1
|
Murai SA, Mano T, Sanes JN, Watanabe T. Atypical intrinsic neural timescale in the left angular gyrus in Alzheimer's disease. Brain Commun 2024; 6:fcae199. [PMID: 38993284 PMCID: PMC11227993 DOI: 10.1093/braincomms/fcae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/18/2024] [Accepted: 06/07/2024] [Indexed: 07/13/2024] Open
Abstract
Alzheimer's disease is characterized by cognitive impairment and progressive brain atrophy. Recent human neuroimaging studies reported atypical anatomical and functional changes in some regions in the default mode network in patients with Alzheimer's disease, but which brain area of the default mode network is the key region whose atrophy disturbs the entire network activity and consequently contributes to the symptoms of the disease remains unidentified. Here, in this case-control study, we aimed to identify crucial neural regions that mediated the phenotype of Alzheimer's disease, and as such, we examined the intrinsic neural timescales-a functional metric to evaluate the capacity to integrate diverse neural information-and grey matter volume of the regions in the default mode network using resting-state functional MRI images and structural MRI data obtained from individuals with Alzheimer's disease and cognitively typical people. After confirming the atypically short neural timescale of the entire default mode network in Alzheimer's disease and its link with the symptoms of the disease, we found that the shortened neural timescale of the default mode network was associated with the aberrantly short neural timescale of the left angular gyrus. Moreover, we revealed that the shortened neural timescale of the angular gyrus was correlated with the atypically reduced grey matter volume of this parietal region. Furthermore, we identified an association between the neural structure, brain function and symptoms and proposed a model in which the reduced grey matter volume of the left angular gyrus shortened the intrinsic neural time of the region, which then destabilized the entire neural timescale of the default mode network and resultantly contributed to cognitive decline in Alzheimer's disease. These findings highlight the key role of the left angular gyrus in the anatomical and functional aetiology of Alzheimer's disease.
Collapse
Affiliation(s)
- Shota A Murai
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, Bunkyo City, Tokyo 113-0033, Japan
| | - Tatsuo Mano
- Department of Degenerative Neurological Diseases, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Jerome N Sanes
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
- Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
- Center for Neurorestoration and Neurotechnology, Veterans Affairs Providence Healthcare System, Providence, RI 02908, USA
| | - Takamitsu Watanabe
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, Bunkyo City, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Shvetcov A, Thomson S, Cho AN, Wilkins HM, Reed JH, Swerdlow RH, Brown DA, Finney CA. Proteome profiling of cerebrospinal fluid using machine learning shows a unique protein signature associated with APOE4 genotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590160. [PMID: 38915547 PMCID: PMC11195053 DOI: 10.1101/2024.04.18.590160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
INTRODUCTION Proteome changes associated with APOE4 variant carriage that are independent of Alzheimer's disease (AD) pathology and diagnosis are unknown. This study investigated APOE4 proteome changes in people with AD, mild cognitive impairment, and no impairment. METHODS Clinical, APOE genotype, and cerebrospinal fluid (CSF) proteome and AD biomarker data was sourced from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Proteome profiling was done using supervised machine learning. RESULTS We found an APOE4-specific proteome signature that was independent of cognitive diagnosis and AD pathological biomarkers, and increased risk of progression to cognitive impairment. Proteins were enriched in brain regions including the caudate and cortex and cells including endothelial cells, oligodendrocytes, and astrocytes. Enriched peripheral immune cells included T cells, macrophages, and B cells. DISCUSSION APOE4 carriers have a unique CSF proteome signature associated with a strong brain and peripheral immune and inflammatory phenotype that likely underlies APOE4 carriers' vulnerability to cognitive decline and AD.
Collapse
Affiliation(s)
- Artur Shvetcov
- Department of Psychological Medicine, Sydney Children’s Hospital Network, Sydney, NSW, Australia
| | - Shannon Thomson
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Ann-Na Cho
- Human Brain Microphysiology Systems Group, School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Heather M. Wilkins
- University of Kansas Alzheimer’s Disease Centre, Kansas City, KS, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Centre, Kansas City, KS, USA
- Department of Neurology, University of Kansas Medical Centre, Kansas City, KS, USA
| | - Joanne H. Reed
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Autoimmunity and Amyloidosis Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Russell H. Swerdlow
- University of Kansas Alzheimer’s Disease Centre, Kansas City, KS, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Centre, Kansas City, KS, USA
- Department of Neurology, University of Kansas Medical Centre, Kansas City, KS, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Centre, Kansas City, KS, USA
| | - David A. Brown
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
- Department of Immunopathology, Institute for Clinical Pathology and Medical Research-New South Wales Health Pathology, Sydney, NSW, Australia
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Alzheimer’s Disease Neuroimaging Initiative
- Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
| | - Caitlin A. Finney
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
3
|
Xu C, Xiao D, Su BB, Saveron JM, Gamez D, Navia RO, Wang N, Roy U, Adjeroh DA, Wang K. Association of APOE gene with longitudinal changes of CSF amyloid beta and tau levels in Alzheimer's disease: racial differences. Neurol Sci 2024; 45:1041-1050. [PMID: 37759100 DOI: 10.1007/s10072-023-07076-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND The Apolipoprotein E (APOE) ε4 allele is a risk factor for late-onset Alzheimer's disease (AD). However, no investigation has focused on racial differences in the longitudinal effect of APOE genotypes on CSF amyloid beta (Aβ42) and tau levels in AD. METHODS This study used data from the Alzheimer's Disease Neuroimaging Initiative (ADNI): 222 participants with AD, 264 with cognitive normal (CN), and 692 with mild cognitive impairment (MCI) at baseline and two years follow-up. We used a linear mixed model to investigate the effect of APOE-ε4-genotypes on longitudinal changes in the amyloid beta and tau levels. RESULTS Individuals with 1 or 2 APOE ε4 alleles revealed significantly higher t-Tau and p-Tau, but lower amyloid beta Aβ42 compared with individuals without APOE ε4 alleles. Significantly higher levels of log-t-Tau, log-p-Tau, and low levels of log-Aβ42 were observed in the subjects with older age, being female, and the two diagnostic groups (AD and MCI). The higher p-Tau and Aβ42 values are associated with poor Mini-Mental State Examination (MMSE) performance. Non-Hispanic Africa American (AA) and Hispanic participants were associated with decreased log-t-Tau levels (β = - 0.154, p = 0.0112; β = - 0.207, and p = 0.0016, respectively) as compared to those observed in Whites. Furthermore, Hispanic participants were associated with a decreased log-p-Tau level (β = - 0.224, p = 0.0023) compared to those observed in Whites. There were no differences in Aβ42 level for non-Hispanic AA and Hispanic participants compared with White participants. CONCLUSION Our study, for the first time, showed that the APOE ε4 allele was associated with these biomarkers, however with differing degrees among racial groups.
