1
|
Yi D, Byun MS, Park JH, Kim JW, Jung G, Ahn H, Lee JY, Lee YS, Kim YK, Kang KM, Sohn CH, Liu S, Huang YN, Saykin AJ, Lee DY, Nho K. Tau pathway-based gene analysis on PET identifies CLU and FYN in a Korean cohort. Alzheimers Dement 2024. [PMID: 39625110 DOI: 10.1002/alz.14416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 12/13/2024]
Abstract
INTRODUCTION The influence of genetic variation on tau protein aggregation, a key factor in Alzheimer's disease (AD), remains not fully understood. We aimed to identify novel genes associated with brain tau deposition using pathway-based candidate gene association analysis in a Korean cohort. METHODS We analyzed data for 146 older adults from the well-established Korean AD continuum cohort (Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer's Disease; KBASE). Fifteen candidate genes related to both tau pathways and AD were selected. Association analyses were performed using PLINK: A tool set for whole-genome association and population-based linkage analyses (PLINK) on tau deposition measured by 18F-AV-1451 positron emission tomography (PET) scans, with additional voxel-wise analysis conducted using Statistical Parametric Mapping 12 (SPM12). RESULTS CLU and FYN were significantly associated with tau deposition, with the most significant single-nucleotide polymorphisms (SNPs) being rs149413552 and rs57650567, respectively. These SNPs were linked to increased tau across key brain regions and showed additive effects with apolipoprotein E (APOE) ε4. DISCUSSION CLU and FYN may play specific roles in tau pathophysiology, offering potential targets for biomarkers and therapies. HIGHLIGHTS Gene-based analysis identified CLU and FYN as associated with tau deposition on positron emission tomography (PET). CLU rs149413552 and FYN rs57650567 were associated with brain tau deposition. rs149413552 and rs57650567 were associated with structural brain atrophy. CLU rs149413552 was associated with immediate verbal memory. CLU and FYN may play specific roles in tau pathophysiology.
Collapse
Affiliation(s)
- Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, South Korea
| | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - Jong-Ho Park
- Precision Medicine Center, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, South Korea
| | - Jong-Won Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, South Korea
| | - Gijung Jung
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, South Korea
| | - Hyejin Ahn
- Interdisciplinary Program of Cognitive Science, Seoul National University College of Humanities, Gwanak-gu, Seoul, South Korea
| | - Jun-Young Lee
- Department of Psychiatry, Seoul National University Boramae Medical Center, Dongjak-gu, Seoul, South Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Jongro-gu, Seoul, South Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, Seoul National University Boramae Medical Center, Dongjak-gu, Seoul, South Korea
| | - Koung Mi Kang
- Department of Radiology, Seoul National University Hospital, Jongro-gu, Seoul, South Korea
- Department of Radiology, Seoul National University College of Medicine, Jongro-gu, Seoul, South Korea
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital, Jongro-gu, Seoul, South Korea
| | - Shiwei Liu
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yen-Ning Huang
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Andrew J Saykin
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Dong Young Lee
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, South Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - Kwangsik Nho
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
2
|
Li Q, Zhan J, Liao Z, Li J, Li X. Association of hemoglobin with plasma neurofilament light and white matter hyperintensities in Alzheimer's disease continuum. Heliyon 2024; 10:e37507. [PMID: 39290292 PMCID: PMC11407093 DOI: 10.1016/j.heliyon.2024.e37507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
Objective This study aimed to investigate the association of hemoglobin (Hb) with axonal injury marker plasma neurofilament light (PNFL) and brain structure measurements in the Alzheimer's disease (AD) continuum. Methods The data used in this study were collected from the Alzheimer's Disease Neuroimaging Initiative database. Participants with cognitively normal, mild cognitive impairment, and mild dementia were included in the data analyses. All participants had available data on blood tests, PNFL levels, neuropsychological assessments, brain structure measurements (including volumes of white matter hyperintensities [WMH], hippocampus, gray matter, and total brain), and Aβ positron emission tomography standardized uptake value ratio (SUVR) at baseline. Aβ-positive was defined as SUVR threshold value > 1.11. Linear regression, restricted cubic spline, and causal mediation analyses were conducted to investigate the association of Hb concentration with PNFL levels and brain structure measurements. Stratified analyses were also employed to evaluate the association between Hb concentration and PNFL levels across different APOE genotypes and sex. Results In the Aβ-positive group, Hb concentration was associated with PNFL levels (β = -0.022, p = 0.002). Stratified analyses suggested an association between Hb concentration and PNFL in APOE ɛ4 carriers (β = -0.031, p < 0.001) and males (β = -0.030, p < 0.001) but not in non-carriers and females (p > 0.05). Hb concentration was also associated with WMH volume (β = -0.04, p = 0.028), especially in APOE ɛ4 carriers, with mediation analysis revealing that PNFL mediated the association between Hb concentration and WMH volume. The association of Hb concentration with other brain structure measurements was minimal. Conclusion In the AD continuum, Hb was associated with axonal injury marker PNFL and WMH volume, particularly in APOE ɛ4 carriers.
