1
|
Liampas I, Siokas V, Mourtzi N, Charisis S, Sampatakakis SN, Foukarakis I, Hatzimanolis A, Ramirez A, Lambert JC, Yannakoulia M, Kosmidis MH, Dardiotis E, Hadjigeorgiou GM, Sakka P, Rouskas K, Scarmeas N. Genetic Predisposition to Hippocampal Atrophy and Risk of Amnestic Mild Cognitive Impairment and Alzheimer's Dementia. Geriatrics (Basel) 2025; 10:14. [PMID: 39846584 PMCID: PMC11755629 DOI: 10.3390/geriatrics10010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND There is a paucity of evidence on the association between genetic propensity for hippocampal atrophy with cognitive outcomes. Therefore, we examined the relationship of the polygenic risk score for hippocampal atrophy (PRShp) with the incidence of amnestic mild cognitive impairment (aMCI) and Alzheimer's disease (AD) as well as the rates of cognitive decline. METHODS Participants were drawn from the population-based HELIAD cohort. Comprehensive neuropsychological assessments were performed at baseline and at follow-up. PRShp was derived from the summary statistics of a large genome-wide association study for hippocampal volume. Cox proportional hazards models as well as generalized estimating equations (GEEs) were used to evaluate the association of PRShp with the combined incidence of aMCI/AD and cognitive changes over time, respectively. All models were adjusted for age, sex, education, and apolipoprotein E (APOE) genotype. RESULTS Our analysis included 618 older adults, among whom 73 developed aMCI/AD after an average follow-up of 2.96 ± 0.8 years. Each additional SD of PRShp elevated the relative hazard for incident aMCI/AD by 46%. Participants at the top quartile of PRShp had an almost three times higher risk of converting to aMCI/AD compared to the lowest quartile group. Higher PRShp scores were also linked to steeper global cognitive and memory decline. The impact of PRShp was greater among women and younger adults. CONCLUSIONS Our findings support the association of PRShp with aMCI/AD incidence and with global cognitive and memory decline over time. The PRS association was sex- and age-dependent, suggesting that these factors should be considered in genetic modelling for AD.
Collapse
Affiliation(s)
- Ioannis Liampas
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (I.L.); (V.S.); (E.D.)
| | - Vasileios Siokas
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (I.L.); (V.S.); (E.D.)
| | - Niki Mourtzi
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, 11528 Athens, Greece; (N.M.); (S.C.); (S.N.S.); (I.F.)
| | - Sokratis Charisis
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, 11528 Athens, Greece; (N.M.); (S.C.); (S.N.S.); (I.F.)
- Department of Neurology, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Stefanos N. Sampatakakis
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, 11528 Athens, Greece; (N.M.); (S.C.); (S.N.S.); (I.F.)
| | - Ioannis Foukarakis
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, 11528 Athens, Greece; (N.M.); (S.C.); (S.N.S.); (I.F.)
| | - Alex Hatzimanolis
- Department of Psychiatry, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, 11528 Athens, Greece;
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, 50923 Cologne, Germany;
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE Bonn), 53175 Bonn, Germany
- Department of Psychiatry, Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX 78229, USA
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Jean-Charles Lambert
- U1167-RID-AGE Facteurs de Risque et Déterminants Moléculaires des Maladies Liés au Vieillissement, CHU Lille, Inserm, Institut Pasteur de Lille, Université de Lille, 59000 Lille, France;
| | - Mary Yannakoulia
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece;
| | - Mary H. Kosmidis
- Lab of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (I.L.); (V.S.); (E.D.)
| | | | - Paraskevi Sakka
- Athens Association of Alzheimer’s Disease and Related Disorders, 11636 Maroussi, Greece;
| | - Konstantinos Rouskas
- Institute of Applied Biosciences, Centre for Research & Technology Hellas, 54124 Thessaloniki, Greece;
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, 11528 Athens, Greece; (N.M.); (S.C.); (S.N.S.); (I.F.)
