1
|
Salimi M, Nazari M, Shahsavar P, Dehghan S, Javan M, Mirnajafi‐Zadeh J, Raoufy MR. Olfactory bulb stimulation mitigates Alzheimer's-like disease progression. CNS Neurosci Ther 2024; 30:e70056. [PMID: 39404073 PMCID: PMC11474698 DOI: 10.1111/cns.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) has demonstrated potential in mitigating Alzheimer's disease (AD). However, the invasive nature of DBS presents challenges for its application. The olfactory bulb (OB), showing early AD-related changes and extensive connections with memory regions, offers an attractive entry point for intervention, potentially restoring normal activity in deteriorating memory circuits. AIMS Our study examined the impact of electrically stimulating the OB on working memory as well as pathological and electrophysiological alterations in the OB, medial prefrontal cortex, hippocampus, and entorhinal cortex in amyloid beta (Aβ) AD model rats. METHODS Male Wistar rats underwent surgery for electrode implantation in brain regions, inducing Alzheimer's-like disease. Bilateral olfactory bulb (OB) electrical stimulation was performed for 1 hour daily to the OB of stimulation group animals for 18 consecutive days, followed by the evaluations of histological, behavioral, and local field potential signal processing. RESULTS OB stimulation counteracted Aβ plaque accumulation and prevented AD-induced working memory impairments. Furthermore, it prompted an increase in power across diverse frequency bands and enhanced functional connectivity, particularly in the gamma band, within the investigated regions during a working memory task. CONCLUSION This preclinical investigation highlights the potential of olfactory pathway-based brain stimulation to modulate the activity of deep-seated memory networks for AD treatment. Importantly, the accessibility of this pathway via the nasal cavity lays the groundwork for the development of minimally invasive approaches targeting the olfactory pathway for brain modulation.
Collapse
Affiliation(s)
- Morteza Salimi
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Milad Nazari
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
- The Danish Research Institute of Translational Neuroscience, DANDRITEAarhus UniversityAarhusDenmark
| | - Payam Shahsavar
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Samaneh Dehghan
- Stem Cell and Regenerative Medicine Research CenterIran University of Medical SciencesTehranIran
- The Five Senses Institute, Eye Research CenterRassoul Akram Hospital, Iran University of Medical SciencesTehranIran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
- Institute for Brain Sciences and CognitionTarbiat Modares UniversityTehranIran
| | - Javad Mirnajafi‐Zadeh
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
- Institute for Brain Sciences and CognitionTarbiat Modares UniversityTehranIran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
- Institute for Brain Sciences and CognitionTarbiat Modares UniversityTehranIran
| |
Collapse
|
2
|
Gillespie AK, Astudillo Maya D, Denovellis EL, Desse S, Frank LM. Neurofeedback training can modulate task-relevant memory replay rate in rats. eLife 2024; 12:RP90944. [PMID: 38958562 PMCID: PMC11221834 DOI: 10.7554/elife.90944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
Hippocampal replay - the time-compressed, sequential reactivation of ensembles of neurons related to past experience - is a key neural mechanism of memory consolidation. Replay typically coincides with a characteristic pattern of local field potential activity, the sharp-wave ripple (SWR). Reduced SWR rates are associated with cognitive impairment in multiple models of neurodegenerative disease, suggesting that a clinically viable intervention to promote SWRs and replay would prove beneficial. We therefore developed a neurofeedback paradigm for rat subjects in which SWR detection triggered rapid positive feedback in the context of a memory-dependent task. This training protocol increased the prevalence of task-relevant replay during the targeted neurofeedback period by changing the temporal dynamics of SWR occurrence. This increase was also associated with neural and behavioral forms of compensation after the targeted period. These findings reveal short-timescale regulation of SWR generation and demonstrate that neurofeedback is an effective strategy for modulating hippocampal replay.
Collapse
Affiliation(s)
- Anna K Gillespie
- Departments of Biological Structure and Lab Medicine & Pathology, University of WashingtonSeattleUnited States
- Departments of Physiology and Psychiatry and the Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
| | - Daniela Astudillo Maya
- Departments of Physiology and Psychiatry and the Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
| | - Eric L Denovellis
- Departments of Physiology and Psychiatry and the Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Sachi Desse
- Departments of Physiology and Psychiatry and the Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
| | - Loren M Frank
- Departments of Physiology and Psychiatry and the Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| |
Collapse
|
3
|
Bentley JH, Broussard JI. Multimodal Gamma Stimulation Improves Activity but not Memory in Aged Tgf344-AD Rats. Curr Alzheimer Res 2024; 20:769-777. [PMID: 38445702 DOI: 10.2174/0115672050281956240228075849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Multimodal sensory gamma stimulation is a treatment approach for Alzheimers disease that has been shown to improve pathology and memory in transgenic mouse models of Alzheimer's. Because rats are closer to humans in evolution, we tested the hypothesis that the transgenic rat line bearing human APP and PS1, line TgF344-AD, would be a good supplemental candidate to test the efficacy of this treatment. Current therapy approaches under investigation seek to utilize the immune response to minimize or degrade the accumulation of β-amyloid plaque load in mouse models designed to overexpress Aβ. However, many of these models lack some of the hallmarks of Alzheimer's disease, such as hyperphosphorylated tau and neuronal cell loss. The TgF344-AD transgenic rat model is a good candidate to bridge the gap between mouse models and clinical efficacy in humans. OBJECTIVE The objective of this study was to use multimodal gamma stimulation at light and auditory modalities simultaneously to test whether this enhances memory performance as measured by the object location task and the spontaneous alternation task. METHODS In our study, we designed and built a low-cost, easy-to-construct multimodal light and sound gamma stimulator. Our gamma stimulation device was built using an Arduino microcontroller, which drives lights and a speaker at the gamma frequency. We have included in this paper our device's parts, hardware design, and software architecture for easy reproducibility. We then performed an experiment to test the effect of multimodal gamma stimulation on the cognitive performance of fourteen-month-old TgF344-AD rats. Rats were randomly assigned to either an experimental group that received gamma stimulation or a control group that did not. Performance in a Novel Object Location (NOL) task and spontaneous alternation task was evaluated in both groups before and after the treatment. RESULTS Multimodal gamma stimulation did not improve memory compared to unstimulated TgF344-AD rats. However, the gamma-stimulated rats did spend significantly more time exploring objects in the novel location task than the unstimulated rats. In the spontaneous alternation task, gamma-stimulated rats exhibited significantly greater exploratory activity than unstimulated controls. CONCLUSION Multimodal gamma stimulation did not enhance memory performance in the object location task or the spontaneous alternation task. However, in both tasks, the treatment group had improved measures of exploratory activity relative to the untreated group. We conclude that several limitations could have contributed to this mixed effect, including aging complications, different animal models, or light cycle effects.