Collapse
Affiliation(s)
- Chun Xu
- Department of Health and Biomedical Sciences, College of Health Professions, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Danqing Xiao
- Department of STEM, School of Arts and Sciences, Regis College, Weston, MA, 02493, USA
| | - Brenda Bin Su
- Department of Pediatrics - Allergy and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jaime Miguel Saveron
- Department of Health and Biomedical Sciences, College of Health Professions, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Daniela Gamez
- Department of Health and Biomedical Sciences, College of Health Professions, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - R Osvaldo Navia
- Department of Medicine and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26506, USA
| | - Nianyang Wang
- Department of Health Policy and Management, School of Public Health, University of Maryland, College Park, MD, 20742, USA
| | - Upal Roy
- Department of Health and Biomedical Sciences, College of Health Professions, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Donald A Adjeroh
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV, 26506, USA
| | - Kesheng Wang
- Department of Family and Community Health, School of Nursing, Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
4
|
Zhou R, Chen HW, Li FR, Zhong Q, Huang YN, Wu XB. "Life's Essential 8" Cardiovascular Health and Dementia Risk, Cognition, and Neuroimaging Markers of Brain Health. J Am Med Dir Assoc 2023; 24:1791-1797. [PMID: 37369360 DOI: 10.1016/j.jamda.2023.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023]
Abstract
OBJECTIVE To evaluate associations of Life's Essential 8 (LE8) score, the recently updated metric for promoting cardiovascular health (CVH), with the risk of incident dementia and its subtypes, cognition, and neuroimaging outcomes and to determine whether these associations differ among apolipoprotein E (APOE)-ε4 genotypes. DESIGN Prospective cohort study. SETTING AND PARTICIPANTS A total of 316,669 participants [mean (SD) age, 56.3 (8.1) years] without prior cardiovascular disease or dementia from the UK Biobank study at baseline survey (2006-2010) were enrolled. METHODS A modified version of the LE8 score was created (range: 0-100) and categorized into poor (0-49), intermediate (50-79), and optimal (80-100) CVH. Cox proportional hazard and multivariable linear regression models were used. RESULTS During a median 12.6 years of follow-up, 4238 all-cause dementia cases including 1797 Alzheimer's disease and 939 vascular dementia (VaD) occurred. Individuals with optimal CVH had 44% (95% CI, 0.48-0.64) lower incident all-cause dementia risk and 71% (95% CI, 0.22-0.38) lower VaD risk compared with those who had poor CVH. A 10-point increment in LE8 was associated with higher fluid intelligence scores (β, 0.088; 95% CI, 0.073-0.102) and numeric memory scores (β, 0.054; 95% CI, 0.043-0.065), and was also associated with lower white matter hyperintensity volume (β, -0.673; 95% CI, -0.751 to -0.596), larger total brain volume (β, 77.93; 95% CI, 62.03-93.84), and hippocampal volume (β, 0.197; 95% CI, 0.106-0.288). In addition, the association between LE8 profiles and dementia diagnosis differed by APOE genotype (all P for interaction ≤ .001), and was more evident among APOE-ε4 noncarriers. CONCLUSIONS AND IMPLICATIONS Individuals with a higher LE8 score experienced fewer dementia events (driven especially by incident VaD) and were associated with better neurocognitive brain health profiles. CVH optimization may be beneficial to the maintenance of brain health.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, China
| | - Hao-Wen Chen
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, China
| | - Fu-Rong Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Qi Zhong
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, China
| | - Yi-Ning Huang
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, China
| | - Xian-Bo Wu
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Zhang Y, Jiang F, Liu D, Li X, Ma Z, Zhang Y, Ma A, Qin LQ, Chen GC, Wan Z. Higher dietary advanced glycation products intake is associated with increased risk of dementia, independent from genetic predisposition. Clin Nutr 2023; 42:1788-1797. [PMID: 37586315 DOI: 10.1016/j.clnu.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Dietary advanced glycation end products (AGEs) might exert adverse effects on cognition. The associations between dietary AGEs and long-term risk of dementia are yet to be assessed in large population studies. We aimed to explore whether elevated dietary AGEs intake is associated with increased risk of dementia, and whether this association might be affected by genetic risk. METHODS A prospective cohort study, which included a total of 93,830 participants (aged≥ 50 years) free from dementia at baseline of the UK Biobank study (2006-2010) and had at least two 24-h dietary assessments and were followed up until 2021. Dietary AGEs, including Nε-(1-Carboxyethyl)-l-lysine (CEL), Nε-(carboxymethyl) lysine (CML), and Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1) were estimated via averaged data from the multiple 24-h food assessments according to the ultra-performance LC-tandem MS based dAGEs database. Incidence of all-cause dementia was ascertained through hospital inpatient and mortality records. Multivariable Cox regression models were utilized to estimate hazards ratios (HRs) and 95% confidence interval (CI) of dementia risk associated with dietary AGEs. RESULTS During a median follow-up of 11.9 years, 728 participants developed dementia. In multivariable adjusted model, when comparing the highest with the lowest tertile of intake level, HRs (95% CI) of dementia were 1.43 (1.16, 1.76) for total AGEs Z score, 1.53 (1.25, 1.89) for CEL, 1.27 (1.03, 1.56) for CML and 1.24 (1.02, 1.52) for MG-H1 (all P trend<0.01). There was no significant interaction between dietary AGEs intake, genetic risk and APOE ε4 carrier status for dementia. CONCLUSIONS Higher intakes of dietary AGEs including CEL, CML and MG-H1 were associated with a higher risk of dementia, independent from genetic risk, highlighting the significance of dietary AGEs restriction for dementia prevention.
Collapse
Affiliation(s)
- Yebing Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Fangyuan Jiang
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Yuhangtang Road No.388, Hangzhou, Zhejiang Province, China
| | - Di Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Xue Li
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Yuhangtang Road No.388, Hangzhou, Zhejiang Province, China
| | - Zhengfeei Ma
- Center for Public Health, School of Health and Social Wellbeing, Faculty of Health and Applied Sciences, University of the West of England, Bristol, BS16 1QY, UK
| | - Yao Zhang
- Soochow College, Soochow University, Suzhou, 215006, China
| | - Aiguo Ma
- Institute of Nutrition and Health, Qingdao University, 308 Ningxia Road, Qingdao, Shandong, 266071, China
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Guo-Chong Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China.
| | - Zhongxiao Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China.
| |
Collapse
|
6
|
Weiner S, Blennow K, Zetterberg H, Gobom J. Next-generation proteomics technologies in Alzheimer's disease: from clinical research to routine diagnostics. Expert Rev Proteomics 2023; 20:143-150. [PMID: 37701966 DOI: 10.1080/14789450.2023.2255752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/18/2023] [Indexed: 09/14/2023]
Abstract
INTRODUCTION Clinical proteomics studies of Alzheimer's disease (AD) research aim to identify biomarkers useful for clinical research, diagnostics, and improve our understanding of the pathological processes involved in the disease. The rapidly increasing performance of proteomics technologies is likely to have great impact on AD research. AREAS COVERED We review recent proteomics approaches that have advanced the field of clinical AD research. Specifically, we discuss the application of targeted mass spectrometry (MS), labeling-based and label-free MS-based as well as affinity-based proteomics to AD biomarker development, underpinning their importance with the latest impactful clinical studies. We evaluate how proteomics technologies have been adapted to meet current challenges. Finally, we discuss the limitations and potential of proteomics techniques and whether their scope might extend beyond current research-based applications. EXPERT OPINION To date, proteomics technologies in the AD field have been largely limited to AD biomarker discovery. The recent development of the first successful disease-modifying treatments of AD will further increase the need for blood biomarkers for early, accurate diagnosis, and CSF biomarkers that reflect specific pathological processes. Proteomics has the potential to meet these requirements and to progress into clinical routine practice, provided that current limitations are overcome.