- Department of Neurology, The Gertrude H. Sergievsky Center, Taub Institute for Research in Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032, USA
| |
Collapse
|
2
|
Van der Auwera S, Ameling S, Wittfeld K, Bülow R, Nauck M, Völzke H, Völker U, Grabe HJ. Circulating miRNAs modulating systemic low-grade inflammation and affecting neurodegeneration. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111130. [PMID: 39209100 DOI: 10.1016/j.pnpbp.2024.111130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE AND DESIGN Inflammatory processes are an important part of the etiology of many chronic diseases across various medical domains, including neurodegeneration. Understanding their regulation on the molecular level represents a major challenge. Regulatory microRNAs (miRNAs), have been recognized for their role in post-transcriptionally modulating immune-related pathways serving as biomarkers for numerous diseases. SUBJECTS AND METHODS This study aims to investigate the association between 176 plasma-circulating miRNAs and the blood-based immune markers C-reactive protein and fibrinogen within the general population-based SHIP-TREND-0 cohort (N = 801) and assess their impact on neurodegeneration in linear regression and moderation analyses. RESULTS We provide strong evidence for miRNA-mediated regulation, particularly in relation to fibrinogen, identifying 48 significant miRNAs with a pronounced over-representation in chronic inflammatory and neurological diseases. Additional moderation analyses explored the influence of the APOE ε4 genotype and brain white matter neurodegeneration on the association between miRNAs and inflammation. Again, significant associations were observed for fibrinogen with special emphasize on hsa-miR-148a-3p, known to impact on neuroinflammation. CONCLUSIONS Our study suggests the involvement of several plasma-circulating miRNAs in regulating immunological markers while also being linked to neurodegeneration. The strong interplay between miRNAs and inflammation holds promising potential for clinical application in many immune-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Sandra Van der Auwera
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany; German Centre for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 17475 Greifswald, Germany.
| | - Sabine Ameling
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Robin Bülow
- Institute for Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Matthias Nauck
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany; Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Henry Völzke
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany; Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany; German Centre for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 17475 Greifswald, Germany
| |
Collapse
|
3
|
Jang H, Shin D, Kim Y, Kim KW, Lee J, Kim JP, Kim HJ, Cho SH, Kim SE, Na DL, Seo SW. Korea-Registries to Overcome Dementia and Accelerate Dementia Research (K-ROAD): A Cohort for Dementia Research and Ethnic-Specific Insights. Dement Neurocogn Disord 2024; 23:212-223. [PMID: 39512701 PMCID: PMC11538854 DOI: 10.12779/dnd.2024.23.4.212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/06/2024] [Indexed: 11/15/2024] Open
Abstract
Background and Purpose Dementia, particularly Alzheimer's disease, is a significant global health concern, with early diagnosis and treatment development being critical goals. While numerous cohorts have advanced dementia research, there is a lack of comprehensive data on ethnic differences, particularly for the Korean population. The Korea-Registries to Overcome Dementia and Accelerate Dementia Research (K-ROAD) aims to establish a large-scale, hospital-based dementia cohort to address this gap, with a focus on understanding disease progression, developing early diagnostics, and supporting treatment advancements specific to the Korean population. Methods K-ROAD comprises multiple prospective cohorts. Participants underwent clinical evaluations, neuroimaging, and biomarker analysis, with data collected on a range of clinical and genomic markers. Results As of December 2023, K-ROAD has recruited over 5,800 participants, including individuals across the Alzheimer's clinical syndrome, subcortical vascular cognitive impairment, and frontotemporal dementia spectra. Preliminary findings highlight significant ethnic differences in amyloid positivity, cognitive decline, and biomarker profiles, compared to Western cohorts. Conclusions The K-ROAD cohort offers a unique and critical resource for dementia research, providing insights into ethnic-specific disease characteristics and biomarker profiles. These findings will contribute to the development of personalized diagnostic and therapeutic approaches to dementia, enhancing global understanding of the disease.