Collapse
Affiliation(s)
- J H Bentley
- Department of Neurobiology and Anatomy, University of Texas McGovern Medical School, Houston, TX 77030, USA
| | - J I Broussard
- Department of Neurobiology and Anatomy, University of Texas McGovern Medical School, Houston, TX 77030, USA
| |
Collapse
|
4
|
García-Carlos CA, Basurto-Islas G, Perry G, Mondragón-Rodríguez S. Meta-Analysis in Transgenic Alzheimer's Disease Mouse Models Reveals Opposite Brain Network Effects of Amyloid-β and Phosphorylated Tau Proteins. J Alzheimers Dis 2024; 99:595-607. [PMID: 38669540 DOI: 10.3233/jad-231365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Background Cognitive deficits observed in Alzheimer's disease (AD) patients have been correlated with altered hippocampal activity. Although the mechanism remains under extensive study, neurofibrillary tangles and amyloid plaques have been proposed as responsible for brain activity alterations. Aiming to unveil the mechanism, researchers have developed several transgenic models of AD. Nevertheless, the variability in hippocampal oscillatory alterations found in different genetic backgrounds and ages remains unclear. Objective To assess the oscillatory alterations in relation to animal developmental age and protein inclusion, amyloid-β (Aβ) load, and abnormally phosphorylated tau (pTau), we reviewed and analyzed the published data on peak power, frequency, and quantification of theta-gamma cross-frequency coupling (modulation index values). Methods To ensure that the search was as current as possible, a systematic review was conducted to locate and abstract all studies published from January 2000 to February 2023 that involved in vivo hippocampal local field potential recording in transgenic mouse models of AD. Results The presence of Aβ was associated with electrophysiological alterations that are mainly reflected in power increases, frequency decreases, and lower modulation index values. Concomitantly, pTau accumulation was associated with electrophysiological alterations that are mainly reflected in power decreases, frequency decreases, and no significant alterations in modulation index values. Conclusions In this study, we showed that electrophysiological parameters are altered from prodromal stages to the late stages of pathology. Thus, we found that Aβ deposition is associated with brain network hyperexcitability, whereas pTau deposition mainly leads to brain network hypoexcitability in transgenic models.
Collapse
Affiliation(s)
- Carlos Antonio García-Carlos
- UNAM Division of Neurosciences, Institute of Cellular Physiology, National Autonomous University of México, México City, México
| | | | - George Perry
- UTSA Neuroscience Institute and Department of Biology, College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | - Siddhartha Mondragón-Rodríguez
- UAQ Centre for Applied Biomedical Research - CIBA, School of Medicine, Autonomous University of Querétaro, Querétaro, México
- CONAHCYT National Council for Science and Technology, México City, México
| |
Collapse
|
5
|
Mengnan L, Xianwen Y, Shuyan Z, Shuiqing C, Wenjuan X, Xuan W, Jia W, Chunshuai L, Linlin Y, Xinfang X, Xiangri L. Homotherapy for heteropathy of Alzheimer's disease and anemia through reducing the expression of toll-like receptor and TNF by steamed Panax notoginseng. Biomed Pharmacother 2023; 165:115075. [PMID: 37385213 DOI: 10.1016/j.biopha.2023.115075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/02/2023] [Accepted: 06/23/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND One of the effects of Steamed Panax notoginsen (SPN) is to replenish blood, which is mostly used to treat anemia in clinic. SPN has the effect of treating anemia and Alzheimer's disease (AD) in clinical and basic research. In traditional Chinese medicine, anemia and AD have the same characteristics, and their symptoms are qi and blood deficiency. METHODS First, data analysis was carried out through network pharmacology to predict the action targets of SPN homotherapy in the treatment of AD and anemia. Specifically, TCMSP and relevant literature were used to screen the main active ingredients of Panax notoginseng, and SuperPred was used to predict the action targets of the active ingredients. Disease targets related to AD and anemia were collected through Genecards database, and STRING and protein interaction (PPI) was used for enrichment analysis, Analyze the characteristics of the active ingredient target network on the Cytascape 3.9.0 platform, and use Metascape to enrich the gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes Pathway Enrichment (KEGG pathway). Then Drosophila was used as the AD animal model, and the effects of SPN on the climbing ability, olfactory memory and brain Aβ, with rats as anemia animal models, the improvement effect of SPN on blood routine and organ index of rats with blood deficiency induced by CTX and APH was analyzed to further explain the therapeutic effect of SPN on these two diseases. Finally, the regulatory effect of SPN on the key active target of allotherapy for AD and anemia was verified by PCR. RESULTS After the screening, 17 active components and 92 action targets of SPN were obtained. The degree values of components and the first 15 targets are NFKB1, IL10, PIK3CA, PTGS2, SRC, ECFR, CASP3, MTOR, IL1B, ESR1, AKT1, HSP90AA1, IL6, TNF, and Toll-like receptor, it is mainly related to inflammatory response, immune regulation and antioxidation. SPN improved the climbing ability, olfactory memory ability, and Aβ42 content in the brain of Aβ flies, and significantly reduced the expression of TNF and Toll-like receptor in the brain after treatment. SPN can significantly improve the blood routine index and organ index of anemia rats, and also significantly reduce the expression of TNF and Toll-like receptor in the brain after treatment. CONCLUSION SPN can regulate the expression of TNF and Toll-like receptor to achieve the same treatment of AD and anemia.
Collapse
Affiliation(s)
- Liu Mengnan
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ye Xianwen
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhang Shuyan
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Cheng Shuiqing
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xu Wenjuan
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wang Xuan
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wen Jia
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Li Chunshuai
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yang Linlin
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xu Xinfang
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Li Xiangri
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
6
|
Andrade-Talavera Y, Fisahn A, Rodríguez-Moreno A. Timing to be precise? An overview of spike timing-dependent plasticity, brain rhythmicity, and glial cells interplay within neuronal circuits. Mol Psychiatry 2023; 28:2177-2188. [PMID: 36991134 PMCID: PMC10611582 DOI: 10.1038/s41380-023-02027-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/31/2023]
Abstract
In the mammalian brain information processing and storage rely on the complex coding and decoding events performed by neuronal networks. These actions are based on the computational ability of neurons and their functional engagement in neuronal assemblies where precise timing of action potential firing is crucial. Neuronal circuits manage a myriad of spatially and temporally overlapping inputs to compute specific outputs that are proposed to underly memory traces formation, sensory perception, and cognitive behaviors. Spike-timing-dependent plasticity (STDP) and electrical brain rhythms are suggested to underlie such functions while the physiological evidence of assembly structures and mechanisms driving both processes continues to be scarce. Here, we review foundational and current evidence on timing precision and cooperative neuronal electrical activity driving STDP and brain rhythms, their interactions, and the emerging role of glial cells in such processes. We also provide an overview of their cognitive correlates and discuss current limitations and controversies, future perspectives on experimental approaches, and their application in humans.
Collapse
Affiliation(s)
- Yuniesky Andrade-Talavera
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, ES-41013, Seville, Spain.
| | - André Fisahn
- Department of Biosciences and Nutrition and Department of Women's and Children's Health, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Antonio Rodríguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, ES-41013, Seville, Spain.
| |
Collapse
|
7
|
Victorino DB, Faber J, Pinheiro DJLL, Scorza FA, Almeida ACG, Costa ACS, Scorza CA. Toward the Identification of Neurophysiological Biomarkers for Alzheimer's Disease in Down Syndrome: A Potential Role for Cross-Frequency Phase-Amplitude Coupling Analysis. Aging Dis 2023; 14:428-449. [PMID: 37008053 PMCID: PMC10017148 DOI: 10.14336/ad.2022.0906] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
Cross-frequency coupling (CFC) mechanisms play a central role in brain activity. Pathophysiological mechanisms leading to many brain disorders, such as Alzheimer's disease (AD), may produce unique patterns of brain activity detectable by electroencephalography (EEG). Identifying biomarkers for AD diagnosis is also an ambition among research teams working in Down syndrome (DS), given the increased susceptibility of people with DS to develop early-onset AD (DS-AD). Here, we review accumulating evidence that altered theta-gamma phase-amplitude coupling (PAC) may be one of the earliest EEG signatures of AD, and therefore may serve as an adjuvant tool for detecting cognitive decline in DS-AD. We suggest that this field of research could potentially provide clues to the biophysical mechanisms underlying cognitive dysfunction in DS-AD and generate opportunities for identifying EEG-based biomarkers with diagnostic and prognostic utility in DS-AD.