Collapse
Affiliation(s)
- Qin Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Department of Neurology, The First People's Hospital of Yibin, Sichuan, 644000, China
| | - Jiehong Zhan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Zixuan Liao
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Jiayu Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xiaofeng Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| |
Collapse
|
3
|
Zhang Z, Chen X, Sheng Z. Association of triglyceride glucose-body mass index with Alzheimer's disease pathology, cognition and brain structure in non-demented people. Sci Rep 2024; 14:16097. [PMID: 38997334 PMCID: PMC11245502 DOI: 10.1038/s41598-024-67052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024] Open
Abstract
The relationship between the triglyceride glucose-body mass index (TyG-BMI) index and Alzheimer's disease (AD) pathology, cognition, and brain structure remains unclear. This study aimed to investigate these associations, focusing on cerebrospinal fluid (CSF) biomarkers, cognitive measures, and brain imaging data. Eight hundred and fifty-five non-demented participants were included. Linear regression was used to explore associations between the TyG-BMI index and AD pathology, cognition, and brain structure. The association between the TyG-BMI index and AD risk was assessed using Kaplan-Meier and Cox proportional hazards models. Longitudinal relationships were assessed using linear mixed-effects models. Mediation analyses were conducted to examine AD pathology's potential mediating role between the TyG-BMI index and cognition as well as brain structure. In the linear regression analyses, higher TyG-BMI levels were associated with increased Aβ42 and decreased Tau, pTau, Tau/Aβ42, pTau/Aβ42, and pTau/Tau. Positive correlations were observed with mini-mental state examination (MMSE), memory (MEM), executive function (EF), and the volumes of the hippocampus, entorhinal cortex, and middle temporal regions, while negative correlations were found with Alzheimer's Disease Assessment Scale (ADAS). Longitudinally, the TyG-BMI index was inversely associated with ADAS, and positively with MMSE, MEM, EF, hippocampus, entorhinal, and middle temporal. High TyG-BMI levels were correlated with lower AD risk (HR 0.996 [0.994, 0.999]). Mediation analyses revealed AD pathology mediated the association between TyG-BMI index and cognition as well as brain structure. Additionally, the TyG-BMI index could mediate cognitive changes by influencing brain structure. The TyG-BMI index is associated with AD pathology, cognition, and brain structure.
Collapse
Affiliation(s)
- Zihao Zhang
- Medical College, Qingdao University, Qingdao, 266000, China.
| | - Xin Chen
- School of Athletic Performance, Shanghai University of Sport, Shanghai, 200438, China
- Chongming District Sports School, Shanghai, 202150, China
| | - Zehu Sheng
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
4
|
Wang R, Zhan Y, Zhu W, Yang Q, Pei J. Association of soluble TREM2 with Alzheimer's disease and mild cognitive impairment: a systematic review and meta-analysis. Front Aging Neurosci 2024; 16:1407980. [PMID: 38841103 PMCID: PMC11150578 DOI: 10.3389/fnagi.2024.1407980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024] Open
Abstract
Objective Soluble triggering receptor expressed on myeloid cells 2 (sTREM2) is a potential neuroinflammatory biomarker linked to the pathogenesis of Alzheimer's disease (AD) and mild cognitive impairment (MCI). Previous studies have produced inconsistent results regarding sTREM2 levels in various clinical stages of AD. This study aims to establish the correlation between sTREM2 levels and AD progression through a meta-analysis of sTREM2 levels in cerebrospinal fluid (CSF) and blood. Methods Comprehensive searches were conducted in PubMed, Embase, Web of Science, and the Cochrane Library to identify observational studies reporting CSF and blood sTREM2 levels in AD patients, MCI patients, and healthy controls. A random effects meta-analysis was used to calculate the standardized mean difference (SMD) and 95% confidence intervals (CIs). Results Thirty-six observational studies involving 3,016 AD patients, 3,533 MCI patients, and 4,510 healthy controls were included. CSF sTREM2 levels were significantly higher in both the AD [SMD = 0.28, 95% CI (0.15, 0.41)] and MCI groups [SMD = 0.30, 95% CI (0.13, 0.47)] compared to the healthy control group. However, no significant differences in expression were detected between the AD and MCI groups [SMD = 0.09, 95% CI (-0.09, 0.26)]. Furthermore, increased plasma sTREM2 levels were associated with a higher risk of AD [SMD = 0.42, 95% CI (0.01, 0.83)]. Conclusion CSF sTREM2 levels are positively associated with an increased risk of AD and MCI. Plasma sTREM2 levels were notably higher in the AD group than in the control group and may serve as a promising biomarker for diagnosing AD. However, sTREM2 levels are not effective for distinguishing between different disease stages of AD. Further investigations are needed to explore the longitudinal changes in sTREM2 levels, particularly plasma sTREM2 levels, during AD progression. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42024514593.