Collapse
Affiliation(s)
- Hyemin Jang
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Daeun Shin
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yeshin Kim
- Department of Neurology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Ko Woon Kim
- Department of Neurology, Jeonbuk National University Medical School and Hospital, Jeonju, Korea
| | - Juyoun Lee
- Department of Neurology, Chungnam National University Hospital, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Jun Pyo Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo Hyun Cho
- Department of Neurology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Si Eun Kim
- Department of Neurology, Inje University College of Medicine, Haeundae Paik Hospital, Busan, Korea
| | - Duk. L. Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | |
Collapse
|
4
|
Kim BH, Seo SW, Park YH, Kim J, Kim HJ, Jang H, Yun J, Kim M, Kim JP. Clinical application of sparse canonical correlation analysis to detect genetic associations with cortical thickness in Alzheimer's disease. Front Neurosci 2024; 18:1428900. [PMID: 39381682 PMCID: PMC11458562 DOI: 10.3389/fnins.2024.1428900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/19/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cerebral cortex atrophy. In this study, we used sparse canonical correlation analysis (SCCA) to identify associations between single nucleotide polymorphisms (SNPs) and cortical thickness in the Korean population. We also investigated the role of the SNPs in neurological outcomes, including neurodegeneration and cognitive dysfunction. Methods We recruited 1125 Korean participants who underwent neuropsychological testing, brain magnetic resonance imaging, positron emission tomography, and microarray genotyping. We performed group-wise SCCA in Aβ negative (-) and Aβ positive (+) groups. In addition, we performed mediation, expression quantitative trait loci, and pathway analyses to determine the functional role of the SNPs. Results We identified SNPs related to cortical thickness using SCCA in Aβ negative and positive groups and identified SNPs that improve the prediction performance of cognitive impairments. Among them, rs9270580 was associated with cortical thickness by mediating Aβ uptake, and three SNPs (rs2271920, rs6859, rs9270580) were associated with the regulation of CHRNA2, NECTIN2, and HLA genes. Conclusion Our findings suggest that SNPs potentially contribute to cortical thickness in AD, which in turn leads to worse clinical outcomes. Our findings contribute to the understanding of the genetic architecture underlying cortical atrophy and its relationship with AD.
Collapse
Affiliation(s)
- Bo-Hyun Kim
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Sang Won Seo
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Yu Hyun Park
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - JiHyun Kim
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Hee Jin Kim
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Hyemin Jang
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jihwan Yun
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Soonchunhyang University Bucheon Hospital, Gyeonggi-do, Republic of Korea
| | - Mansu Kim
- Artificial Intelligence Graduate School, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jun Pyo Kim
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| |
Collapse
|
5
|
Vilkaite G, Vogel J, Mattsson-Carlgren N. Integrating amyloid and tau imaging with proteomics and genomics in Alzheimer's disease. Cell Rep Med 2024; 5:101735. [PMID: 39293391 PMCID: PMC11525023 DOI: 10.1016/j.xcrm.2024.101735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/28/2024] [Accepted: 08/20/2024] [Indexed: 09/20/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and is characterized by the aggregation of β-amyloid (Aβ) and tau in the brain. Breakthroughs in disease-modifying treatments targeting Aβ bring new hope for the management of AD. But to effectively modify and someday even prevent AD, a better understanding is needed of the biological mechanisms that underlie and link Aβ and tau in AD. Developments of high-throughput omics, including genomics, proteomics, and transcriptomics, together with molecular imaging of Aβ and tau with positron emission tomography (PET), allow us to discover and understand the biological pathways that regulate the aggregation and spread of Aβ and tau in living humans. The field of integrated omics and PET studies of Aβ and tau in AD is growing rapidly. We here provide an update of this field, both in terms of biological insights and in terms of future clinical implications of integrated omics-molecular imaging studies.