Collapse
Affiliation(s)
- Daniella B Victorino
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Federal University of São Paulo / Paulista Medical School, São Paulo, SP, Brazil.
| | - Jean Faber
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Federal University of São Paulo / Paulista Medical School, São Paulo, SP, Brazil.
| | - Daniel J. L. L Pinheiro
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Federal University of São Paulo / Paulista Medical School, São Paulo, SP, Brazil.
| | - Fulvio A Scorza
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Federal University of São Paulo / Paulista Medical School, São Paulo, SP, Brazil.
| | - Antônio C. G Almeida
- Department of Biosystems Engineering, Federal University of São João Del Rei, Minas Gerais, MG, Brazil.
| | - Alberto C. S Costa
- Division of Psychiatry, Case Western Reserve University, Cleveland, OH, United States.
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, United States.
| | - Carla A Scorza
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Federal University of São Paulo / Paulista Medical School, São Paulo, SP, Brazil.
| |
Collapse
|
8
|
Effects of repetitive paired associative stimulation on brain plasticity and working memory in Alzheimer's disease: a pilot randomized double-blind-controlled trial. Int Psychogeriatr 2023; 35:143-155. [PMID: 33190659 DOI: 10.1017/s1041610220003518] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
DESIGN Pilot randomized double-blind-controlled trial of repetitive paired associative stimulation (rPAS), a paradigm that combines transcranial magnetic stimulation (TMS) of the dorsolateral prefrontal cortex (DLPFC) with peripheral median nerve stimulation. OBJECTIVES To study the impact of rPAS on DLPFC plasticity and working memory performance in Alzheimer's disease (AD). METHODS Thirty-two patients with AD (females = 16), mean (SD) age = 76.4 (6.3) years were randomized 1:1 to receive a 2-week (5 days/week) course of active or control rPAS. DLPFC plasticity was assessed using single session PAS combined with electroencephalography (EEG) at baseline and on days 1, 7, and 14 post-rPAS. Working memory and theta-gamma coupling were assessed at the same time points using the N-back task and EEG. RESULTS There were no significant differences between the active and control rPAS groups on DLPFC plasticity or working memory performance after the rPAS intervention. There were significant main effects of time on DLPFC plasticity, working memory, and theta-gamma coupling, only for the active rPAS group. Further, on post hoc within-group analyses done to generate hypotheses for future research, as compared to baseline, only the rPAS group improved on post-rPAS day 1 on all three indices. Finally, there was a positive correlation between working memory performance and theta-gamma coupling. CONCLUSIONS This study did not show a beneficial effect of rPAS for DLPFC plasticity or working memory in AD. However, post hoc analyses showed promising results favoring rPAS and supporting further research on this topic. (Clinicaltrials.gov-NCT01847586).
Collapse
|
9
|
Xing XR, Luo LP, Li YL, Guo YW, Wang J, Qin J. Role of activating the nuclear factor kappa B signaling pathway in the development of septic cardiomyopathy in rats with sepsis. Technol Health Care 2023; 31:1671-1681. [PMID: 37092189 DOI: 10.3233/thc-220471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
BACKGROUND Despite advances in the treatment of sepsis over time, this condition remains both a serious threat and a cause of death among critical patients. OBJECTIVE This study aimed to explore the role of the nuclear factor kappa B (NF-κB) signaling pathway in the development of septic cardiomyopathy in rats with sepsis. METHOD A total of 32 Sprague Dawley rats were randomized into a sham operation group and three groups with sepsis, which were tested at one of the following time-points: 3, 6, or 12 h. Each group included eight rats. Sepsis models were created via cecal ligation and puncture procedures. All the study rats had the following cardiac parameters and serum levels measured at either 3, 6, or 12 h after the operation (according to their assigned group): heart rate, left ventricular systolic pressure (LVSP), maximum rate of left ventricular pressure rise (+dP/dtmax) and fall (-dP/dtmax), tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), interleukin 6 (IL-6), and cardiac troponin I (cTnI). The myocardium of the left ventricle was collected and subjected to hematoxylin and eosin staining to observe the changes in pathological morphology. The expression of toll-like receptor 4 (TLR4) and NF-κB in the myocardium were detected by western blot analysis. RESULTS Compared with the sham operation group, the rats in the sepsis subgroups exhibited significantly lower values for all the cardiac parameters measured, including the heart rate (sham operation group = 386.63 ± 18.62 beats per minute [bpm], sepsis 3-h group = 368.38 ± 12.55 bpm, sepsis 6-h group = 341.75 ± 17.05 bpm, sepsis 12-h group = 302.13 ± 21.15 bpm), LVSP (sham operation group = 125.50 ± 11.45 mmHg, sepsis 3-h group = 110.88 ± 7.51 mmHg, sepsis 6-h group = 100.00 ± 15.06 mmHg, sepsis 12-h group = 91.38 ± 14.73 mmHg), +dp/dtmax (sham operation group = 7137.50 ± 276.44 mm Hg/sec, sepsis 3-h group = 5745.00 ± 346.16 mm Hg/sec, sepsis 6-h group = 4360.00 ± 312.04 mm Hg/sec, sepsis 12-h group = 2871.25 ± 443.99 mm Hg/sec), and -dp/dtmax (sham operation group = 6363.75 ± 123.86 mm Hg/sec, sepsis 3-h group = 6018.75 ± 173.49 mm Hg/sec, sepsis 6-h group = 5350.00 ± 337.89 mm Hg/sec, sepsis 12-h group = 4085.00 ± 326.76 mm Hg/sec). They also displayed significantly higher levels of serum cytokines, including TNF-α (sham operation group = 14.72 ± 2.90 pg/mL, sepsis 3-h group = 34.90 ± 4.79 pg/mL, sepsis 6-h group = 24.91 ± 2.57 pg/mL, sepsis 12-h group 22.06 ± 3.11 pg/mL), IL-1β (sham operation group = 42.25 ± 16.91, 3-h group = 112.25 ± 13.77, sepsis 6-h group = 207.90 ± 22.64, sepsis 12-h group = 157.18 ± 23.06), IL-6 (sham operation group = 39.89 ± 5.74, sepsis 3-h group = 78.27 ± 9.31, sepsis 6-h group = 123.75 ± 13.11, sepsis 12-h group = 93.21 ± 8.96), and cTnI (sham operation group = 0.07 ± 0.03 ng/mL, sepsis 3-h group = 0.18 ± 0.06 ng/mL, sepsis 6-h group = 0.67 ± 0.19 ng/mL, sepsis = 12-h group 1.28 ± 0.10 ng/mL). The rats in the sepsis groups exhibited pathological changes in the myocardium, which deteriorated gradually over time. The animals in all the sepsis groups exhibited significantly higher levels of TLR4 and NF-κB protein expression compared with the sham group. The TLR4 protein expressions were 0.376 in the sham operation group, 0.534 in the sepsis 3-h group, 0.551 in the sepsis 6-h group, and 0.719 in the sepsis 12-h group. The NF-κB protein expressions were 0.299 in the sham operation group, 0.488 in the sepsis 3-h group, 0.516 in the sepsis 6-h group, and 0.636 in the sepsis 12-h group. CONCLUSION Sepsis can lead to myocardial injury and cardiac dysfunction. This may be related to the activation of the NF-κB intracellular signal transduction pathway and the release of inflammatory factors as a result of lipopolysaccharides acting on TLR4 during the onset of sepsis.