Collapse
Affiliation(s)
| | | | | | | | - Jian Pei
- Department of Acupuncture, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Qian L, Bian W, Wang D, Ming Z, Zhang Y, Zhang L, Fu L. Adeno-Associated Virus-Mediated Immunotherapy Based on Bispecific Tandem scFv for Alzheimer’s Disease. J Alzheimers Dis 2023; 93:435-448. [PMID: 37038816 DOI: 10.3233/jad-221088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Background: Patients with Alzheimer’s disease (AD) have considerably increased globally as a result of population aging, placing a significant burden on the global economy and the medical system. The outcome of clinical trials for AD immunotherapy that solely targeted amyloid-β (Aβ) or phosphorylated tau protein (p-Tau) was unsatisfactory. Therefore, blocking both Aβ and p-Tau’s pathological processes simultaneously while also preventing their interaction may be the key to developing an effective AD therapy. Objective: To develop a novel immunotherapy based on bispecific tandem scFv (TaFv) against AD. Methods: Bispecific single-chain antibody that targets both Aβ and p-Tau were obtained using E. coli expression system. Biological ability of TaFvs were determined by ELISA, SDS-PAGE, and immunohistochemical assay. Recombinant adeno-associated virus 9 (rAAV9) were packaged to create TaFv. The in vivo activity of rAAV9 were detected in mouse, using biophotonic imaging and frozen section methods. Results: The outcomes demonstrated that both Aβ and p-Tau had a high affinity for the bispecific TaFv. Additionally, it can bind to the amyloid plaques and neuronal tangles in the brain slices of an AD mouse model. Moreover, the rAAV9 could infect neuronal cells, transverse the blood-brain barrier, and express TaFv in the mouse brain. Conclusion: This novel immunotherapy offers a fresh concept for the immunotherapy of AD and successfully delivers the double target antibody into the brain, acting on both pathogenic substances Aβ and p-Tau.
Collapse
Affiliation(s)
- Lin Qian
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China
| | - Wenjuan Bian
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China
| | - Diqi Wang
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China
| | - Zhuoqun Ming
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China
| | - Yu Zhang
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China
| | - Linbo Zhang
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, China
| | - Lu Fu
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory for AIDS Vaccine,School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
6
|
Soluble TREM2 in body fluid in Alzheimer's disease and Parkinson's disease. Neurol Sci 2023:10.1007/s10072-023-06729-5. [PMID: 36913148 DOI: 10.1007/s10072-023-06729-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND Previous studies showed conflicting results regarding soluble triggering receptor expressed on myeloid cells 2 (sTREM2) level alteration in body fluid in Alzheimer's disease (AD) and Parkinson's disease (PD). METHODS We applied the STATA 12.0 software to compute standard mean difference (SMD) and 95% confidence interval (CI). RESULTS The study showed elevated sTREM2 level in cerebrospinal fluid (CSF) in AD, mild cognitive impairment (MCI), and preclinical AD (pre-AD) patients, compared to healthy controls (HCs) with random effects models (AD: SMD 0.28, 95% CI 0.12 to 0.44, I2 = 77.6%, p < 0.001; MCI: SMD 0.29, 95% CI 0.09 to 0.48, I2 = 89.7%, p < 0.001; pre-AD: SMD 0.24, 95% CI 0.00 to 0.48, I2 = 80.8%, p < 0.001). The study showed no significant difference in sTREM2 level in plasma between AD patients and HCs with a random effects model (SMD 0.06, 95% CI - 0.16 to 0.28, I2 = 65.6%, p = 0.008). The study showed no significant difference in sTREM2 level in CSF or plasma between PD patients and HCs with random effects models (CSF: SMD 0.33, 95% CI - 0.02 to 0.67, I2 = 85.6%, p < 0.001; plasma: SMD 0.37, 95% CI - 0.17 to 0.92, I2 = 77.8%, p = 0.011). CONCLUSIONS In conclusion, the study highlighted the CSF sTREM2 as a promising biomarker in the different clinical stages of AD. More studies were essential to explore the CSF and plasmatic concentrations of sTREM2 alteration in PD.
