident from the initial manifestation of AD clinical symptoms, although the levels of the protein remained significantly upregulated in the temporal lobe of diseased brains. CONCLUSIONS Our findings indicate that impaired autophagy in preclinical AD coincides with the appearance of proinflammatory and neuropathological features in brain extracellular vesicles, facts that moderately remain throughout the entire AD progression. Thus, these data highlight the significance of brain EV in the establishment of AD neuropathology and represent a further leap toward therapeutic interventions with these vesicles in human dementias.
Collapse
Affiliation(s)
- Xavier Gallart-Palau
- Division of Chemical Biology & BioTechnology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- IMDEA-Food Research Institute, +Pec Proteomics, Campus of International Excellence UAM+CSIC, Old Cantoblanco Hospital, 8 Crta. Canto Blanco, 28049, Madrid, Spain
- Institut Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari Institut Pere Mata, Reus, Tarragona, Spain
| | - Xue Guo
- Division of Chemical Biology & BioTechnology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Aida Serra
- IMDEA-Food Research Institute, +Pec Proteomics, Campus of International Excellence UAM+CSIC, Old Cantoblanco Hospital, 8 Crta. Canto Blanco, 28049, Madrid, Spain.
| | - Siu Kwan Sze
- Division of Chemical Biology & BioTechnology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
15
|
Seledtsov VI, von Delwig AA. Immune memory limits human longevity: the role of memory СD4+ T cells in age-related immune abnormalities. Expert Rev Vaccines 2020; 19:209-215. [DOI: 10.1080/14760584.2020.1745638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Victor Ivanovich Seledtsov
- Department of Immunology, Innovita Research Company, Vilnius, Lithuania
- Department of Medical Biotechnologies, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | | |
Collapse
|
16
|
Li XW, Li XX, Liu QS, Cheng Y. Blood and Cerebrospinal Fluid Autoantibody to Aβ Levels in Patients with Alzheimer’s Disease: a Meta-Analysis Study. J Mol Neurosci 2020; 70:1208-1215. [DOI: 10.1007/s12031-020-01528-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/02/2020] [Indexed: 01/01/2023]
|
17
|
Immune and Inflammatory Determinants Underlying Alzheimer's Disease Pathology. J Neuroimmune Pharmacol 2020; 15:852-862. [PMID: 32090272 DOI: 10.1007/s11481-020-09908-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/13/2020] [Indexed: 10/24/2022]
Abstract
This study examines the link between peripheral immune changes in perpetuation of the Alzheimer's disease (AD) neuropathology and cognitive deficits. Our research design using human AD patients and rodent model is supported by past evidence from genomic studies. We observed an active immune response against Aβ as indicated by the increased Aβ specific IgG antibody in the serum of AD and patients with mild cognitive impairments as compared to healthy controls. A similar increase in IgG and decrease in IgM antibody against Aβ was also confirmed in the 5xFAD mouse model of AD. More importantly, we observed a negative correlation between reduced IgM levels and cognitive dysfunction that manifested as impaired memory consolidation. Strong peripheral immune activation was supported by increased activation of microglia in the brain and macrophages in the spleen of AD mice compared to wild type control littermates. Furthermore, inflammatory cytokine IL-21 that is involved in antibody class switching was elevated in the plasma of AD patients and correlated positively with the IgG antibody levels. Concurrently, an increase in IL-21 and IL-17 was observed in spleen cells from AD mice. Further investigation revealed that proportions of T follicular helper (Tfh) cells that secrete IL-21 are increased in the spleen of AD mice. In contrast to Tfh, the frequency of B1 cells that produce IgM antibodies was reduced in AD mice. Altogether, these data indicate that in AD the immune tolerance to Aβ is compromised leading to chronic immune/inflammatory responses against Aβ that are detrimental and cause neuropathology. Graphical Abstract Healthy subjects are tolerant to Aβ and usually react weakly to it resulting the in the production of IgM class of antibodies that are efficient at clearing up self-antigens such as Aβ without causing inflammation. In contrast, Alzheimer's disease patients mount a strong immune response against Aβ probably in an effort to clear up excessive Aβ. There is enhanced production of inflammatory cytokines such as IL-21 as well as an increase in Tfh cells that cause antibody class switching form IgM to IgG. The strong immune response is inefficient at clearing up Aβ and instead exacerbates inflammation that causes AD neuropathology and cognitive dysfunction.