Collapse
|
10
|
van den Berg M, Toen D, Verhoye M, Keliris GA. Alterations in theta-gamma coupling and sharp wave-ripple, signs of prodromal hippocampal network impairment in the TgF344-AD rat model. Front Aging Neurosci 2023; 15:1081058. [PMID: 37032829 PMCID: PMC10075364 DOI: 10.3389/fnagi.2023.1081058] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disorder caused by the accumulation of toxic proteins, amyloid-beta (Aβ) and tau, which eventually leads to dementia. Disease-modifying therapies are still lacking, due to incomplete insights into the neuropathological mechanisms of AD. Synaptic dysfunction is known to occur before cognitive symptoms become apparent and recent studies have demonstrated that imbalanced synaptic signaling drives the progression of AD, suggesting that early synaptic dysfunction could be an interesting therapeutic target. Synaptic dysfunction results in altered oscillatory activity, which can be detected with electroencephalography and electrophysiological recordings. However, the majority of these studies have been performed at advanced stages of AD, when extensive damage and cognitive symptoms are already present. The current study aimed to investigate if the hippocampal oscillatory activity is altered at pre-plaque stages of AD. The rats received stereotactic surgery to implant a laminar electrode in the CA1 layer of the right hippocampus. Electrophysiological recordings during two consecutive days in an open field were performed in 4-5-month-old TgF344-AD rats when increased concentrations of soluble Aβ species were observed in the brain, in the absence of Aβ-plaques. We observed a decreased power of high theta oscillations in TgF344-AD rats compared to wild-type littermates. Sharp wave-ripple (SWR) analysis revealed an increased SWR power and a decreased duration of SWR during quiet wake in TgF344-AD rats. The alterations in properties of SWR and the increased power of fast oscillations are suggestive of neuronal hyperexcitability, as has been demonstrated to occur during presymptomatic stages of AD. In addition, decreased strength of theta-gamma coupling, an important neuronal correlate of memory encoding, was observed in the TgF344-AD rats. Theta-gamma phase amplitude coupling has been associated with memory encoding and the execution of cognitive functions. Studies have demonstrated that mild cognitive impairment patients display decreased coupling strength, similar to what is described here. The current study demonstrates altered hippocampal network activity occurring at pre-plaque stages of AD and provides insights into prodromal network dysfunction in AD. The alterations observed could aid in the detection of AD during presymptomatic stages.
Collapse
Affiliation(s)
- Monica van den Berg
- Bio-Imaging Lab, University of Antwerp, Wilrijk, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
- *Correspondence: Monica van den Berg, ; Georgios A. Keliris,
| | - Daniëlle Toen
- Bio-Imaging Lab, University of Antwerp, Wilrijk, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Wilrijk, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Georgios A. Keliris
- Bio-Imaging Lab, University of Antwerp, Wilrijk, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Institute of Computer Science, Foundation for Research and Technology – Hellas, Heraklion, Crete, Greece
- *Correspondence: Monica van den Berg, ; Georgios A. Keliris,
| |
Collapse
|
11
|
Vidal B, Pereira M, Valdebenito M, Vidal L, Mouthon F, Zimmer L, Charvériat M, Droguerre M. Pharmaco-fUS in cognitive impairment: Lessons from a preclinical model. J Psychopharmacol 2022; 36:1273-1279. [PMID: 36205074 DOI: 10.1177/02698811221128963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND There is an urgent need to understand and reverse cognitive impairment. The lack of appropriate animal models combined with the limited knowledge of pathophysiological mechanisms makes the development of new cognition-enhancing drugs complex. Scopolamine is a pharmacologic agent which impairs cognition and functional imaging in a wide range of animal species, similarly to what is seen in cognitive impairment in humans. METHODS In this study, using a functional ultrasound (fUS) neuroimaging technique, we monitored the impact of donepezil (DPZ), a potent acetylcholinesterase inhibitor and first-line treatment in patients with mild to moderate Alzheimer's disease, in a scopolamine-induced mouse model. RESULTS We demonstrated that despite its low impact on the cerebral blood volume (CBV) signal, scopolamine injection produced an overall decrease in functional connectivity between various brain areas. In addition, we revealed that DPZ induced a strong decrease in CBV signal without causing a difference in functional connectivity. CONCLUSION Finally, our work highlighted that DPZ counteracted the impact of scopolamine on functional connectivity changes and confirmed the interest of using pharmaco-fUS imaging on cognitive disorders, both in frequent and rare neurological disorders.
Collapse
Affiliation(s)
- Benjamin Vidal
- Theranexus, Lyon, France.,Lyon Neuroscience Research Center, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5292, INSERM U1028, Lyon, France
| | - Mickaël Pereira
- Lyon Neuroscience Research Center, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5292, INSERM U1028, Lyon, France
| | | | - Louis Vidal
- Lyon Neuroscience Research Center, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5292, INSERM U1028, Lyon, France
| | | | - Luc Zimmer
- Lyon Neuroscience Research Center, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5292, INSERM U1028, Lyon, France.,CERMEP-imaging platform, Bron, France.,Hospices Civils de Lyon, Lyon, France
| | | | | |
Collapse
|
12
|
Shing N, Walker MC, Chang P. The Role of Aberrant Neural Oscillations in the Hippocampal-Medial Prefrontal Cortex Circuit in Neurodevelopmental and Neurological Disorders. Neurobiol Learn Mem 2022; 195:107683. [PMID: 36174886 DOI: 10.1016/j.nlm.2022.107683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022]
Abstract
The hippocampus (HPC) and medial prefrontal cortex (mPFC) have well-established roles in cognition, emotion, and sensory processing. In recent years, interests have shifted towards developing a deeper understanding of the mechanisms underlying interactions between the HPC and mPFC in achieving these functions. Considerable research supports the idea that synchronized activity between the HPC and the mPFC is a general mechanism by which brain functions are regulated. In this review, we summarize current knowledge on the hippocampal-medial prefrontal cortex (HPC-mPFC) circuit in normal brain function with a focus on oscillations and highlight several neurodevelopmental and neurological disorders associated with aberrant HPC-mPFC circuitry. We further discuss oscillatory dynamics across the HPC-mPFC circuit as potentially useful biomarkers to assess interventions for neurodevelopmental and neurological disorders. Finally, advancements in brain stimulation, gene therapy and pharmacotherapy are explored as promising therapies for disorders with aberrant HPC-mPFC circuit dynamics.
Collapse
Affiliation(s)
- Nathanael Shing
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, WC1N 3BG, UK; Department of Medicine, University of Central Lancashire, Preston, PR17BH, UK
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Pishan Chang
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, WC1E 6BT.