Collapse
|
7
|
O’Bryant SE, Petersen M, Hall JR, Large S, Johnson LA. Plasma Biomarkers of Alzheimer's Disease Are Associated with Physical Functioning Outcomes Among Cognitively Normal Adults in the Multiethnic HABS-HD Cohort. J Gerontol A Biol Sci Med Sci 2023; 78:9-15. [PMID: 35980599 PMCID: PMC9879752 DOI: 10.1093/gerona/glac169] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Indexed: 02/02/2023] Open
Abstract
In this study, we examined the link between plasma Alzheimer's disease (AD) biomarkers and physical functioning outcomes within a community-dwelling, multiethnic cohort. Data from 1 328 cognitively unimpaired participants (n = 659 Mexican American and n = 669 non-Hispanic White) from the ongoing Health & Aging Brain Study-Health Disparities (HABS-HD) cohort were examined. Plasma AD biomarkers (amyloid beta [Aβ]40, Aβ42, total tau [t-tau], and neurofilament light chain [NfL]) were assayed using the ultra-sensitive Simoa platform. Physical functioning measures were the Timed Up and Go (TUG) and the Short Physical Performance Battery (SPPB). Cross-sectional linear regression analyses revealed that plasma Aβ 40 (p < .001), Aβ 42 (p = .003), and NfL (p < .001) were each significantly associated with TUG time in seconds. Plasma Aβ 40 (p < .001), Aβ 42 (p < .001), t-tau (p = .002), and NfL (p < .001) were each significantly associated with SPPB Total Score. Additional analyses demonstrate that the link between plasma AD biomarkers and physical functioning outcomes were strongest among Mexican Americans. Plasma AD biomarkers are receiving a great deal of attention in the literature and are now available clinically including use in clinical trials. The examination of AD biomarkers and physical functioning may allow for the development of risk profiles, which could stratify a person's risk for neurodegenerative diseases, such as AD, based on plasma AD biomarkers, physical functioning, ethnicity, or a combination of these measures prior to the onset of cognitive impairment.
Collapse
Affiliation(s)
- Sid E O’Bryant
- Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Department of Family Medicine, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Melissa Petersen
- Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Department of Family Medicine, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - James R Hall
- Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Department of Family Medicine, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Stephanie Large
- Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Leigh A Johnson
- Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
8
|
Kamaruzzaman MA, Romli MH, Abas R, Vidyadaran S, Hidayat Baharuldin MT, Nasaruddin ML, Thirupathirao V, Sura S, Warsito K, Mohd Nor NH, Azwaruddin MA, Alshawsh MA, Mohd Moklas MA. Regulatory role of the endocannabinoid system on glial cells toward cognitive function in Alzheimer's disease: A systematic review and meta-analysis of animal studies. Front Pharmacol 2023; 14:1053680. [PMID: 36959856 PMCID: PMC10028478 DOI: 10.3389/fphar.2023.1053680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/08/2023] [Indexed: 03/06/2023] Open
Abstract
Objective: Over the last decade, researchers have sought to develop novel medications against dementia. One potential agent under investigation is cannabinoids. This review systematically appraised and meta-analyzed published pre-clinical research on the mechanism of endocannabinoid system modulation in glial cells and their effects on cognitive function in animal models of Alzheimer's disease (AD). Methods: A systematic review complying with PRISMA guidelines was conducted. Six databases were searched: EBSCOHost, Scopus, PubMed, CINAHL, Cochrane, and Web of Science, using the keywords AD, cannabinoid, glial cells, and cognition. The methodological quality of each selected pre-clinical study was evaluated using the SYRCLE risk of bias tool. A random-effects model was applied to analyze the data and calculate the effect size, while I2 and p-values were used to assess heterogeneity. Results: The analysis included 26 original articles describing (1050 rodents) with AD-like symptoms. Rodents treated with cannabinoid agonists showed significant reductions in escape latency (standard mean difference [SMD] = -1.26; 95% confidence interval [CI]: -1.77 to -0.76, p < 0.00001) and ability to discriminate novel objects (SMD = 1.40; 95% CI: 1.04 to 1.76, p < 0.00001) compared to the control group. Furthermore, a significant decrease in Aβ plaques (SMD = -0.91; 95% CI: -1.55 to -0.27, p = 0.006) was observed in the endocannabinoid-treated group compared to the control group. Trends were observed toward neuroprotection, as represented by decreased levels of glial cell markers including