Collapse
Affiliation(s)
- Sophia Weiner
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Dementia Research Institute at UCL, London, UK
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Johan Gobom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
7
|
Ferrari-Souza JP, Lussier FZ, Leffa DT, Therriault J, Tissot C, Bellaver B, Ferreira PC, Malpetti M, Wang YT, Povala G, Benedet AL, Ashton NJ, Chamoun M, Servaes S, Bezgin G, Kang MS, Stevenson J, Rahmouni N, Pallen V, Poltronetti NM, O’Brien JT, Rowe JB, Cohen AD, Lopez OL, Tudorascu DL, Karikari TK, Klunk WE, Villemagne VL, Soucy JP, Gauthier S, Souza DO, Zetterberg H, Blennow K, Zimmer ER, Rosa-Neto P, Pascoal TA. APOEε4 associates with microglial activation independently of Aβ plaques and tau tangles. SCIENCE ADVANCES 2023; 9:eade1474. [PMID: 37018391 PMCID: PMC10075966 DOI: 10.1126/sciadv.ade1474] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/02/2023] [Indexed: 06/01/2023]
Abstract
Animal studies suggest that the apolipoprotein E ε4 (APOEε4) allele is a culprit of early microglial activation in Alzheimer's disease (AD). Here, we tested the association between APOEε4 status and microglial activation in living individuals across the aging and AD spectrum. We studied 118 individuals with positron emission tomography for amyloid-β (Aβ; [18F]AZD4694), tau ([18F]MK6240), and microglial activation ([11C]PBR28). We found that APOEε4 carriers presented increased microglial activation relative to noncarriers in early Braak stage regions within the medial temporal cortex accounting for Aβ and tau deposition. Furthermore, microglial activation mediated the Aβ-independent effects of APOEε4 on tau accumulation, which was further associated with neurodegeneration and clinical impairment. The physiological distribution of APOE mRNA expression predicted the patterns of APOEε4-related microglial activation in our population, suggesting that APOE gene expression may regulate the local vulnerability to neuroinflammation. Our results support that the APOEε4 genotype exerts Aβ-independent effects on AD pathogenesis by activating microglia in brain regions associated with early tau deposition.
Collapse
Affiliation(s)
- João Pedro Ferrari-Souza
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Firoza Z. Lussier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Douglas T. Leffa
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- ADHD Outpatient Program and Development Psychiatry Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Cécile Tissot
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Bruna Bellaver
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Maura Malpetti
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - Yi-Ting Wang
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Guilherme Povala
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Andréa L. Benedet
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Nicholas J. Ashton
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Mira Chamoun
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Stijn Servaes
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Gleb Bezgin
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Min Su Kang
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- Artificial Intelligence and Computational Neurosciences lab, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- LC Campbell Cognitive Neurology Unit, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Jenna Stevenson
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Vanessa Pallen
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Nina Margherita Poltronetti
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - John T. O’Brien
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - James B. Rowe
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Ann D. Cohen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Oscar L. Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dana L. Tudorascu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thomas K. Karikari
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - William E. Klunk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Jean-Paul Soucy
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Diogo O. Souza
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Eduardo R. Zimmer
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Biological Sciences: Pharmacology and Therapeuctis, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Tharick A. Pascoal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Shang L, Dong L, Huang X, Wang T, Mao C, Li J, Wang J, Liu C, Gao J. Association of APOE ε4/ε4 with fluid biomarkers in patients from the PUMCH dementia cohort. Front Aging Neurosci 2023; 15:1119070. [PMID: 37065463 PMCID: PMC10103647 DOI: 10.3389/fnagi.2023.1119070] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/02/2023] [Indexed: 04/03/2023] Open
Abstract
BackgroundApolipoprotein-E (APOE) ε4 is a major genetic risk factor for Alzheimer’s disease (AD). Current studies, which were mainly based on the clinical diagnosis rather than biomarkers, come to inconsistent conclusions regarding the associations of APOE ε4 homozygotes (APOE ε4/ε4) and cerebrospinal fluid (CSF) biomarkers of AD. In addition, few studies have explored the associations of APOE ε4/ε4 with plasma biomarkers. Therefore, we aimed to investigate the associations of APOE ε4/ε4 with fluid biomarkers in dementia and biomarker-diagnosed AD.MethodsA total of 297 patients were enrolled. They were classified into Alzheimer’s continuum, AD, and non-AD, according to CSF biomarkers and/or β amyloid PET results. AD was a subgroup of the AD continuum. Plasma Amyloid β (Aβ) 40, Aβ42, glial fibrillary acidic protein (GFAP), neurofilament light chain (NFL), and phosphorylated tau (P-tau)181 were quantified in 144 of the total population using an ultra-sensitive Simoa technology. We analyzed the associations of APOE ε4/ε4 on CSF and plasma biomarkers in dementia and biomarker diagnosed AD.ResultsBased on the biomarker diagnostic criteria, 169 participants were diagnosed with Alzheimer’s continuum and 128 individuals with non-AD, and among the former, 120 patients with AD. The APOE ε4/ε4 frequencies were 11.8% (20/169), 14.2% (17/120), and 0.8% (1/128) in Alzheimer’s continuum, AD and non-AD, respectively. Only CSF Aβ42 was shown to be decreased in APOE ε4/ε4 carriers than in non-carriers for patients with AD (p = 0.024). Furthermore, we did not find any associations of APOE ε4 with plasma biomarkers of AD and non-AD. Interestingly, we found that in non-AD patients, APOE ε4 carriers had lower CSF Aβ42 (p = 0.018) and higher T-tau/Aβ42 ratios (p < 0.001) and P-tau181/Aβ42 ratios (p = 0.002) than non-carriers.ConclusionOur data confirmed that of the three groups (AD continuum, AD, and non-AD), those with AD had the highest frequency of APOE ɛ4/ɛ4 genotypes. The APOE ɛ4/ɛ4 was associated with CSF levels of Aβ42 but not tau for AD and non-AD, suggesting that APOE ɛ4/ɛ4 affected the Aβ metabolism of both. No associations between APOE ε4/ɛ4 and plasma biomarkers of AD and non-AD were found.
Collapse
|
9
|
Lee S, Devanney NA, Golden LR, Smith CT, Schwartz JL, Walsh AE, Clarke HA, Goulding DS, Allenger EJ, Morillo-Segovia G, Friday CM, Gorman AA, Hawkinson TR, MacLean SM, Williams HC, Sun RC, Morganti JM, Johnson LA. APOE modulates microglial immunometabolism in response to age, amyloid pathology, and inflammatory challenge. Cell Rep 2023; 42:112196. [PMID: 36871219 PMCID: PMC10117631 DOI: 10.1016/j.celrep.2023.112196] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/29/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
The E4 allele of Apolipoprotein E (APOE) is associated with both metabolic dysfunction and a heightened pro-inflammatory response: two findings that may be intrinsically linked through the concept of immunometabolism. Here, we combined bulk, single-cell, and spatial transcriptomics with cell-specific and spatially resolved metabolic analyses in mice expressing human APOE to systematically address the role of APOE across age, neuroinflammation, and AD pathology. RNA sequencing (RNA-seq) highlighted immunometabolic changes across the APOE4 glial transcriptome, specifically in subsets of metabolically distinct microglia enriched in the E4 brain during aging or following an inflammatory challenge. E4 microglia display increased Hif1α expression and a disrupted tricarboxylic acid (TCA) cycle and are inherently pro-glycolytic, while spatial transcriptomics and mass spectrometry imaging highlight an E4-specific response to amyloid that is characterized by widespread alterations in lipid metabolism. Taken together, our findings emphasize a central role for APOE in regulating microglial immunometabolism and provide valuable, interactive resources for discovery and validation research.