Collapse
Affiliation(s)
- Gabriele Vilkaite
- Department of Clinical Sciences Malmö, SciLifeLab, Lund University, Lund, Sweden
| | - Jacob Vogel
- Department of Clinical Sciences Malmö, SciLifeLab, Lund University, Lund, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden; Department of Neurology, Skåne University Hospital, Lund University, Lund, Sweden; Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
6
|
Kim BH, Lee H, Ham H, Kim HJ, Jang H, Kim JP, Park YH, Kim M, Seo SW. Clinical effects of novel susceptibility genes for beta-amyloid: a gene-based association study in the Korean population. Front Aging Neurosci 2023; 15:1278998. [PMID: 37901794 PMCID: PMC10602697 DOI: 10.3389/fnagi.2023.1278998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Amyloid-beta (Aβ) is a pathological hallmark of Alzheimer's disease (AD). We aimed to identify genes related to Aβ uptake in the Korean population and investigate the effects of these novel genes on clinical outcomes, including neurodegeneration and cognitive impairments. We recruited a total of 759 Korean participants who underwent neuropsychological tests, brain magnetic resonance imaging, 18F-flutemetamol positron emission tomography, and microarray genotyping data. We performed gene-based association analysis, and also performed expression quantitative trait loci and network analysis. In genome-wide association studies, no single nucleotide polymorphism (SNP) passed the genome-wide significance threshold. In gene-based association analysis, six genes (LCMT1, SCRN2, LRRC46, MRPL10, SP6, and OSBPL7) were significantly associated with Aβ standardised uptake value ratio in the brain. The three most significant SNPs (rs4787307, rs9903904, and rs11079797) on these genes are associated with the regulation of the LCMT1, OSBPL7, and SCRN2 genes, respectively. These SNPs are involved in decreasing hippocampal volume and cognitive scores by mediating Aβ uptake. The 19 enriched gene sets identified by pathway analysis included axon and chemokine activity. Our findings suggest novel susceptibility genes associated with the uptake of Aβ, which in turn leads to worse clinical outcomes. Our findings might lead to the discovery of new AD treatment targets.
Collapse
Affiliation(s)
- Bo-Hyun Kim
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - HyunWoo Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Hongki Ham
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Hee Jin Kim
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyemin Jang
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jun Pyo Kim
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yu Hyun Park
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Mansu Kim
- Artificial Intelligence Graduate School, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Sang Won Seo
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
7
|
Lambert JC, Ramirez A, Grenier-Boley B, Bellenguez C. Step by step: towards a better understanding of the genetic architecture of Alzheimer's disease. Mol Psychiatry 2023; 28:2716-2727. [PMID: 37131074 PMCID: PMC10615767 DOI: 10.1038/s41380-023-02076-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/04/2023]
Abstract
Alzheimer's disease (AD) is considered to have a large genetic component. Our knowledge of this component has progressed over the last 10 years, thanks notably to the advent of genome-wide association studies and the establishment of large consortia that make it possible to analyze hundreds of thousands of cases and controls. The characterization of dozens of chromosomal regions associated with the risk of developing AD and (in some loci) the causal genes responsible for the observed disease signal has confirmed the involvement of major pathophysiological pathways (such as amyloid precursor protein metabolism) and opened up new perspectives (such as the central role of microglia and inflammation). Furthermore, large-scale sequencing projects are starting to reveal the major impact of rare variants - even in genes like APOE - on the AD risk. This increasingly comprehensive knowledge is now being disseminated through translational research; in particular, the development of genetic risk/polygenic risk scores is helping to identify the subpopulations more at risk or less at risk of developing AD. Although it is difficult to assess the efforts still needed to comprehensively characterize the genetic component of AD, several lines of research can be improved or initiated. Ultimately, genetics (in combination with other biomarkers) might help to redefine the boundaries and relationships between various neurodegenerative diseases.
Collapse
Affiliation(s)
- Jean-Charles Lambert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France.