| |
Collapse
|
13
|
Bourdès V, Dogterom P, Aleman A, Parmantier P, Colas D, Lemarchant S, Marie S, Chou T, Abd-Elaziz K, Godfrin Y. Safety, Tolerability, Pharmacokinetics and Initial Pharmacodynamics of a Subcommissural Organ-Spondin-Derived Peptide: A Randomized, Placebo-Controlled, Double-Blind, Single Ascending Dose First-in-Human Study. Neurol Ther 2022; 11:1353-1374. [PMID: 35779189 PMCID: PMC9338184 DOI: 10.1007/s40120-022-00380-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/08/2022] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION This randomized, double-blind, placebo-controlled study in healthy volunteers assessed the safety, tolerability, and pharmacokinetics of single ascending doses of intravenously administered NX210-a linear peptide derived from subcommissural organ-spondin-and explored the effects on blood/urine biomarkers and cerebral activity. METHODS Participants in five cohorts (n = 8 each) were randomized to receive a single intravenous dose of NX210 (n = 6 each) (0.4, 1.25, 2.5, 5, and 10 mg/kg) or placebo (n = 2 each); in total, 10 and 29 participants received placebo and NX210, respectively. Blood samples were collected for pharmacokinetics within 180 min post dosing. Plasma and urine were collected from participants (cohorts: 2.5, 5, and 10 mg/kg) for biomarker analysis and electroencephalography (EEG) recordings within 48 h post dosing. Safety/tolerability and pharmacokinetic data were assessed before ascending to the next dose. RESULTS The study included 39 participants. All dosages were safe and well tolerated. All treatment-emergent adverse events (n = 17) were of mild severity and resolved spontaneously (except one with unknown outcome). Twelve treatment-emergent adverse events (70.6%) were deemed drug related; seven of those (58.3%) concerned nervous system disorders (dizziness, headache, and somnolence). The pharmacokinetic analysis indicated a short half-life in plasma (6-20 min), high apparent volume of distribution (1870-4120 L), and rapid clearance (7440-16,400 L/h). In plasma, tryptophan and homocysteine showed dose-related increase and decrease, respectively. No drug dose effect was found for the glutamate or glutamine plasma biomarkers. Nevertheless, decreased blood glutamate and increased glutamine were observed in participants treated with NX210 versus placebo. EEG showed a statistically significant decrease in beta and gamma bands and a dose-dependent increasing trend in alpha bands. Pharmacodynamics effects were sustained for several hours (plasma) or 48 h (urine and EEG). CONCLUSION NX210 is safe and well tolerated and may exert beneficial effects on the central nervous system, particularly in terms of cognitive processing.
Collapse
Affiliation(s)
| | | | - André Aleman
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | - Yann Godfrin
- Axoltis Pharma, 60 Avenue Rockefeller, 69008, Lyon, France
- Godfrin Life-Sciences, Caluire-et-Cuire, France
| |
Collapse
|
14
|
Ratner MH, Farb DH. Probing the Neural Circuitry Targets of Neurotoxicants In Vivo Through High Density Silicon Probe Brain Implants. FRONTIERS IN TOXICOLOGY 2022; 4:836427. [PMID: 35548683 PMCID: PMC9081674 DOI: 10.3389/ftox.2022.836427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/22/2022] [Indexed: 12/24/2022] Open
Abstract
Adverse effects of drugs on the human nervous system are rarely possible to anticipate based on preclinical neurotoxicity data, thus propagating the centuries long single most important obstacle to drug discovery and development for disorders of the nervous system. An emerging body of evidence indicates that in vivo electrophysiology using chronically implanted high-density electrodes (ciHDE) in freely moving animals is a rigorous method with enhanced potential for use in translational research. In particular, the structure and function of the hippocampal trisynaptic circuit (HTC) is conserved from rodents to primates, including Homo sapiens, suggesting that the effects of therapeutic agents and other potential neurologically active agents, whether beneficial or adverse, are likely to translate across species when interrogated using a conserved neural circuitry platform. This review explores science advances in the rapidly moving field of in vivo ciHDE in animal models of learning and memory. For this reason we focus on the HTC, where substantial research has investigated neural circuitry level responses and specific behaviors that reflect memory permitting a test of the ground truth validity of the findings. Examples of changes in neural network activity induced by endogenous neurotoxicants associated with neurodegenerative diseases, as well as exogenous therapeutics, drugs, and neurotoxicants are presented. Several illustrative examples of relevant findings that involve longer range neural circuitry outside of the HTC are discussed. Lastly, the limitations of in vivo ciHDE as applied to preclinical neurotoxicology are discussed with a view toward leveraging circuitry level actions to enhance our ability to project the specificity of in vitro target engagement with the desired psychopharmacological or neurological outcome. At the same time, the goal of reducing or eliminating significant neurotoxic adverse events in human is the desired endpoint. We believe that this approach will lead to enhanced discovery of high value neuroactive therapeutics that target neural circuitry domains as their primary mechanism of action, thus enhancing their ultimate contribution toward discovery of precision therapeutics.
Collapse
Affiliation(s)
- Marcia H. Ratner
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- *Correspondence: Marcia H. Ratner,
| | - David H. Farb
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
| |
Collapse
|
15
|
Cope ZA, Murai T, Sukoff Rizzo SJ. Emerging Electroencephalographic Biomarkers to Improve Preclinical to Clinical Translation in Alzheimer's Disease. Front Aging Neurosci 2022; 14:805063. [PMID: 35250541 PMCID: PMC8891809 DOI: 10.3389/fnagi.2022.805063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/26/2022] [Indexed: 11/18/2022] Open
Abstract
Continually emerging data indicate that sub-clinical, non-convulsive epileptiform activity is not only prevalent in Alzheimer's disease (AD) but is detectable early in the course of the disease and predicts cognitive decline in both humans and animal models. Epileptiform activity and other electroencephalographic (EEG) measures may hold powerful, untapped potential to improve the translational validity of AD-related biomarkers in model animals ranging from mice, to rats, and non-human primates. In this review, we will focus on studies of epileptiform activity, EEG slowing, and theta-gamma coupling in preclinical models, with particular focus on its role in cognitive decline and relevance to AD. Here, each biomarker is described in the context of the contemporary literature and recent findings in AD relevant animal models are discussed.
Collapse
Affiliation(s)
| | | | - Stacey J. Sukoff Rizzo
- Aging Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
16
|
Broussard JI, Redell JB, Maynard ME, Zhao J, Moore A, Mills RW, Hood KN, Underwood E, Roysam B, Dash PK. Impaired Experience-Dependent Refinement of Place Cells in a Rat Model of Alzheimer's Disease. J Alzheimers Dis 2022; 86:1907-1916. [PMID: 35253742 PMCID: PMC9850819 DOI: 10.3233/jad-215023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Hippocampal place cells play an integral role in generating spatial maps. Impaired spatial memory is a characteristic pathology of Alzheimer's disease (AD), yet it remains unclear how AD influences the properties of hippocampal place cells. OBJECTIVE To record electrophysiological activity in hippocampal CA1 neurons in freely-moving 18-month-old male TgF344-AD and age-matched wild-type (WT) littermates to examine place cell properties. METHODS We implanted 32-channel electrode arrays into the CA1 subfield of 18-month-old male WT and TgF344-AD (n = 6/group) rats. Ten days after implantation, single unit activity in an open field arena was recorded across days. The spatial information content, in-field firing rate, and stability of each place cell was compared across groups. Pathology was assessed by immunohistochemical staining, and a deep neural network approach was used to count cell profiles. RESULTS Aged TgF344-AD rats exhibited hippocampal amyloid-β deposition, and a significant increase in Iba1 immunoreactivity and microglia cell counts. Place cells from WT and TgF344-AD rat showed equivalent spatial information, in-field firing rates, and place field stability when initially exposed to the arena. However, by day 3, the place cells in aged WT rats showed characteristic spatial tuning as evidenced by higher spatial information content, stability, and in-field firing rates, an effect not seen in TgF344-AD rats. CONCLUSION These findings support the notion that altered electrophysiological properties of place cells may contribute to the learning and memory deficits observed in AD.