Collapse
Affiliation(s)
- Sangderk Lee
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Nicholas A Devanney
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA; Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Lesley R Golden
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Cathryn T Smith
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - James L Schwartz
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Adeline E Walsh
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Harrison A Clarke
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA; Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, FL, USA
| | - Danielle S Goulding
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | | | | | - Cassi M Friday
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Amy A Gorman
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Tara R Hawkinson
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA; Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, FL, USA
| | - Steven M MacLean
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Holden C Williams
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Ramon C Sun
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA; Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, FL, USA
| | - Josh M Morganti
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA; Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA.
| | - Lance A Johnson
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA; Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
10
|
Mhatre-Winters I, Eid A, Han Y, Tieu K, Richardson JR. Sex and APOE Genotype Alter the Basal and Induced Inflammatory States of Primary Astrocytes from Humanized Targeted Replacement Mice. ASN Neuro 2023; 15:17590914221144549. [PMID: 36604975 PMCID: PMC9982390 DOI: 10.1177/17590914221144549] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Apolipoprotein E4 (APOE4) genotype and sex are significant risk factors for Alzheimer's disease (AD), with females demonstrating increased risk modulated by APOE genotype. APOE is predominantly expressed in astrocytes, however, there is a lack of comprehensive assessments of sex differences in astrocytes stratified by APOE genotype. Here, we examined the response of mixed-sex and sex-specific neonatal APOE3 and APOE4 primary mouse astrocytes (PMA) to a cytokine mix of IL1b, TNFa, and IFNg. Pro-inflammatory and anti-inflammatory cytokine profiles were assessed by qRT-PCR and Meso Scale Discovery multiplex assay. Mixed-sex APOE4 PMA were found to have higher basal messenger RNA expression of several pro-inflammatory cytokines including Il6, Tnfa, Il1b, Mcp1, Mip1a, and Nos2 compared to APOE3 PMA, which was accompanied by increased levels of these secreted cytokines. In sex-specific cultures, basal expression of Il1b, Il6, and Nos2 was 1.5 to 2.5 fold higher in APOE4 female PMA compared to APOE4 males, with both being higher than APOE3 PMA. Similar results were found for secreted levels of these cytokines. Together, these findings indicate that APOE4 genotype and female sex, contribute to a greater inflammatory response in primary astrocytes and these data may provide a framework for investigating the mechanisms contributing to genotype and sex differences in AD-related neuroinflammation.
Collapse
Affiliation(s)
- Isha Mhatre-Winters
- Department of Environmental Health Sciences, Robert Stempel College
of Public Health and Social Work, Florida International
University, Miami, FL, USA,Department of Neurosciences, School of Biomedical Sciences, Kent
State University, Kent, OH, USA
| | - Aseel Eid
- Department of Environmental Health Sciences, Robert Stempel College
of Public Health and Social Work, Florida International
University, Miami, FL, USA
| | - Yoonhee Han
- Department of Environmental Health Sciences, Robert Stempel College
of Public Health and Social Work, Florida International
University, Miami, FL, USA
| | - Kim Tieu
- Department of Environmental Health Sciences, Robert Stempel College
of Public Health and Social Work, Florida International
University, Miami, FL, USA
| | - Jason R. Richardson
- Department of Environmental Health Sciences, Robert Stempel College
of Public Health and Social Work, Florida International
University, Miami, FL, USA,Jason R. Richardson, Department of
Environmental Health Sciences, Robert Stempel College of Public Health and
Social Work, Florida International University, Miami, FL 33199-2156, USA.
| |
Collapse
|
11
|
Gudkov SV, Burmistrov DE, Kondakova EV, Sarimov RM, Yarkov RS, Franceschi C, Vedunova MV. An emerging role of astrocytes in aging/neuroinflammation and gut-brain axis with consequences on sleep and sleep disorders. Ageing Res Rev 2023; 83:101775. [PMID: 36334910 DOI: 10.1016/j.arr.2022.101775] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/05/2022] [Accepted: 10/30/2022] [Indexed: 11/18/2022]
Abstract
Understanding the role of astrocytes in the central nervous system has changed dramatically over the last decade. The accumulating findings indicate that glial cells are involved not only in the maintenance of metabolic and ionic homeostasis and in the implementation of trophic functions but also in cognitive functions and information processing in the brain. Currently, there are some controversies regarding the role of astrocytes in complex processes such as aging of the nervous system and the pathogenesis of age-related neurodegenerative diseases. Many findings confirm the important functional role of astrocytes in age-related brain changes, including sleep disturbance and the development of neurodegenerative diseases and particularly Alzheimer's disease. Until recent years, neurobiological research has focused mainly on neuron-glial interactions, in which individual astrocytes locally modulate neuronal activity and communication between neurons. The review considers the role of astrocytes in the physiology of sleep and as an important "player" in the development of neurodegenerative diseases. In addition, the features of the astrocytic network reorganization during aging are discussed.
Collapse
Affiliation(s)
- Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov str., 119991 Moscow, Russia; Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia.
| | - Dmitriy E Burmistrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov str., 119991 Moscow, Russia.
| | - Elena V Kondakova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia.
| | - Ruslan M Sarimov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov str., 119991 Moscow, Russia.
| | - Roman S Yarkov
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia.
| | - Claudio Franceschi
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia.
| | - Maria V Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia.
| |
Collapse
|
12
|
Sun Y, Chen C, Yu Y, Zhang H, Tan X, Zhang J, Qi L, Lu Y, Wang N. Replacement of leisure-time sedentary behavior with various physical activities and the risk of dementia incidence and mortality: A prospective cohort study. JOURNAL OF SPORT AND HEALTH SCIENCE 2022; 12:287-294. [PMID: 36379419 DOI: 10.1016/j.jshs.2022.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/17/2022] [Accepted: 10/12/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Whether or not there is targeted pharmacotherapy for dementia, an active and healthy lifestyle that includes physical activity (PA) may be a better option than medication for preventing dementia. We examined the association between leisure-time sedentary behavior (SB) and the risk of dementia incidence and mortality. We further quantified the effect on dementia risk of replacing sedentary time with an equal amount of time spent on different physical activities. METHODS In the UK Biobank, 484,169 participants (mean age 56.5 years; 45.2% men) free of dementia were followed from baseline (2006-2010) through July 30, 2021. A standard questionnaire measured individual leisure-time SB (watching TV, computer use, and driving) and PA (walking for pleasure, light and heavy do-it-yourself activity, strenuous sports, and other exercise) frequency and duration in the 4 weeks prior to evaluation. Apolipoprotein E (APOE) genotype data were available for a subset of 397,519 (82.1%) individuals. A Cox proportional hazard model and an isotemporal substitution model were used in this study. RESULTS During a median 12.4 years of follow-up, 6904 all-cause dementia cases and 2115 deaths from dementia were recorded. In comparison to participants with leisure-time SB <5 h/day, the hazard ratio ((HR), 95% confidence interval (95%CI)) of dementia incidence was 1.07 (1.02-1.13) for 5-8 h/day and 1.25 (1.13-1.38) for >8 h/day, and the HR of dementia mortality was 1.35 (1.12-1.61) for >8 h/day. A 1 standard deviation increment of sedentary time (2.33 h/day) was strongly associated with a higher incidence of dementia and mortality (HR = 1.06, 95%CI: 1.03-1.08 and HR = 1.07, 95%CI: 1.03-1.12, respectively). The association between sedentary time and the risk of developing dementia was more profound in subjects <60 years than in those ≥60 years (HR = 1.26, 95%CI: 1.00-1.58 vs. HR =1.21, 95%CI: 1.08-1.35 in >8 h/day, p for interaction = 0.013). Replacing 30 min/day of leisure sedentary time with an equal time spent in total PA was associated with a 6% decreased risk and 9% decreased mortality from dementia, with exercise (e.g., swimming, cycling, aerobics, bowling) showing the strongest benefit (HR = 0.82, 95%CI: 0.78-0.86 and HR = 0.79, 95%CI: 0.72-0.86). Compared with APOE ε4 noncarriers, APOE ε4 carriers are more likely to see a decrease in Alzheimer's disease incidence and mortality when PA is substituted for SB. CONCLUSION Leisure-time SB was positively associated with the risk of dementia incidence and mortality. Replacing sedentary time with equal time spent doing PA may be associated with a significant reduction in dementia incidence and mortality risk.