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Neurodegenerative diseases and Geriatric Psychiatry, University Hospital Bonn, Medical Faculty, Bonn, Germany
- Department of Psychiatry & Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Benjamin Grenier-Boley
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Céline Bellenguez
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| |
Collapse
|
8
|
Ali M, Archer DB, Gorijala P, Western D, Timsina J, Fernández MV, Wang TC, Satizabal CL, Yang Q, Beiser AS, Wang R, Chen G, Gordon B, Benzinger TLS, Xiong C, Morris JC, Bateman RJ, Karch CM, McDade E, Goate A, Seshadri S, Mayeux RP, Sperling RA, Buckley RF, Johnson KA, Won HH, Jung SH, Kim HR, Seo SW, Kim HJ, Mormino E, Laws SM, Fan KH, Kamboh MI, Vemuri P, Ramanan VK, Yang HS, Wenzel A, Rajula HSR, Mishra A, Dufouil C, Debette S, Lopez OL, DeKosky ST, Tao F, Nagle MW, Hohman TJ, Sung YJ, Dumitrescu L, Cruchaga C. Large multi-ethnic genetic analyses of amyloid imaging identify new genes for Alzheimer disease. Acta Neuropathol Commun 2023; 11:68. [PMID: 37101235 PMCID: PMC10134547 DOI: 10.1186/s40478-023-01563-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/05/2023] [Indexed: 04/28/2023] Open
Abstract
Amyloid PET imaging has been crucial for detecting the accumulation of amyloid beta (Aβ) deposits in the brain and to study Alzheimer's disease (AD). We performed a genome-wide association study on the largest collection of amyloid imaging data (N = 13,409) to date, across multiple ethnicities from multicenter cohorts to identify variants associated with brain amyloidosis and AD risk. We found a strong APOE signal on chr19q.13.32 (top SNP: APOE ɛ4; rs429358; β = 0.35, SE = 0.01, P = 6.2 × 10-311, MAF = 0.19), driven by APOE ɛ4, and five additional novel associations (APOE ε2/rs7412; rs73052335/rs5117, rs1081105, rs438811, and rs4420638) independent of APOE ɛ4. APOE ɛ4 and ε2 showed race specific effect with stronger association in Non-Hispanic Whites, with the lowest association in Asians. Besides the APOE, we also identified three other genome-wide loci: ABCA7 (rs12151021/chr19p.13.3; β = 0.07, SE = 0.01, P = 9.2 × 10-09, MAF = 0.32), CR1 (rs6656401/chr1q.32.2; β = 0.1, SE = 0.02, P = 2.4 × 10-10, MAF = 0.18) and FERMT2 locus (rs117834516/chr14q.22.1; β = 0.16, SE = 0.03, P = 1.1 × 10-09, MAF = 0.06) that all colocalized with AD risk. Sex-stratified analyses identified two novel female-specific signals on chr5p.14.1 (rs529007143, β = 0.79, SE = 0.14, P = 1.4 × 10-08, MAF = 0.006, sex-interaction P = 9.8 × 10-07) and chr11p.15.2 (rs192346166, β = 0.94, SE = 0.17, P = 3.7 × 10-08, MAF = 0.004, sex-interaction P = 1.3 × 10-03). We also demonstrated that the overall genetic architecture of brain amyloidosis overlaps with that of AD, Frontotemporal Dementia, stroke, and brain structure-related complex human traits. Overall, our results have important implications when estimating the individual risk to a population level, as race and sex will needed to be taken into account. This may affect participant selection for future clinical trials and therapies.
Collapse
Affiliation(s)
- Muhammad Ali
- Department of Psychiatry, Washington University, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University, St. Louis, MO, 63110, USA
| | - Derek B Archer
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Priyanka Gorijala
- Department of Psychiatry, Washington University, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University, St. Louis, MO, 63110, USA
| | - Daniel Western
- Department of Psychiatry, Washington University, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University, St. Louis, MO, 63110, USA
| | - Jigyasha Timsina
- Department of Psychiatry, Washington University, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University, St. Louis, MO, 63110, USA
| | - Maria V Fernández
- Department of Psychiatry, Washington University, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University, St. Louis, MO, 63110, USA
| | - Ting-Chen Wang
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Claudia L Satizabal
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health, San Antonio, TX, 78229, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Alexa S Beiser
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | | | - Gengsheng Chen
- Knight Alzheimer's Disease Research Center, Washington University, St Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University, St Louis, MO, USA
| | - Brian Gordon