Collapse
|
18
|
Faridi A, Yang W, Kelly HG, Wang C, Faridi P, Purcell AW, Davis TP, Chen P, Kent SJ, Ke PC. Differential Roles of Plasma Protein Corona on Immune Cell Association and Cytokine Secretion of Oligomeric and Fibrillar Beta-Amyloid. Biomacromolecules 2019; 20:4208-4217. [PMID: 31600059 DOI: 10.1021/acs.biomac.9b01116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) is a primary neurological disease with no effective cure. A hallmark of AD is the presence of intracellular tangles and extracellular plaques derived from the aberrant aggregation of tau- and beta-amyloid (Aβ). Aβ presents in the brain as well as in cerebrospinal fluid and the circulation, and Aβ toxicity has been attributed to amyloidosis and inflammation, among other causes. In this study, the effects of the plasma protein corona have been investigated with regard to the blood cell association and cytokine secretion of oligomeric (Aβo) and fibrillar Aβ1-42(Aβf), two major forms of the peptide aggregates. Aβo displayed little change in membrane association in whole blood or washed blood (i.e., cells in the absence of plasma proteins) at 37 °C, while Aβf showed a clear preference for binding with all cell types sans plasma proteins. Immune cells exposed to Aβo, but not to Aβf, resulted in significant expression of cytokines IL-6 and TNF measured in real-time by a localized surface plasmon resonance sensor. These observations indicate greater immune cell association and cytokine stimulation of Aβo than Aβf and shed new light on the contrasting toxicities of Aβo and Aβf resulting from their differential capacities in acquiring a plasma protein corona. These results further implicate a close connection between Aβ amyloidosis and immunopathology in AD.
Collapse
Affiliation(s)
- Ava Faridi
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences , Monash University , 381 Royal Parade , Parkville , Victoria 3052 , Australia
| | - Wen Yang
- Materials Research and Education Center , Auburn University , Auburn , Alabama 36849 , United States
| | - Hannah Gabrielle Kelly
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity , University of Melbourne , Melbourne , Victoria 3052 , Australia.,ARC Centre for Excellence in Convergent Bio-Nano Science and Technology , University of Melbourne , Melbourne , Victoria 3052 , Australia
| | - Chuanyu Wang
- Materials Research and Education Center , Auburn University , Auburn , Alabama 36849 , United States
| | - Pouya Faridi
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute , Monash University , Clayton , Victoria 3800 , Australia
| | - Anthony Wayne Purcell
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute , Monash University , Clayton , Victoria 3800 , Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences , Monash University , 381 Royal Parade , Parkville , Victoria 3052 , Australia.,Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Pengyu Chen
- Materials Research and Education Center , Auburn University , Auburn , Alabama 36849 , United States
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity , University of Melbourne , Melbourne , Victoria 3052 , Australia.,ARC Centre for Excellence in Convergent Bio-Nano Science and Technology , University of Melbourne , Melbourne , Victoria 3052 , Australia.,Melbourne Sexual Health Clinic and Infectious Diseases Department, Alfred Hospital , Monash University Central Clinical School , Carlton , Victoria 3053 , Australia
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences , Monash University , 381 Royal Parade , Parkville , Victoria 3052 , Australia
| |
Collapse
|
19
|
Liu B, Liu G, Wang Y, Yao Y, Wang G, Lei X, Zhang N, Dong X. Protective Effect of Buyang Huanwu Decoction on Neurovascular Unit in Alzheimer's Disease Cell Model via Inflammation and RAGE/LRP1 Pathway. Med Sci Monit 2019; 25:7813-7825. [PMID: 31625533 PMCID: PMC6820343 DOI: 10.12659/msm.917020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background The aim of this study was to investigate the protective mechanism of neurovascular unit of Buyang Huanwu decoction (BYHWD) in an Alzheimer’s disease (AD) cell model via RAGE/LRP1 pathway and find a reliable target for Alzheimer’s disease treatment. Material/Methods Rat brain microvessel endothelial cells (BMECs) were cultured in 10% FBS and 1% penicillin/streptomycin. The AD model was established by administration of 24 μmol/L amyloid-β peptides 25~35. Different concentrations of BYHWD (0.1 mg/mL, 1 mg/mL, and 10 mg/mL) were added as the drug intervention. The morphology of the cells was observed by light microscopy and the ultrastructure of the cells was observed by microscopy. The inflammatory factors IL-1β, IL-6, TNF-α, and Aβ25–35 were detected by ELISA. Flow cytometry was used to assess the apoptosis rate. The expressions of RAGE, LRP1, ICAM-1, VCAM-1, Apo J, Apo E, and NF-κBp65 were detected by Western blotting. Results The structure of cells in BYHWDM and BYHWDH gradually recovered with increasing dose. BYHWD decreased the apoptotic rate of BMECs induced by Aβ25–35. The cells treated with different concentrations of BYHWD had significant difference in terms of anti-apoptotic effect. The therapeutic effect of BYHWD on AD was via the RAGE/LRP1 and NF-κBp65 pathways. Conclusions BYHWD regulates Aβ metabolism via the RAGE/LRP1 pathway, inhibits vascular endothelial inflammation induced by ICAM-1 and VCAM-1 via the NF-κBP65 pathway, and promotes morphological changes induced by Aβ-induced brain microvascular endothelial cell damage.