glial fibrillary acid protein (SMD = -1.47; 95% CI: -2.56 to -0.38, p = 0.008) and Iba1 (SMD = -1.67; 95% CI: -2.56 to -0.79, p = 0.0002). Studies on the wild-type mice demonstrated significantly decreased levels of pro-inflammatory markers TNF-α, IL-1, and IL-6 (SMD = -2.28; 95% CI: -3.15 to -1.41, p = 0.00001). Despite the non-significant decrease in pro-inflammatory marker levels in transgenic mice (SMD = -0.47; 95% CI: -1.03 to 0.08, p = 0.09), the result favored the endocannabinoid-treated group over the control group. Conclusion: The revised data suggested that endocannabinoid stimulation promotes cognitive function via modulation of glial cells by decreasing pro-inflammatory markers in AD-like rodent models. Thus, cannabinoid agents may be required to modulate the downstream chain of effect to enhance cognitive stability against concurrent neuroinflammation in AD. Population-based studies and well-designed clinical trials are required to characterize the acceptability and real-world effectiveness of cannabinoid agents. Systematic Review Registration: [https://inplasy.com/inplasy-2022-8-0094/], identifier [Inplasy Protocol 3770].
Collapse
Affiliation(s)
- Mohd Amir Kamaruzzaman
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
| | - Muhammad Hibatullah Romli
- Department of Nursing and Rehabilitation, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
| | - Razif Abas
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
| | - Sharmili Vidyadaran
- Department of Pathology, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
| | | | | | | | - Sreenivasulu Sura
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
- Department of Preclinical Sciences, Faculty of Medicine and Health Sciences, University Tunku Abdul Rahman, Kampar, Malaysia
| | - Kabul Warsito
- Department of Agrotechnology, Faculty of Science and Technology, University of Pembangunan Panca Budi, Medan, Indonesia
| | - Nurul Huda Mohd Nor
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
| | - Muhammad Amsyar Azwaruddin
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
| | - Mohammed Abdullah Alshawsh
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Paediatrics, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Science, Monash University, Clayton, VIC, Australia
- *Correspondence: Mohamad Aris Mohd Moklas, ; Mohammed Abdullah Alshawsh,
| | - Mohamad Aris Mohd Moklas
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
- *Correspondence: Mohamad Aris Mohd Moklas, ; Mohammed Abdullah Alshawsh,
| |
Collapse
|
9
|
Kumar S, Raj VS, Ahmad A, Saini V. Amoxicillin modulates gut microbiota to improve short-term high-fat diet induced pathophysiology in mice. Gut Pathog 2022; 14:40. [PMID: 36229889 PMCID: PMC9563906 DOI: 10.1186/s13099-022-00513-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND A high-fat diet (HFD) induced perturbation of gut microbiota is a major contributory factor to promote the pathophysiology of HFD-associated metabolic syndrome. The HFD could also increase the susceptibility to the microbial infections warranting the use of antibiotics which are independently capable of impacting both gut microbiota and metabolic syndrome. Further, the usage of antibiotics in individuals consuming HFD can impact mitochondrial function that can be associated with an elevated risk of chronic conditions like inflammatory bowel disease (IBD). Despite this high propensity to infections in individuals on HFD, the link between duration of HFD and antibiotic treatment, and its impact on diversity of the gut microbiome and features of metabolic syndrome is not well established. In this study, we have addressed these knowledge gaps by examining how the gut microbiota profile changes in HFD-fed mice receiving antibiotic intervention in the form of amoxicillin. We also determine whether antibiotic treatment in HFD-fed mice may adversely impact the ability of immune cells to clear microbial infections. METHODS AND RESULTS We have subjected mice to HFD and chow diet (CD) for 3 weeks, and a subset of these mice on both diets received antibiotic intervention in the form of amoxicillin in the 3rd week. Body weight and food intake were recorded for 3 weeks. After 21 days, all animals were weighted and sacrificed. Subsequently, these animals were evaluated for basic haemato-biochemical and histopathological attributes. We used 16S rRNA sequencing followed by bioinformatics analysis to determine changes in gut microbiota in these mice. We observed that a HFD, even for a short-duration, could successfully induce the partial pathophysiology typical of a metabolic syndrome, and substantially modulated the gut microbiota in mice. The short course of amoxicillin treatment to HFD-fed mice resulted in beneficial effects by significantly