- Knight Alzheimer's Disease Research Center, Washington University, St Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University, St Louis, MO, USA
| | - Tammie L S Benzinger
- Knight Alzheimer's Disease Research Center, Washington University, St Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University, St Louis, MO, USA
| | - Chengjie Xiong
- Knight Alzheimer's Disease Research Center, Washington University, St Louis, MO, USA
| | - John C Morris
- Knight Alzheimer's Disease Research Center, Washington University, St Louis, MO, USA
- Department of Neurology, Washington University, St Louis, MO, USA
| | - Randall J Bateman
- Knight Alzheimer's Disease Research Center, Washington University, St Louis, MO, USA
- Department of Neurology, Washington University, St Louis, MO, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Celeste M Karch
- Department of Psychiatry, Washington University, St. Louis, MO, 63110, USA
| | - Eric McDade
- Department of Neurology, Washington University, St Louis, MO, USA
| | - Alison Goate
- Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sudha Seshadri
- Framingham Heart Study, Framingham, MA, USA
- Boston University School of Medicine, Boston, MA, USA
| | - Richard P Mayeux
- The Department of Neurology, Columbia University, New York, NY, USA
| | - Reisa A Sperling
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital and Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rachel F Buckley
- Brigham and Women's Hospital and Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Keith A Johnson
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hong-Hee Won
- Department of Digital Health, Samsung Medical Center, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Sang-Hyuk Jung
- Department of Digital Health, Samsung Medical Center, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Hang-Rai Kim
- Department of Neurology, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Republic of Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hee Jin Kim
- Department of Digital Health, Samsung Medical Center, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Elizabeth Mormino
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Simon M Laws
- Centre for Precision Health, Edith Cowan University, 270 Joondalup Dr, Joondalup, WA, 6027, Australia
| | - Kang-Hsien Fan
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Ilyas Kamboh
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Prashanthi Vemuri
- Department of Radiology, Mayo Clinic-Minnesota, Rochester, MN, 55905, USA
| | - Vijay K Ramanan
- Department of Neurology, Mayo Clinic-Minnesota, Rochester, MN, 55905, USA
| | - Hyun-Sik Yang
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, USA
| | - Allen Wenzel
- Wisconsin Alzheimer's Institute, Madison, WI, USA
| | - Hema Sekhar Reddy Rajula
- UMR 1219, University of Bordeaux, INSERM, Bordeaux Population Health Research Centre, Team ELEANOR, 33000, Bordeaux, France
| | - Aniket Mishra
- UMR 1219, University of Bordeaux, INSERM, Bordeaux Population Health Research Centre, Team ELEANOR, 33000, Bordeaux, France
| | - Carole Dufouil
- UMR 1219, University of Bordeaux, INSERM, Bordeaux Population Health Research Centre, Team ELEANOR, 33000, Bordeaux, France
| | - Stephanie Debette
- UMR 1219, University of Bordeaux, INSERM, Bordeaux Population Health Research Centre, Team ELEANOR, 33000, Bordeaux, France
- Department of Neurology, Boston University School of Medicine, Boston, MA, 2115, USA
- Department of Neurology, CHU de Bordeaux, 33000, Bordeaux, France
| | - Oscar L Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven T DeKosky
- Department of Neurology and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Feifei Tao
- Neurogenomics, Genetics-Guided Dementia Discovery, Eisai, Inc, Cambridge, MA, USA
| | - Michael W Nagle
- Neurogenomics, Genetics-Guided Dementia Discovery, Eisai, Inc, Cambridge, MA, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yun Ju Sung
- Department of Psychiatry, Washington University, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University, St. Louis, MO, 63110, USA
| | - Logan Dumitrescu
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University, St. Louis, MO, 63110, USA.
- NeuroGenomics and Informatics, Washington University, St. Louis, MO, 63110, USA.
- Knight Alzheimer's Disease Research Center, Washington University, St Louis, MO, USA.
- Hope Center for Neurologic Diseases, Washington University, St. Louis, MO, 63110, USA.
- Department of Genetics, Washington University School of Medicine, St Louis, MO, 63110, USA.