Collapse
Affiliation(s)
- Bin Liu
- Jiamusi College, Heilongjiang University of Chinese Medicine, Jiamusi, Heilongjiang, China (mainland)
| | - Guoliang Liu
- Jiamusi College, Heilongjiang University of Chinese Medicine, Jiamusi, Heilongjiang, China (mainland)
| | - Yueyang Wang
- College of Acupuncture, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China (mainland)
| | - Yuan Yao
- Jiamusi College, Heilongjiang University of Chinese Medicine, Jiamusi, Heilongjiang, China (mainland)
| | - Guanzhuo Wang
- Jiamusi College, Heilongjiang University of Chinese Medicine, Jiamusi, Heilongjiang, China (mainland)
| | - Xia Lei
- Jiamusi College, Heilongjiang University of Chinese Medicine, Jiamusi, Heilongjiang, China (mainland)
| | - Ning Zhang
- Jiamusi College, Heilongjiang University of Chinese Medicine, Jiamusi, Heilongjiang, China (mainland).,College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China (mainland)
| | - Xiaohong Dong
- Jiamusi College, Heilongjiang University of Chinese Medicine, Jiamusi, Heilongjiang, China (mainland)
| |
Collapse
|
20
|
Li DD, Li WJ, Kong SZ, Li SD, Guo JQ, Guo MH, Cai TT, Li N, Chen RZ, Luo RQ, Tan WX. Protective effects of collagen polypeptide from tilapia skin against injuries to the liver and kidneys of mice induced by d-galactose. Biomed Pharmacother 2019; 117:109204. [PMID: 31387177 DOI: 10.1016/j.biopha.2019.109204] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 01/12/2023] Open
Abstract
We wished to investigate the role of a tilapia skin collagen polypeptide (TSCP; molecular weight <3 kDa) in alleviating liver and kidney injuries in aging mice induced by d-galactose (d-gal) and its underlying mechanism of action. First, we characterized TSCP. TSCP was passed through a 3-kDa ultrafiltration membrane, desalted in water by a solid-phase extraction column, purified further by reverse phase-high performance liquid chromatography, and analyzed by electrospray ionization mass spectrometry and tandem mass spectrometry. TSCP contained 17 types of amino acids (AAs) and 41 peptide chains of length 7 AAs to 22 AAs. The content of free AAs and total AAs of TSCP was 13.5% and 93.79%, respectively. Next, we undertook animal experiments. Mice were injected once-daily with D-gal (300 mg/kg body weight, s.c.) for 8 weeks, and TSCP was administered simultaneously once-daily by intragastric gavage. TSCP could visibly improve the decreased body weight, depressed appetite, and mental deterioration of mice triggered by d-gal. TSCP could also alleviate d-gal-induced damage to the liver and kidneys according to histopathology (especially high-dose TSCP). Consistent with these macroscopic and pathologic changes, TSCP could also prevent d-gal-induced increases in serum levels of alanine aminotransferase, aspartate transaminase, alkaline phosphatase, lipid peroxidation, creatinine and uric acid, as well as decreases in serum levels of immunoglobulin (Ig)G and IgM. Moreover, TSCP improved the activities of superoxide dismutase, catalase, and glutathione peroxidase, but also inhibited the increases in the levels of malondialdehyde and inducible nitric oxide synthase expression in the liver and kidneys of d-gal-treated mice. These results suggest that TSCP can alleviate the injuries to the liver and kidneys in aging mice induced by d-gal, and that its mechanism of action might be, at least partially, associated with attenuation of oxidative stress and enhancement of immune function.
Collapse
Affiliation(s)
- Dong-Dong Li
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, Guangdong, People's Republic of China
| | - Wen-Jie Li
- Department of Hematology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People's Republic of China.
| | - Song-Zhi Kong
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, Guangdong, People's Republic of China.
| | - Si-Dong Li
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, Guangdong, People's Republic of China
| | - Jia-Qi Guo
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, Guangdong, People's Republic of China
| | - Min-Hui Guo
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, Guangdong, People's Republic of China
| | - Ting-Ting Cai
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, Guangdong, People's Republic of China
| | - Ning Li
- Department of Hematology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People's Republic of China
| | - Ri-Zhi Chen
- Zhanjiang Jianliyuan Medical Articles Co., Ltd., Zhanjiang, Guangdong, People's Republic of China
| | - Rong-Qiong Luo
- Zhanjiang Jianliyuan Medical Articles Co., Ltd., Zhanjiang, Guangdong, People's Republic of China
| | - Wei-Xiang Tan
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, Guangdong, People's Republic of China
| |
Collapse
|