Collapse
Affiliation(s)
- Ying Sun
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Chi Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yuetian Yu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Haojie Zhang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiao Tan
- Department of Medical Sciences, Uppsala University, Uppsala 751 85, Sweden; School of Public Health, Zhejiang University, Hangzhou 310058, China
| | - Jihui Zhang
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yingli Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
13
|
Raulin AC, Doss SV, Trottier ZA, Ikezu TC, Bu G, Liu CC. ApoE in Alzheimer’s disease: pathophysiology and therapeutic strategies. Mol Neurodegener 2022; 17:72. [PMID: 36348357 PMCID: PMC9644639 DOI: 10.1186/s13024-022-00574-4] [Citation(s) in RCA: 160] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia worldwide, and its prevalence is rapidly increasing due to extended lifespans. Among the increasing number of genetic risk factors identified, the apolipoprotein E (APOE) gene remains the strongest and most prevalent, impacting more than half of all AD cases. While the ε4 allele of the APOE gene significantly increases AD risk, the ε2 allele is protective relative to the common ε3 allele. These gene alleles encode three apoE protein isoforms that differ at two amino acid positions. The primary physiological function of apoE is to mediate lipid transport in the brain and periphery; however, additional functions of apoE in diverse biological functions have been recognized. Pathogenically, apoE seeds amyloid-β (Aβ) plaques in the brain with apoE4 driving earlier and more abundant amyloids. ApoE isoforms also have differential effects on multiple Aβ-related or Aβ-independent pathways. The complexity of apoE biology and pathobiology presents challenges to designing effective apoE-targeted therapeutic strategies. This review examines the key pathobiological pathways of apoE and related targeting strategies with a specific focus on the latest technological advances and tools.
Collapse
|
14
|
Del Campo M, Peeters CFW, Johnson ECB, Vermunt L, Hok-A-Hin YS, van Nee M, Chen-Plotkin A, Irwin DJ, Hu WT, Lah JJ, Seyfried NT, Dammer EB, Herradon G, Meeter LH, van Swieten J, Alcolea D, Lleó A, Levey AI, Lemstra AW, Pijnenburg YAL, Visser PJ, Tijms BM, van der Flier WM, Teunissen CE. CSF proteome profiling across the Alzheimer's disease spectrum reflects the multifactorial nature of the disease and identifies specific biomarker panels. NATURE AGING 2022; 2:1040-1053. [PMID: 37118088 PMCID: PMC10292920 DOI: 10.1038/s43587-022-00300-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 09/28/2022] [Indexed: 04/30/2023]
Abstract
Development of disease-modifying therapies against Alzheimer's disease (AD) requires biomarkers reflecting the diverse pathological pathways specific for AD. We measured 665 proteins in 797 cerebrospinal fluid (CSF) samples from patients with mild cognitive impairment with abnormal amyloid (MCI(Aβ+): n = 50), AD-dementia (n = 230), non-AD dementias (n = 322) and cognitively unimpaired controls (n = 195) using proximity ligation-based immunoassays. Here we identified >100 CSF proteins dysregulated in MCI(Aβ+) or AD compared to controls or non-AD dementias. Proteins dysregulated in MCI(Aβ+) were primarily related to protein catabolism, energy metabolism and oxidative stress, whereas those specifically dysregulated in AD dementia were related to cell remodeling, vascular function and immune system. Classification modeling unveiled biomarker panels discriminating clinical groups with high accuracies (area under the curve (AUC): 0.85-0.99), which were translated into custom multiplex assays and validated in external and independent cohorts (AUC: 0.8-0.99). Overall, this study provides novel pathophysiological leads delineating the multifactorial nature of AD and potential biomarker tools for diagnostic settings or clinical trials.
Collapse
Affiliation(s)
- Marta Del Campo
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands.
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain.
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.
| | - Carel F W Peeters
- Department of Epidemiology & Data Science, Amsterdam Public Health research institute, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
- Mathematical & Statistical Methods group (Biometris), Wageningen University & Research, Wageningen, The Netherlands
| | - Erik C B Johnson
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - Lisa Vermunt
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Yanaika S Hok-A-Hin
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Mirrelijn van Nee
- Department of Epidemiology & Data Science, Amsterdam Public Health research institute, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Alice Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - David J Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - William T Hu
- Rutgers-RWJ Medical School, Institute for Health, Health Care Policy, and Aging Research, Rutgers Biomedical and Health Sciences, New Brunswick, NJ, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - James J Lah
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - Nicholas T Seyfried
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric B Dammer
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Gonzalo Herradon
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Lieke H Meeter
- Department of Neurology and Alzheimer Center, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - John van Swieten
- Department of Neurology and Alzheimer Center, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Daniel Alcolea
- Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Alberto Lleó
- Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Allan I Levey
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - Afina W Lemstra
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Pieter J Visser
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
- Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Betty M Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Department of Epidemiology & Data Science, Amsterdam Public Health research institute, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Zetterberg H. Biofluid-based biomarkers for Alzheimer's disease-related pathologies: An update and synthesis of the literature. Alzheimers Dement 2022; 18:1687-1693. [PMID: 35213777 PMCID: PMC9514308 DOI: 10.1002/alz.12618] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/05/2021] [Accepted: 01/10/2022] [Indexed: 01/24/2023]
Abstract
The past few years have seen an explosion in sensitive and specific assays for cerebrospinal fluid (CSF) and blood biomarkers for Alzheimer's disease (AD) and related disorders, as well as some novel assays based on pathological seed-induced protein misfolding in patient samples. Here, I review this exciting field that promises to transform dementia diagnostics and disease monitoring. I discuss data on biomarkers for amyloid beta (Aβ) and tau pathology, neurodegeneration, and glial activation, mention the most promising biomarkers for α-synuclein and TDP-43 pathology, and highlight the need for further research into common co-pathologies. Finally, I consider practical aspects of blood-based biomarker-supported AD diagnostics and emphasize the importance of biomarker interpretation in a full clinical context.
Collapse
Affiliation(s)
- Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
| |
Collapse
|
16
|
Wesenhagen KE, Gobom J, Bos I, Vos SJ, Martinez‐Lage P, Popp J, Tsolaki M, Vandenberghe R, Freund‐Levi Y, Verhey F, Lovestone S, Streffer J, Dobricic V, Bertram L, Blennow K, Pikkarainen M, Hallikainen M, Kuusisto J, Laakso M, Soininen H, Scheltens P, Zetterberg H, Teunissen CE, Visser PJ, Tijms BM. Effects of age, amyloid, sex, and APOE ε4 on the CSF proteome in normal cognition. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12286. [PMID: 35571963 PMCID: PMC9074716 DOI: 10.1002/dad2.12286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/07/2022]
Abstract
Introduction It is important to understand which biological processes change with aging, and how such changes are associated with increased Alzheimer's disease (AD) risk. We studied how cerebrospinal fluid (CSF) proteomics changed with age and tested if associations depended on amyloid status, sex, and apolipoprotein E Ɛ4 genotype. Methods We included 277 cognitively intact individuals aged 46 to 89 years from Alzheimer's Disease Neuroimaging Initiative, European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery, and Metabolic Syndrome in Men. In total, 1149 proteins were measured with liquid chromatography mass spectrometry with multiple reaction monitoring/Rules-Based Medicine, tandem mass tag mass spectrometry, and SOMAscan. We tested associations between age and protein levels in linear models and tested enrichment for Reactome pathways. Results Levels of 252 proteins increased with age independently of amyloid status. These proteins were associated with immune and signaling processes. Levels of 21 proteins decreased with older age exclusively in amyloid abnormal participants and these were enriched for extracellular matrix organization. Discussion We found amyloid-independent and -dependent CSF proteome changes with older age, perhaps representing physiological aging and early AD pathology.