| |
Collapse
|
9
|
Jung SH, Kim HR, Chun MY, Jang H, Cho M, Kim B, Kim S, Jeong JH, Yoon SJ, Park KW, Kim EJ, Yoon B, Jang JW, Kim Y, Hong JY, Choi SH, Noh Y, Kim KW, Kim SE, Lee JS, Jung NY, Lee J, Lee AY, Kim BC, Cho SH, Cho H, Kim JH, Jung YH, Lee DY, Lee JH, Lee ES, Kim SJ, Moon SY, Son SJ, Hong CH, Bae JS, Lee S, Na DL, Seo SW, Cruchaga C, Kim HJ, Won HH. Transferability of Alzheimer Disease Polygenic Risk Score Across Populations and Its Association With Alzheimer Disease-Related Phenotypes. JAMA Netw Open 2022; 5:e2247162. [PMID: 36520433 PMCID: PMC9856322 DOI: 10.1001/jamanetworkopen.2022.47162] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/16/2022] [Indexed: 12/23/2022] Open
Abstract
Importance Polygenic risk scores (PRSs), which aggregate the genetic effects of single-nucleotide variants identified in genome-wide association studies (GWASs), can help distinguish individuals at a high genetic risk for Alzheimer disease (AD). However, genetic studies have predominantly focused on populations of European ancestry. Objective To evaluate the transferability of a PRS for AD in the Korean population using summary statistics from a prior GWAS of European populations. Design, Setting, and Participants This cohort study developed a PRS based on the summary statistics of a large-scale GWAS of a European population (the International Genomics of Alzheimer Project; 21 982 AD cases and 41 944 controls). This PRS was tested for an association with AD dementia and its related phenotypes in 1634 Korean individuals, who were recruited from 2013 to 2019. The association of a PRS based on a GWAS of a Japanese population (the National Center for Geriatrics and Gerontology; 3962 AD cases and 4074 controls) and a transancestry meta-analysis of European and Japanese GWASs was also evaluated. Data were analyzed from December 2020 to June 2021. Main Outcomes and Measures Risk of AD dementia, amnestic mild cognitive impairment (aMCI), earlier symptom onset, and amyloid β deposition (Aβ). Results A total of 1634 Korean patients (969 women [59.3%]), including 716 individuals (43.6%) with AD dementia, 222 (13.6%) with aMCI, and 699 (42.8%) cognitively unimpaired controls, were analyzed in this study. The mean (SD) age of the participants was 71.6 (9.0) years. Higher PRS was associated with a higher risk of AD dementia independent of APOE ɛ4 status in the Korean population (OR, 1.95; 95% CI, 1.40-2.72; P < .001). Furthermore, PRS was associated with aMCI, earlier symptom onset, and Aβ deposition independent of APOE ɛ4 status. The PRS based on a transancestry meta-analysis of data sets comprising 2 distinct ancestries showed a slightly improved accuracy. Conclusions and Relevance In this cohort study, a PRS derived from a European GWAS identified individuals at a high risk for AD dementia in the Korean population. These findings emphasize the transancestry transferability and clinical value of PRSs and suggest the importance of enriching diversity in genetic studies of AD.
Collapse
Affiliation(s)
- Sang-Hyuk Jung
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea
| | - Hang-Rai Kim
- Department of Neurology, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Republic of Korea
| | - Min Young Chun
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Hyemin Jang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Minyoung Cho
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea
| | - Beomsu Kim
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea
| | - Soyeon Kim
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea
| | - Jee Hyang Jeong
- Department of Neurology, Ewha Womans University Seoul Hospital, Ewha Womans University School of Medicine, Seoul, Republic of Korea
| | - Soo Jin Yoon
- Department of Neurology, Eulji University Hospital, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Kyung Won Park
- Department of Neurology, Dong-A University College of Medicine, Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| | - Eun-Joo Kim
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Medical Research Institute, Busan, Republic of Korea
| | - Bora Yoon
- Department of Neurology, Konyang University College of Medicine, Daejeon, Republic of Korea
| | - Jae-Won Jang
- Department of Neurology, Kangwon National University Hospital, Kangwon National University College of Medicine, Chuncheon, Republic of Korea
| | - Yeshin Kim
- Department of Neurology, Kangwon National University Hospital, Kangwon National University College of Medicine, Chuncheon, Republic of Korea
| | - Jin Yong Hong
- Department of Neurology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Seong Hye Choi
- Department of Neurology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Young Noh
- Department of Neurology, Gachon University College of Medicine, Gil Medical Center, Incheon, Republic of Korea
| | - Ko Woon Kim
- Department of Neurology, School of Medicine, Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Si Eun Kim
- Department of Neurology, Inje University College of Medicine, Haeundae Paik Hospital, Busan, Republic of Korea