Collapse
Affiliation(s)
- John I. Broussard
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas 77030,To whom correspondence should be addressed: JI Broussard, Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, 6431 Fannin, St., Suite 7.011, Houston, TX 77030, Phone: (713) 500-5545,
| | - John B. Redell
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas 77030
| | - Mark E. Maynard
- Department of Electrical and Computer Engineering, Cullen College of Engineering, University of Houston, Houston, TX, 77204, USA
| | - Jing Zhao
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas 77030
| | - Anthony Moore
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas 77030
| | - Rachel W. Mills
- Department of Electrical and Computer Engineering, Cullen College of Engineering, University of Houston, Houston, TX, 77204, USA
| | - Kimberly N. Hood
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas 77030
| | - Erica Underwood
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas 77030
| | - Badrinath Roysam
- Department of Electrical and Computer Engineering, Cullen College of Engineering, University of Houston, Houston, TX, 77204, USA
| | - Pramod K. Dash
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas 77030
| |
Collapse
|
17
|
Andrade-Talavera Y, Rodríguez-Moreno A. Synaptic Plasticity and Oscillations in Alzheimer's Disease: A Complex Picture of a Multifaceted Disease. Front Mol Neurosci 2021; 14:696476. [PMID: 34220451 PMCID: PMC8248350 DOI: 10.3389/fnmol.2021.696476] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
Brain plasticity is widely accepted as the core neurophysiological basis of memory and is generally defined by activity-dependent changes in synaptic efficacy, such as long-term potentiation (LTP) and long-term depression (LTD). By using diverse induction protocols like high-frequency stimulation (HFS) or spike-timing dependent plasticity (STDP), such crucial cognition-relevant plastic processes are shown to be impaired in Alzheimer’s disease (AD). In AD, the severity of the cognitive impairment also correlates with the level of disruption of neuronal network dynamics. Currently under debate, the named amyloid hypothesis points to amyloid-beta peptide 1–42 (Aβ42) as the trigger of the functional deviations underlying cognitive impairment in AD. However, there are missing functional mechanistic data that comprehensively dissect the early subtle changes that lead to synaptic dysfunction and subsequent neuronal network collapse in AD. The convergence of the study of both, mechanisms underlying brain plasticity, and neuronal network dynamics, may represent the most efficient approach to address the early triggering and aberrant mechanisms underlying the progressive clinical cognitive impairment in AD. Here we comment on the emerging integrative roles of brain plasticity and network oscillations in AD research and on the future perspectives of research in this field.
Collapse
Affiliation(s)
- Yuniesky Andrade-Talavera
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Seville, Spain
| | - Antonio Rodríguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
18
|
Jin N, Babiloni C, Drinkenburg WH, Hajós M, Nygaard HB, Tanila H. Recommendations for Preclinical Testing of Treatments Against Alzheimer's Disease-Related Epileptiform Spikes in Transgenic Rodent Models. J Alzheimers Dis 2021; 88:849-865. [PMID: 34092642 DOI: 10.3233/jad-210209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent evidence suggests that about 30%of patients with mild to moderate Alzheimer's disease (AD) without a known diagnosis of epilepsy may display epileptiform spikes during electroencephalographic (EEG) recordings. These abnormal discharges occur predominantly during sleep and may be associated with accelerated disease progression. Subclinical spikes may represent a relevant target for clinical drug interventions, and there is a clear unmet need for preclinical testing of novel disease modifying agents in suitable animal models. Transgenic rodent models of AD pathology exhibit various forms of epileptiform EEG activity related to the abnormal levels of amyloid species in the brain. Among them, large-amplitude cortical and hippocampal EEG spikes in mouse and rat AD models may be reminiscent of the subclinical epileptiform EEG spikes recorded in some AD patients. This article reports the recommendations of a multidisciplinary panel of experts on optimal EEG markers and experimental designs to measure and report epileptiform activities and their response to symptomatic and disease-modifying drugs in transgenic AD model rodents. These recommendations may harmonize future preclinical EEG studies in the drug discovery research and may increase the comparability of experimental outcomes and their translational clinical value.
Collapse
Affiliation(s)
- Nanxiang Jin
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy.,Hospital San Raffaele Cassino, Cassino (FR), Italy
| | - Wilhelmus H Drinkenburg
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium.,Groningen Institute for Evolutionary Life Sciences, University of Groningen, The Netherlands
| | - Mihály Hajós
- Cognito Therapeutics, Cambridge, MA, USA.,Yale University School of Medicine, New Haven, CT, USA
| | - Haakon B Nygaard
- Division of Neurology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Heikki Tanila
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
19
|
Isla AG, Balleza-Tapia H, Fisahn A. Efficacy of preclinical pharmacological interventions against alterations of neuronal network oscillations in Alzheimer's disease: A systematic review. Exp Neurol 2021; 343:113743. [PMID: 34000250 DOI: 10.1016/j.expneurol.2021.113743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/13/2021] [Accepted: 05/04/2021] [Indexed: 12/29/2022]
Abstract
Despite the development of multiple pharmacological approaches over the years aimed at treating Alzheimer's Disease (AD) only very few have been approved for clinical use in patients. To date there still exists no disease-modifying treatment that could prevent or rescue the cognitive impairment, particularly of memory aquisition, that is characteristic of AD. One of the possibilities for this state of affairs might be that the majority of drug discovery efforts focuses on outcome measures of decreased neuropathological biomarkers characteristic of AD, without taking into acount neuronal processes essential to the generation and maintenance of memory processes. Particularly, the capacity of the brain to generate theta (θ) and gamma (γ) oscillatory activity has been strongly correlated to memory performance. Using a systematic review approach, we synthesize the existing evidence in the literature on pharmacological interventions that enhance neuronal theta (θ) and/or gamma (γ) oscillations in non-pathological animal models and in AD animal models. Additionally, we synthesize the main outcomes and neurochemical systems targeted. We propose that functional biomarkers such as cognition-relevant neuronal network oscillations should be used as outcome measures during the process of research and development of novel drugs against cognitive impairment in AD.
Collapse
Affiliation(s)
- Arturo G Isla
- Neuronal Oscillations Laboratory, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Akademiska Stråket 1, J10:30, 17164 Solna, Stockholm, Sweden
| | - Hugo Balleza-Tapia
- Neuronal Oscillations Laboratory, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Akademiska Stråket 1, J10:30, 17164 Solna, Stockholm, Sweden
| | - André Fisahn
- Neuronal Oscillations Laboratory, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Akademiska Stråket 1, J10:30, 17164 Solna, Stockholm, Sweden.