reducing fasting blood glucose and skewing the number of thrombocytes towards a normal range. Remarkably, we observed a significant remodelling of gut microbiota in amoxicillin-treated HFD-fed mice. Importantly, some gut microbes associated with improved insulin sensitivity and recovery from metabolic syndrome only appeared in amoxicillin-treated HFD-fed mice reinforcing the beneficial effects of antibiotic treatment in the HFD-associated metabolic syndrome. Moreover, we also observed the presence of gut-microbiota unique to amoxicillin-treated HFD-fed mice that are also known to improve the pathophysiology associated with metabolic syndrome. However, both CD-fed as well as HFD-fed mice receiving antibiotics showed an increase in intestinal pathogens as is typically observed for antibiotic treatment. Importantly though, infection studies with S. aureus and A. baumannii, revealed that macrophages isolated from amoxicillin-treated HFD-fed mice are comparable to those isolated from mice receiving only HFD or CD in terms of susceptibility, and progression of microbial infection. This finding clearly indicated that amoxicillin treatment does not introduce any additional deficits in the ability of macrophages to combat microbial infections. CONCLUSIONS Our results showed that amoxicillin treatment in HFD-fed mice exert a beneficial influence on the pathophysiological attributes of metabolic syndrome which correlates with a significant remodelling of gut microbiota. A novel observation was the increase in microbes known to improve insulin sensitivity following amoxicillin treatment during short-term intake of HFD. Even though there is a minor increase in gut-resistant intestinal pathogens in amoxicillin-treated groups, there is no adverse impact on macrophages with respect to their susceptibility and ability to control infections. Taken together, this study provides a proof of principle for the exploration of amoxicillin treatment as a potential therapy in the people affected with metabolic syndrome.
Collapse
Affiliation(s)
- Suresh Kumar
- National Institute of Biologicals, Ministry of Health & Family Welfare, Govt. of India, Noida, 201309, India.
| | - V Samuel Raj
- Center for Drug, Design, Discovery and Development (C4D), SRM University, Delhi-NCR, 131029, Sonepat, Haryana, India
| | - Ayaan Ahmad
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Vikram Saini
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India.
- Biosafety Laboratory-3, Centralized Core Research Facility (CCRF), All India Institute of Medical Sciences (AIIMS), New Delhi, India.
| |
Collapse
|
10
|
Zhang Y, Wu KM, Yang L, Dong Q, Yu JT. Tauopathies: new perspectives and challenges. Mol Neurodegener 2022; 17:28. [PMID: 35392986 PMCID: PMC8991707 DOI: 10.1186/s13024-022-00533-z] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/23/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Tauopathies are a class of neurodegenerative disorders characterized by neuronal and/or glial tau-positive inclusions. MAIN BODY Clinically, tauopathies can present with a range of phenotypes that include cognitive/behavioral-disorders, movement disorders, language disorders and non-specific amnestic symptoms in advanced age. Pathologically, tauopathies can be classified based on the predominant tau isoforms that are present in the inclusion bodies (i.e., 3R, 4R or equal 3R:4R ratio). Imaging, cerebrospinal fluid (CSF) and blood-based tau biomarkers have the potential to be used as a routine diagnostic strategy and in the evaluation of patients with tauopathies. As tauopathies are strongly linked neuropathologically and genetically to tau protein abnormalities, there is a growing interest in pursuing of tau-directed therapeutics for the disorders. Here we synthesize emerging lessons on tauopathies from clinical, pathological, genetic, and experimental studies toward a unified concept of these disorders that may accelerate the therapeutics. CONCLUSIONS Since tauopathies are still untreatable diseases, efforts have been made to depict clinical and pathological characteristics, identify biomarkers, elucidate underlying pathogenesis to achieve early diagnosis and develop disease-modifying therapies.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, 12th Wulumuqi Zhong Road, Shanghai, 200040 China
| | - Kai-Min Wu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, 12th Wulumuqi Zhong Road, Shanghai, 200040 China
| | - Liu Yang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, 12th Wulumuqi Zhong Road, Shanghai, 200040 China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, 12th Wulumuqi Zhong Road, Shanghai, 200040 China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, 12th Wulumuqi Zhong Road, Shanghai, 200040 China
| |
Collapse
|