| | - Jin San Lee
- Department of Neurology, Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Na-Yeon Jung
- Department of Neurology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine and Medical Research Institute, Busan, Republic of Korea
| | - Juyoun Lee
- Department of Neurology, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Ae Young Lee
- Department of Neurology, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Byeong C. Kim
- Departmet of Neurology, Chonnam National University School of Medicine, Gwangju, Republic of Korea
| | - Soo Hyun Cho
- Departmet of Neurology, Chonnam National University School of Medicine, Gwangju, Republic of Korea
| | - Hanna Cho
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Hun Kim
- Department of Neurology, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| | - Young Hee Jung
- Department of Neurology, Myongji Hospital, Hanyang University, Goyang, Republic of Korea
| | - Dong Young Lee
- Department of Psychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jae-Hong Lee
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Eek-Sung Lee
- Department of Neurology, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Seung Joo Kim
- Department of Neurology, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea
| | - So Young Moon
- Department of Neurology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sang Joon Son
- Department of Psychiatry, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Chang Hyung Hong
- Department of Psychiatry, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jin-Sik Bae
- Eone-Diagnomics Genome Center (EDGC), Incheon, Republic of Korea
| | - Sunghoon Lee
- Eone-Diagnomics Genome Center (EDGC), Incheon, Republic of Korea
| | - Duk L. Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Sang Won Seo
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Seoul, Republic of Korea
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, Missouri
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, Missouri
| | - Hee Jin Kim
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Hong-Hee Won
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| |
Collapse
|
10
|
Li L, Yu X, Sheng C, Jiang X, Zhang Q, Han Y, Jiang J. A review of brain imaging biomarker genomics in Alzheimer’s disease: implementation and perspectives. Transl Neurodegener 2022; 11:42. [PMID: 36109823 PMCID: PMC9476275 DOI: 10.1186/s40035-022-00315-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease with phenotypic changes closely associated with both genetic variants and imaging pathology. Brain imaging biomarker genomics has been developed in recent years to reveal potential AD pathological mechanisms and provide early diagnoses. This technique integrates multimodal imaging phenotypes with genetic data in a noninvasive and high-throughput manner. In this review, we summarize the basic analytical framework of brain imaging biomarker genomics and elucidate two main implementation scenarios of this technique in AD studies: (1) exploring novel biomarkers and seeking mutual interpretability and (2) providing a diagnosis and prognosis for AD with combined use of machine learning methods and brain imaging biomarker genomics. Importantly, we highlight the necessity of brain imaging biomarker genomics, discuss the strengths and limitations of current methods, and propose directions for development of this research field.
Collapse
|
11
|
Vigneswaran J, Muthukumar SA, Shafras M, Pant G. An insight into Alzheimer’s disease and its on-setting novel genes. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2021. [DOI: 10.1186/s41983-021-00420-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractAccording to the World Health Organisation, as of 2019, globally around 50 million people suffer from dementia, with approximately another 10 million getting added to the list every year, wherein Alzheimer’s disease (AD) stands responsible for almost a whopping 60–70% for the existing number of cases. Alzheimer’s disease is one of the progressive, cognitive-declining, age-dependent, neurodegenerative diseases which is distinguished by histopathological symptoms, such as formation of amyloid plaque, senile plaque, neurofibrillary tangles, etc. Majorly four vital transcripts are identified in the AD complications which include Amyloid precursor protein (APP), Apolipoprotein E (ApoE), and two multi-pass transmembrane domain proteins—Presenilin 1 and 2. In addition, the formation of the abnormal filaments such as amyloid beta (Aβ) and tau and their tangling with some necessary factors contributing to the formation of plaques, neuroinflammation, and apoptosis which in turn leads to the emergence of AD. Although multiple molecular mechanisms have been elucidated so far, they are still counted as hypotheses ending with neuronal death on the basal forebrain and hippocampal area which results in AD. This review article is aimed at addressing the overview of the molecular mechanisms surrounding AD and the functional forms of the genes associated with it.
Collapse
|