Collapse
Affiliation(s)
- Kirsten E.J. Wesenhagen
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMCVrije Universiteit AmsterdamAmsterdamthe Netherlands
| | - Johan Gobom
- Clinical Neurochemistry Lab, Institute of Neuroscience and PhysiologySahlgrenska University HospitalMölndalSweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and PhysiologyUniversity of GothenburgMölndalSweden
| | | | - Stephanie J.B. Vos
- Alzheimer Center Limburg, School for Mental Health and NeuroscienceMaastricht UniversityMaastrichtthe Netherlands
| | - Pablo Martinez‐Lage
- Center for Research and Advanced TherapiesCITA‐Alzheimers FoundationDonostia‐San SebastianSpain
| | - Julius Popp
- Geriatric Psychiatry, Department of Mental Health and PsychiatryGeneva University HospitalsGenevaSwitzerland
- Department of PsychiatryUniversity Hospital of LausanneLausanneSwitzerland
| | - Magda Tsolaki
- 1st Department of Neurology, AHEPA University Hospital, Medical School, Faculty of Health SciencesAristotle University of ThessalonikiMakedoniaThessalonikiGreece
| | - Rik Vandenberghe
- Neurology ServiceUniversity Hospitals LeuvenLeuvenBelgium
- Laboratory for Cognitive Neurology, Department of NeurosciencesKU LeuvenLeuvenBelgium
| | - Yvonne Freund‐Levi
- Department of Neurobiology, Care Sciences and Society, Division of NeurogeriatricsKarolinska InstitutetStockholmSweden
- School of Medical Sciences Örebro University and Dep of Psychiatry Örebro University HospitalÖrebroSweden
| | - Frans Verhey
- Alzheimer Center Limburg, School for Mental Health and NeuroscienceMaastricht UniversityMaastrichtthe Netherlands
| | - Simon Lovestone
- Janssen‐cilagHigh WycombeUK
- (at the time of study conduct)University of OxfordOxfordUK
| | - Johannes Streffer
- formerly Janssen R&D, LLC, Beerse, Belgium (at the time of study conduct)AC Immune SALausanneSwitzerland
- Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium
| | | | - Lars Bertram
- Lübeck UniversityLübeckGermany
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of PsychologyUniversity of OsloOsloNorway
| | | | - Kaj Blennow
- Clinical Neurochemistry Lab, Institute of Neuroscience and PhysiologySahlgrenska University HospitalMölndalSweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and PhysiologyUniversity of GothenburgMölndalSweden
| | - Maria Pikkarainen
- Institute of Clinical Medicine, NeurologyUniversity of Eastern FinlandKuopioFinland
| | - Merja Hallikainen
- Institute of Clinical MedicineInternal Medicineand Kuopio University HospitalUniversity of Eastern FinlandKuopioFinland
| | - Johanna Kuusisto
- Institute of Clinical MedicineInternal Medicineand Kuopio University HospitalUniversity of Eastern FinlandKuopioFinland
| | - Markku Laakso
- Institute of Clinical MedicineInternal Medicineand Kuopio University HospitalUniversity of Eastern FinlandKuopioFinland
| | - Hilkka Soininen
- Institute of Clinical Medicine, NeurologyUniversity of Eastern FinlandKuopioFinland
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMCVrije Universiteit AmsterdamAmsterdamthe Netherlands
| | - Henrik Zetterberg
- Clinical Neurochemistry Lab, Institute of Neuroscience and PhysiologySahlgrenska University HospitalMölndalSweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and PhysiologyUniversity of GothenburgMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- UK Dementia Research InstituteLondonUK
| | - Charlotte E. Teunissen
- Neurochemistry Lab, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMCVrije UniversiteitAmsterdamthe Netherlands
| | - Pieter Jelle Visser
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMCVrije Universiteit AmsterdamAmsterdamthe Netherlands
- Alzheimer Center Limburg, School for Mental Health and NeuroscienceMaastricht UniversityMaastrichtthe Netherlands
- Department of Neurobiology, Care Sciences and Society, Division of NeurogeriatricsKarolinska InstitutetStockholmSweden
| | - Betty M. Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMCVrije Universiteit AmsterdamAmsterdamthe Netherlands
| |
Collapse
|
17
|
Kocurova G, Ricny J, Ovsepian SV. Autoantibodies targeting neuronal proteins as biomarkers for neurodegenerative diseases. Theranostics 2022; 12:3045-3056. [PMID: 35547759 PMCID: PMC9065204 DOI: 10.7150/thno.72126] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/09/2022] [Indexed: 01/08/2023] Open
Abstract
Neurodegenerative diseases (NDDs) are associated with the accumulation of a range of misfolded proteins across the central nervous system and related autoimmune responses, including the generation of antibodies and the activation of immune cells. Both innate and adaptive immunity become mobilized, leading to cellular and humoral effects. The role of humoral immunity in disease onset and progression remains to be elucidated with rising evidence suggestive of positive (protection, repair) and negative (injury, toxicity) outcomes. In this study, we review advances in research of neuron-targeting autoantibodies in the most prevalent NDDs. We discuss their biological origin, molecular diversity and changes in the course of diseases, consider their relevance to the initiation and progression of pathology as well as diagnostic and prognostic significance. It is suggested that the emerging autoimmune aspects of NDDs not only could facilitate the early detection but also might help to elucidate previously unknown facets of pathobiology with relevance to the development of precision medicine.
Collapse
Affiliation(s)
- Gabriela Kocurova
- Experimental Neurobiology Program, National Institute of Mental Health, Klecany, Czech Republic
| | - Jan Ricny
- Experimental Neurobiology Program, National Institute of Mental Health, Klecany, Czech Republic
| | - Saak V. Ovsepian
- Faculty of Science and Engineering, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, United Kingdom
| |
Collapse
|
18
|
Benson GS, Bauer C, Hausner L, Couturier S, Lewczuk P, Peters O, Hüll M, Jahn H, Jessen F, Pantel J, Teipel SJ, Wagner M, Schuchhardt J, Wiltfang J, Kornhuber J, Frölich L. Don’t forget about tau: the effects of ApoE4 genotype on Alzheimer’s disease cerebrospinal fluid biomarkers in subjects with mild cognitive impairment—data from the Dementia Competence Network. J Neural Transm (Vienna) 2022; 129:477-486. [PMID: 35061102 PMCID: PMC9188507 DOI: 10.1007/s00702-022-02461-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/06/2022] [Indexed: 11/28/2022]
Abstract
ApoE4, the strongest genetic risk factor for Alzheimer’s disease (AD), has been shown to be associated with both beta-amyloid (Aβ) and tau pathology, with the strongest evidence for effects on Aβ, while the association between ApoE4 and tau pathology remains inconsistent. This study aimed to investigate the associations between ApoE4 with CSF Aβ42, total tau (t-tau), phospho-tau181 (p-tau), and with the progression of decline in a large cohort of MCI subjects, both progressors to AD and other dementias, as well as non-progressors. We analyzed associations of CSF Aβ42, p-tau and t-tau with ApoE4 allele frequency cross-sectionally and longitudinally over 3 years of follow-up in 195 individuals with a diagnosis of MCI-stable, MCI-AD converters and MCI progressing to other dementias from the German Dementia Competence Network. In the total sample, ApoE4 carriers had lower concentrations of CSF Aβ42, and increased concentrations of t-tau and p-tau compared to non-carriers in a gene dose-dependent manner. Comparisons of these associations stratified by MCI-progression groups showed a significant influence of ApoE4 carriership and diagnostic group on all CSF biomarker levels. The effect of ApoE4 was present in MCI-stable individuals but not in the other groups, with ApoE4 + carriers having decreased CSF Aβ 42 levels, and increased concentration of t-tau and p-tau. Longitudinally, individuals with abnormal t-tau and Aβ42 had a more rapid progression of cognitive and clinical decline, independently of ApoE4 genotype. Overall, our results contribute to an emerging framework in which ApoE4 involves mechanisms associated with both CSF amyloid-β burden and tau aggregation at specific time points in AD pathogenesis.