| |
Collapse
|
20
|
Chaney AM, Lopez-Picon FR, Serrière S, Wang R, Bochicchio D, Webb SD, Vandesquille M, Harte MK, Georgiadou C, Lawrence C, Busson J, Vercouillie J, Tauber C, Buron F, Routier S, Reekie T, Snellman A, Kassiou M, Rokka J, Davies KE, Rinne JO, Salih DA, Edwards FA, Orton LD, Williams SR, Chalon S, Boutin H. Prodromal neuroinflammatory, cholinergic and metabolite dysfunction detected by PET and MRS in the TgF344-AD transgenic rat model of AD: a collaborative multi-modal study. Am J Cancer Res 2021; 11:6644-6667. [PMID: 34093845 PMCID: PMC8171096 DOI: 10.7150/thno.56059] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/15/2021] [Indexed: 12/25/2022] Open
Abstract
Mouse models of Alzheimer's disease (AD) are valuable but do not fully recapitulate human AD pathology, such as spontaneous Tau fibril accumulation and neuronal loss, necessitating the development of new AD models. The transgenic (TG) TgF344-AD rat has been reported to develop age-dependent AD features including neuronal loss and neurofibrillary tangles, despite only expressing APP and PSEN1 mutations, suggesting an improved modelling of AD hallmarks. Alterations in neuronal networks as well as learning performance and cognition tasks have been reported in this model, but none have combined a longitudinal, multimodal approach across multiple centres, which mimics the approaches commonly taken in clinical studies. We therefore aimed to further characterise the progression of AD-like pathology and cognition in the TgF344-AD rat from young-adults (6 months (m)) to mid- (12 m) and advanced-stage (18 m, 25 m) of the disease. Methods: TgF344-AD rats and wild-type (WT) littermates were imaged at 6 m, 12 m and 18 m with [18F]DPA-714 (TSPO, neuroinflammation), [18F]Florbetaben (Aβ) and [18F]ASEM (α7-nicotinic acetylcholine receptor) and with magnetic resonance spectroscopy (MRS) and with (S)-[18F]THK5117 (Tau) at 15 and 25 m. Behaviour tests were also performed at 6 m, 12 m and 18 m. Immunohistochemistry (CD11b, GFAP, Aβ, NeuN, NeuroChrom) and Tau (S)-[18F]THK5117 autoradiography, immunohistochemistry and Western blot were also performed. Results: [18F]DPA-714 positron emission tomography (PET) showed an increase in neuroinflammation in TG vs wildtype animals from 12 m in the hippocampus (+11%), and at the advanced-stage AD in the hippocampus (+12%), the thalamus (+11%) and frontal cortex (+14%). This finding coincided with strong increases in brain microgliosis (CD11b) and astrogliosis (GFAP) at these time-points as assessed by immunohistochemistry. In vivo [18F]ASEM PET revealed an age-dependent increase uptake in the striatum and pallidum/nucleus basalis of Meynert in WT only, similar to that observed with this tracer in humans, resulting in TG being significantly lower than WT by 18 m. In vivo [18F]Florbetaben PET scanning detected Aβ accumulation at 18 m, and (S)-[18F]THK5117 PET revealed subsequent Tau accumulation at 25m in hippocampal and cortical regions. Aβ plaques were low but detectable by immunohistochemistry from 6 m, increasing further at 12 and 18 m with Tau-positive neurons adjacent to Aβ plaques at 18 m. NeuroChrom (a pan neuronal marker) immunohistochemistry revealed a loss of neuronal staining at the Aβ plaques locations, while NeuN labelling revealed an age-dependent decrease in hippocampal neuron number in both genotypes. Behavioural assessment using the novel object recognition task revealed that both WT & TgF344-AD animals discriminated the novel from familiar object at 3 m and 6 m of age. However, low levels of exploration observed in both genotypes at later time-points resulted in neither genotype successfully completing the task. Deficits in social interaction were only observed at 3 m in the TgF344-AD animals. By in vivo MRS, we showed a decrease in neuronal marker N-acetyl-aspartate in the hippocampus at 18 m (-18% vs age-matched WT, and -31% vs 6 m TG) and increased Taurine in the cortex of TG (+35% vs age-matched WT, and +55% vs 6 m TG). Conclusions: This multi-centre multi-modal study demonstrates, for the first time, alterations in brain metabolites, cholinergic receptors and neuroinflammation in vivo in this model, validated by robust ex vivo approaches. Our data confirm that, unlike mouse models, the TgF344-AD express Tau pathology that can be detected via PET, albeit later than by ex vivo techniques, and is a useful model to assess and longitudinally monitor early neurotransmission dysfunction and neuroinflammation in AD.
Collapse
|
21
|
Sleep/Wake Behavior and EEG Signatures of the TgF344-AD Rat Model at the Prodromal Stage. Int J Mol Sci 2020; 21:ijms21239290. [PMID: 33291462 PMCID: PMC7730237 DOI: 10.3390/ijms21239290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 12/27/2022] Open
Abstract
Transgenic modification of the two most common genes (APPsw, PS1ΔE9) related to familial Alzheimer's disease (AD) in rats has produced a rodent model that develops pathognomonic signs of AD without genetic tau-protein modification. We used 17-month-old AD rats (n = 8) and age-matched controls (AC, n = 7) to evaluate differences in sleep behavior and EEG features during wakefulness (WAKE), non-rapid eye movement sleep (NREM), and rapid eye movement sleep (REM) over 24-h EEG recording (12:12h dark-light cycle). We discovered that AD rats had more sleep-wake transitions and an increased probability of shorter REM and NREM bouts. AD rats also expressed a more uniform distribution of the relative spectral power. Through analysis of information content in the EEG using entropy of difference, AD animals demonstrated less EEG information during WAKE, but more information during NREM. This seems to indicate a limited range of changes in EEG activity that could be caused by an AD-induced change in inhibitory network function as reflected by increased GABAAR-β2 expression but no increase in GAD-67 in AD animals. In conclusion, this transgenic rat model of Alzheimer's disease demonstrates less obvious EEG features of WAKE during wakefulness and less canonical features of sleep during sleep.
Collapse
|
22
|
Jin N, Ziyatdinova S, Gureviciene I, Tanila H. Response of spike-wave discharges in aged APP/PS1 Alzheimer model mice to antiepileptic, metabolic and cholinergic drugs. Sci Rep 2020; 10:11851. [PMID: 32678276 PMCID: PMC7366932 DOI: 10.1038/s41598-020-68845-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/02/2020] [Indexed: 01/19/2023] Open
Abstract
Epileptic nonconvulsive spike-wave discharges (SWDs) are commonly seen in amyloid plaque bearing transgenic mice but only rarely in their wild-type littermates. To shed light on their possible treatment options, we assessed the effect of drugs with variable and known mechanisms of action on the occurrence of SWDs in aged APPswe/PS1dE9 mice. The treatments included prototypic antiepileptic drugs (ethosuximide and levetiracetam), donepezil as the typical Alzheimer drug and atropine as an antagonistic effect, GABAB antagonist CGP-35348, and alternate energy substrates beta-hydroxybutyrate (BHB), pyruvate and lactate on the occurrence of SWDs in aged APPswe/PS1dE9 mice. All agents were administered by single intraperitoneal injections at doses earlier documented to be effective and response was assessed by recording 3 h of video-EEG. Atropine at 25 mg/kg significantly decreased SWD occurrence in all behavioral states, and also resulted in altered frequency composition of SWDs and general EEG slowing during sleep. Ethosuximide at 200 mg/kg and levetiracetam at 75 mg/kg effectively suppressed SWDs only during a period of mixed behavioral states, but levetiracetam also increased SWDs in sleep. BHB at 1 g/kg decreased SWDs in sleep, while both pyruvate and lactate at the same dose tended to increase SWD number and total duration. Unexpectantly, donepezil at 0.3 mg/kg CGP-35348 at 100 mg/kg had no effect on SWDs. These findings call for re-evaluation of some prevailing theories on neural circuit alternations that underlie SWD generation and show the utility of APP/PS1 mice for testing potential new treatments for nonconvulsive epileptic activity related to Alzheimer pathology.