Collapse
|
19
|
McFarland KN, Chakrabarty P. Microglia in Alzheimer's Disease: a Key Player in the Transition Between Homeostasis and Pathogenesis. Neurotherapeutics 2022; 19:186-208. [PMID: 35286658 PMCID: PMC9130399 DOI: 10.1007/s13311-021-01179-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Immune activation accompanies the development of proteinopathy in the brains of Alzheimer's dementia patients. Evolving from the long-held viewpoint that immune activation triggers the pathological trajectory in Alzheimer's disease, there is accumulating evidence now that microglial activation is neither pro-amyloidogenic nor just a simple reactive process to the proteinopathy. Preclinical studies highlight an interesting aspect of immunity, i.e., spurring immune system activity may be beneficial under certain circumstances. Indeed, a dynamic evolving relationship between different activation states of the immune system and its neuronal neighbors is thought to regulate overall brain organ health in both healthy aging and progression of Alzheimer's dementia. A new premise evolving from genome, transcriptome, and proteome data is that there might be at least two major phases of immune activation that accompany the pathological trajectory in Alzheimer's disease. Though activation on a chronic scale will certainly lead to neurodegeneration, this emerging knowledge of a potential beneficial aspect of immune activation allows us to form holistic insights into when, where, and how much immune system activity would need to be tuned to impact the Alzheimer's neurodegenerative cascade. Even with the trove of recently emerging -omics data from patients and preclinical models, how microglial phenotypes are functionally related to the transition of a healthy aging brain towards progressive degenerative state remains unknown. A deeper understanding of the synergism between microglial functional states and brain organ health could help us discover newer interventions and therapies that enable us to address the current paucity of disease-modifying therapies in Alzheimer's disease.
Collapse
Affiliation(s)
- Karen N McFarland
- Department of Neurology, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Paramita Chakrabarty
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
20
|
Lai YLL, Chen K, Lee TW, Tso CW, Lin HH, Kuo LW, Chen CY, Liu HS. The Effect of the APOE-ε4 Allele on the Cholinergic Circuitry for Subjects With Different Levels of Cognitive Impairment. Front Neurol 2021; 12:651388. [PMID: 34721251 PMCID: PMC8548434 DOI: 10.3389/fneur.2021.651388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 09/10/2021] [Indexed: 01/18/2023] Open
Abstract
Background: Cholinergic deficiency has been suggested to associate with the abnormal accumulation of Aβ and tau for patients with Alzheimer's disease (AD). However, no studies have investigated the effect of APOE-ε4 and group differences in modulating the cholinergic basal forebrain-amygdala network for subjects with different levels of cognitive impairment. We evaluated the effect of APOE-ε4 on the cholinergic structural association and the neurocognitive performance for subjects with different levels of cognitive impairment. Methods: We used the structural brain magnetic resonance imaging scans from the Alzheimer's Disease Neuroimaging Initiative dataset. The study included cognitively normal (CN, n = 167) subjects and subjects with significant memory concern (SMC, n = 96), early mild cognitive impairment (EMCI, n = 146), late cognitive impairment (LMCI, n = 138), and AD (n = 121). Subjects were further categorized according to the APOE-ε4 allele carrier status. The main effects of APOE-ε4 and group difference on the brain volumetric measurements were assessed. Regression analyses were conducted to evaluate the associations among cholinergic structural changes, APOE-ε4 status, and cognitive performance. Results: We found that APOE-ε4 carriers in the disease group showed higher brain atrophy than non-carriers in the cholinergic pathway, while there is no difference between carriers and non-carriers in the CN group. APOE-ε4 allele carriers in the disease groups also exhibited a stronger cholinergic structural correlation than non-carriers did, while there is no difference between the carriers and non-carriers in the CN subjects. Disease subjects exhibited a stronger structural correlation in the cholinergic pathway than CN subjects did. Moreover, APOE-ε4 allele carriers in the disease group exhibited a stronger correlation between the volumetric changes and cognitive performance than non-carriers did, while there is no difference between carriers and non-carriers in CN subjects. Disease subjects exhibited a stronger correlation between the volumetric changes and cognitive performance than CN subjects did. Conclusion: Our results confirmed the effect of APOE-ε4 on and group differences in the associations with the cholinergic structural changes that may reflect impaired brain function underlying neurocognitive degeneration in AD.
Collapse
Affiliation(s)
- Ying-Liang Larry Lai
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan
| | - Kuan Chen
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Wei Lee
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Chao-Wei Tso
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Hui-Hsien Lin
- Computed Tomography (CT) and Magnetic Resonance (MR) Division, Rotary Trading Co., Ltd., Taipei, Taiwan
| | - Li-Wei Kuo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Cheng-Yu Chen
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Imaging, Taipei Medical University Hospital, Taipei, Taiwan
| | - Hua-Shan Liu
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
21
|
Verkerke M, Hol EM, Middeldorp J. Physiological and Pathological Ageing of Astrocytes in the Human Brain. Neurochem Res 2021; 46:2662-2675. [PMID: 33559106 PMCID: PMC8437874 DOI: 10.1007/s11064-021-03256-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/13/2022]
Abstract
Ageing is the greatest risk factor for dementia, although physiological ageing by itself does not lead to cognitive decline. In addition to ageing, APOE ε4 is genetically the strongest risk factor for Alzheimer's disease and is highly expressed in astrocytes. There are indications that human astrocytes change with age and upon expression of APOE4. As these glial cells maintain water and ion homeostasis in the brain and regulate neuronal transmission, it is likely that age- and APOE4-related changes in astrocytes have a major impact on brain functioning and play a role in age-related diseases. In this review, we will discuss the molecular and morphological changes of human astrocytes in ageing and the contribution of APOE4. We conclude this review with a discussion on technical issues, innovations, and future perspectives on how to gain more knowledge on astrocytes in the human ageing brain.