Collapse
Affiliation(s)
- Nanxiang Jin
- A. I. Virtanen Institute, University of Eastern Finland, PO Box 1627, 70211, Kuopio, Finland.
| | - Sofya Ziyatdinova
- A. I. Virtanen Institute, University of Eastern Finland, PO Box 1627, 70211, Kuopio, Finland
| | - Irina Gureviciene
- A. I. Virtanen Institute, University of Eastern Finland, PO Box 1627, 70211, Kuopio, Finland
| | - Heikki Tanila
- A. I. Virtanen Institute, University of Eastern Finland, PO Box 1627, 70211, Kuopio, Finland
| |
Collapse
|
23
|
Li S, Selkoe DJ. A mechanistic hypothesis for the impairment of synaptic plasticity by soluble Aβ oligomers from Alzheimer's brain. J Neurochem 2020; 154:583-597. [PMID: 32180217 DOI: 10.1111/jnc.15007] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 12/18/2022]
Abstract
It is increasingly accepted that early cognitive impairment in Alzheimer's disease results in considerable part from synaptic dysfunction caused by the accumulation of a range of oligomeric assemblies of amyloid β-protein (Aβ). Most studies have used synthetic Aβ peptides to explore the mechanisms of memory deficits in rodent models, but recent work suggests that Aβ assemblies isolated from human (AD) brain tissue are far more potent and disease-relevant. Although reductionist experiments show Aβ oligomers to impair synaptic plasticity and neuronal viability, the responsible mechanisms are only partly understood. Glutamatergic receptors, GABAergic receptors, nicotinic receptors, insulin receptors, the cellular prion protein, inflammatory mediators, and diverse signaling pathways have all been suggested. Studies using AD brain-derived soluble Aβ oligomers suggest that only certain bioactive forms (principally small, diffusible oligomers) can disrupt synaptic plasticity, including by binding to plasma membranes and changing excitatory-inhibitory balance, perturbing mGluR, PrP, and other neuronal surface proteins, down-regulating glutamate transporters, causing glutamate spillover, and activating extrasynaptic GluN2B-containing NMDA receptors. We synthesize these emerging data into a mechanistic hypothesis for synaptic failure in Alzheimer's disease that can be modified as new knowledge is added and specific therapeutics are developed.
Collapse
Affiliation(s)
- Shaomin Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Peña-Ortega F. Brain Arrhythmias Induced by Amyloid Beta and Inflammation: Involvement in Alzheimer’s Disease and Other Inflammation-related Pathologies. Curr Alzheimer Res 2020; 16:1108-1131. [DOI: 10.2174/1567205017666191213162233] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 12/13/2022]
Abstract
A variety of neurological diseases, including Alzheimer’s disease (AD), involve amyloid beta (Aβ) accumulation and/or neuroinflammation, which can alter synaptic and neural circuit functions. Consequently, these pathological conditions induce changes in neural network rhythmic activity (brain arrhythmias), which affects many brain functions. Neural network rhythms are involved in information processing, storage and retrieval, which are essential for memory consolidation, executive functioning and sensory processing. Therefore, brain arrhythmias could have catastrophic effects on circuit function, underlying the symptoms of various neurological diseases. Moreover, brain arrhythmias can serve as biomarkers for a variety of brain diseases. The aim of this review is to provide evidence linking Aβ and inflammation to neural network dysfunction, focusing on alterations in brain rhythms and their impact on cognition and sensory processing. I reviewed the most common brain arrhythmias characterized in AD, in AD transgenic models and those induced by Aβ. In addition, I reviewed the modulations of brain rhythms in neuroinflammatory diseases and those induced by immunogens, interleukins and microglia. This review reveals that Aβ and inflammation produce a complex set of effects on neural network function, which are related to the induction of brain arrhythmias and hyperexcitability, both closely related to behavioral alterations. Understanding these brain arrhythmias can help to develop therapeutic strategies to halt or prevent these neural network alterations and treat not only the arrhythmias but also the symptoms of AD and other inflammation-related pathologies.
Collapse
Affiliation(s)
- Fernando Peña-Ortega
- Departamento de Neurobiologia del Desarrollo y Neurofisiologia, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Queretaro, Qro., 76230, Mexico
| |
Collapse
|
25
|
Wang Y, Song X, Liu D, Lou YX, Luo P, Zhu T, Wang Q, Chen N. IMM-H004 reduced okadaic acid-induced neurotoxicity by inhibiting Tau pathology in vitro and in vivo. Neurotoxicology 2019; 75:221-232. [PMID: 31562916 DOI: 10.1016/j.neuro.2019.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 09/21/2019] [Accepted: 09/21/2019] [Indexed: 11/25/2022]
Abstract
This study aimed to explore effects and mechanisms of 004 (IMM-H004), a novel coumarin derivative, in OKA (okadaic acid)-induced AD (Alzheimer's disease)-like model. In vitro, MTT, LDH, and Annexin V/FITC flow cytometry assay were used to test cell survival. In vivo, OKA microinjection was conducted to simulate AD-like neuropathology. Morris water maze and Nissl staining were used to detect spatial memory function and neuronal damage respectively. Western blot and immunohistochemistry were used to study the mechanisms of 004 in Tau pathology. The results showed that 004 reduced cell death and increased survival in PC12 cells, and decreased neuronal injury in the hippocampus in rats. 004 improved learning and memory functions in OKA-treated rats. The mechanistic studies indicated that 004 inhibited phosphorylation of Tau protein by down-regulating the activity of protein kinases CDK5 and GSK3β and increasing PP2A activity. Overall, 004 improved spatial memory impairments and neuron cells injury induced by OKA; on the other hand, 004 inhibited Tau hyperphosphorylation by regulating CDK5, GSK3β and PP2A.
Collapse
Affiliation(s)
- Yingying Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Guangzhou University of Chinese Medicine, Institute of Clinical Pharmacology, Guangzhou, 510405, China
| | - Xiuyun Song
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Dandan Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yu-Xia Lou
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Piao Luo
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Tianbi Zhu
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Qi Wang
- Guangzhou University of Chinese Medicine, Institute of Clinical Pharmacology, Guangzhou, 510405, China.
| | - Naihong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
26
|
Alaiyed S, Conant K. A Role for Matrix Metalloproteases in Antidepressant Efficacy. Front Mol Neurosci 2019; 12:117. [PMID: 31133801 PMCID: PMC6517485 DOI: 10.3389/fnmol.2019.00117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/24/2019] [Indexed: 01/10/2023] Open
Abstract
Major depressive disorder is a debilitating condition that affects approximately 15% of the United States population. Though the neurophysiological mechanisms that underlie this disorder are not completely understood, both human and rodent studies suggest that excitatory/inhibitory (E/I) balance is reduced with the depressive phenotype. In contrast, antidepressant efficacy in responsive individuals correlates with increased excitatory neurotransmission in select brain regions, suggesting that the restoration of E/I balance may improve mood. Enhanced excitatory transmission can occur through mechanisms including increased dendritic arborization and synapse formation in pyramidal neurons. Reduced activity of inhibitory neurons may also contribute to antidepressant efficacy. Consistent with this possibility, the fast-acting antidepressant ketamine may act by selective inhibition of glutamatergic input to GABA releasing parvalbumin (PV)-expressing interneurons. Recent work has also shown that a negative allosteric modulator of the GABA-A receptor α subunit can improve depression-related behavior. PV-expressing interneurons are thought to represent critical pacemakers for synchronous network events. These neurons also represent the predominant GABAergic neuronal population that is enveloped by the perineuronal net (PNN), a lattice-like structure that is thought to stabilize glutamatergic input to this cell type. Disruption of the PNN reduces PV excitability and increases pyramidal cell excitability. Various antidepressant medications increase the expression of matrix metalloproteinases (MMPs), enzymes that can increase pyramidal cell dendritic arborization and spine formation. MMPs can also cleave PNN proteins to reduce PV neuron-mediated inhibition. The present review will focus on mechanisms that may underlie antidepressant efficacy, with a focus on monoamines as facilitators of increased matrix metalloprotease (MMP) expression and activation. Discussion will include MMP-dependent effects on pyramidal cell structure and function, as well as MMP-dependent effects on PV expressing interneurons. We conclude with discussion of antidepressant use for those at risk for Alzheimer’s disease, and we also highlight areas for further study.
Collapse
Affiliation(s)
- Seham Alaiyed
- Department of Pharmacology, Georgetown University Medical Center, Washington, DC, United States
| | - Katherine Conant
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|