Collapse
Affiliation(s)
- Marloes Verkerke
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.
| | - Jinte Middeldorp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
- Department of Immunobiology, Biomedical Primate Research Centre (BPRC), P.O. Box 3306, 2280 GH, Rijswijk, The Netherlands
| |
Collapse
|
22
|
Gharbi-Meliani A, Dugravot A, Sabia S, Regy M, Fayosse A, Schnitzler A, Kivimäki M, Singh-Manoux A, Dumurgier J. The association of APOE ε4 with cognitive function over the adult life course and incidence of dementia: 20 years follow-up of the Whitehall II study. ALZHEIMERS RESEARCH & THERAPY 2021; 13:5. [PMID: 33397450 PMCID: PMC7784268 DOI: 10.1186/s13195-020-00740-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Approximately 25% of the general population carries at least one ε4 allele of the Apolipoprotein E (APOE ε4), the strongest genetic risk factor for late onset Alzheimer's disease. Beyond its association with late-onset dementia, the association between APOE ε4 and change in cognition over the adult life course remains uncertain. This study aims to examine whether the association between Apolipoprotein E (APOE) ε4 zygosity and cognition function is modified between midlife and old age. METHODS A cohort study of 5561 participants (mean age 55.5 (SD = 5.9) years, 27.1% women) with APOE genotyping and repeated cognitive tests for reasoning, memory, and semantic and phonemic fluency, during a mean (SD) follow-up of 20.2 (2.8) years (the Whitehall II study). We used joint models to examine the association of APOE genotype with cognitive function trajectories between 45 and 85 years taking drop-out, dementia, and death into account and Fine and Gray models to examine associations with dementia. RESULTS Compared to non-carriers, heterozygote (prevalence 25%) and homozygote (prevalence 2%) APOE ε4 carriers had increased risk of dementia, sub-distribution hazard ratios 2.19 (95% CI 1.73, 2.77) and 5.97 (95% CI 3.85, 9.28) respectively. Using data spanning 45-85 years with non-ε4 carriers as the reference, ε4 homozygotes had poorer global cognitive score starting from 65 years; ε4 heterozygotes had better scores between 45 and 55 years, then no difference until poorer cognitive scores from 75 years onwards. In analysis of individual cognitive tests, better cognitive performance in the younger ε4 heterozygotes was primarily attributable to executive function. CONCLUSIONS Both heterozygous and homozygous ε4 carriers had poorer cognition and greater risk of dementia at older ages. Our findings show some support for a complex antagonist pleiotropic effect of APOE ε4 heterozygosity over the adult life course, characterized by cognitive advantage in midlife.
Collapse
Affiliation(s)
- Amin Gharbi-Meliani
- Université de Paris, Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases, Paris, France
| | - Aline Dugravot
- Université de Paris, Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases, Paris, France
| | - Séverine Sabia
- Université de Paris, Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases, Paris, France
| | - Melina Regy
- Université de Paris, Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases, Paris, France
| | - Aurore Fayosse
- Université de Paris, Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases, Paris, France
| | - Alexis Schnitzler
- Université de Paris, Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases, Paris, France
| | - Mika Kivimäki
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Archana Singh-Manoux
- Université de Paris, Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases, Paris, France.,Department of Epidemiology and Public Health, University College London, London, UK
| | - Julien Dumurgier
- Université de Paris, Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases, Paris, France. .,Cognitive Neurology Center, Lariboisiere - Fernand Widal Hospital, AP-HP, Université de Paris, 200 rue du Faubourg Saint Denis, 75010, Paris, France.
| |
Collapse
|
23
|
Duits FH, Wesenhagen KEJ, Ekblad L, Wolters E, Willemse EAJ, Scheltens P, van der Flier WM, Teunissen CE, Visser PJ, Tijms BM. Four subgroups based on tau levels in Alzheimer's disease observed in two independent cohorts. Alzheimers Res Ther 2021; 13:2. [PMID: 33397464 PMCID: PMC7780683 DOI: 10.1186/s13195-020-00713-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND As Alzheimer's disease (AD) pathology presents decades before dementia manifests, unbiased biomarker cut-points may more closely reflect presence of pathology than clinically defined cut-points. Currently, unbiased cerebrospinal fluid (CSF) tau cut-points are lacking. METHODS We investigated CSF t-tau and p-tau cut-points across the clinical spectrum using Gaussian mixture modelling, in two independent cohorts (Amsterdam Dementia Cohort and ADNI). RESULTS Individuals with normal cognition (NC) (total n = 1111), mild cognitive impairment (MCI) (total n = 1213) and Alzheimer's disease dementia (AD) (total n = 1524) were included. In both cohorts, four CSF t- and p-tau distributions and three corresponding cut-points were identified. Increasingly high tau subgroups were characterized by steeper MMSE decline and higher progression risk to AD (cohort/platform-dependent HR, t-tau 1.9-21.3; p-tau 2.2-9.5). LIMITATIONS The number of subjects in some subgroups and subanalyses was small, especially in the highest tau subgroup and in tau PET analyses. CONCLUSIONS In two independent cohorts, t-tau and p-tau levels showed four subgroups. Increasingly high tau subgroups were associated with faster clinical decline, suggesting our approach may aid in more precise prognoses.
Collapse
Affiliation(s)
- Flora H Duits
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Kirsten E J Wesenhagen
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands.
| | - Laura Ekblad
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Emma Wolters
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Eline A J Willemse
- Department of Clinical Chemistry, Neurochemistry Laboratory, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Philip Scheltens
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Wiesje M van der Flier
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Department of Epidemiology and Biostatistics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Department of Clinical Chemistry, Neurochemistry Laboratory, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Pieter Jelle Visser
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Alzheimer Center Limburg, Department of Psychiatry & Neuropsychology, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Betty M Tijms
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| |
Collapse
|
24
|
Berger M, Cooter M, Roesler AS, Chung S, Park J, Modliszewski JL, VanDusen KW, Thompson JW, Moseley A, Devinney MJ, Smani S, Hall A, Cai V, Browndyke JN, Lutz MW, Corcoran DL. APOE4 Copy Number-Dependent Proteomic Changes in the Cerebrospinal Fluid. J Alzheimers Dis 2020; 79:511-530. [PMID: 33337362 PMCID: PMC7902966 DOI: 10.3233/jad-200747] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background: APOE4 has been hypothesized to increase Alzheimer’s disease risk by increasing neuroinflammation, though the specific neuroinflammatory pathways involved are unclear. Objective: Characterize cerebrospinal fluid (CSF) proteomic changes related to APOE4 copy number. Methods: We analyzed targeted proteomic data from ADNI CSF samples using a linear regression model adjusting for age, sex, and APOE4 copy number, and additional linear models also adjusting for AD clinical status or for CSF Aβ, tau, or p-tau levels. False discovery rate was used to correct for multiple comparisons correction. Results: Increasing APOE4 copy number was associated with a significant decrease in a CRP peptide level across all five models (q < 0.05 for each), and with significant increases in ALDOA, CH3L1 (YKL-40), and FABPH peptide levels (q < 0.05 for each) except when controlling for AD clinical status or neurodegeneration biomarkers (i.e., CSF tau or p-tau). In all models except the one controlling for CSF Aβ levels, though not statistically significant, there was a consistent inverse direction of association between APOE4 copy number and the levels of all 24 peptides from all 8 different complement proteins measured. The odds of this happening by chance for 24 unrelated peptides would be less than 1 in 16 million. Conclusion: Increasing APOE4 copy number was associated with decreased CSF CRP levels across all models, and increased CSF ALDOA, CH3L1, and FABH levels when controlling for CSF Aβ levels. Increased APOE4 copy number may also be associated with decreased CSF complement pathway protein levels, a hypothesis for investigation in future studies.
Collapse
Affiliation(s)
- Miles Berger
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.,Center for Cognitive Neuroscience, Duke Institute for Brain Sciences, Durham, NC, USA.,Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC, USA
| | - Mary Cooter
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Alexander S Roesler
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Stacey Chung
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - John Park
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | | | - Keith W VanDusen
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - J Will Thompson
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Arthur Moseley
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Michael J Devinney
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Shayan Smani
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.,Trinity College of Arts and Sciences, Duke University, Durham, NC, USA
| | - Ashley Hall
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Victor Cai
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.,Trinity College of Arts and Sciences, Duke University, Durham, NC, USA
| | - Jeffrey N Browndyke
- Center for Cognitive Neuroscience, Duke Institute for Brain Sciences, Durham, NC, USA.,Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC, USA.,Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Michael W Lutz
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - David L Corcoran
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | | |
Collapse
|