1
|
Di Filippo M, Gaetani L, Centonze D, Hegen H, Kuhle J, Teunissen CE, Tintoré M, Villar LM, Willemse EA, Zetterberg H, Parnetti L. Fluid biomarkers in multiple sclerosis: from current to future applications. THE LANCET REGIONAL HEALTH. EUROPE 2024; 44:101009. [PMID: 39444698 PMCID: PMC11496979 DOI: 10.1016/j.lanepe.2024.101009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/21/2024] [Accepted: 07/09/2024] [Indexed: 10/25/2024]
Abstract
Multiple sclerosis (MS) is an immune-mediated inflammatory and degenerative disorder of the central nervous system (CNS) with heterogeneous clinical manifestations. In the last decade, the landscape of cerebrospinal fluid (CSF) and blood biomarkers as potential key tools for MS diagnosis, prognosis and treatment monitoring has evolved considerably, alongside magnetic resonance imaging (MRI). CSF analysis has the potential not only to provide information on the underlying immunopathology of the disease and exclude differential diagnoses, but also to predict the risk of future relapses and disability accrual, guide therapeutic decisions and thus improve patient outcomes. This Series article overviews the biological framework and current applicability of fluid biomarkers for MS, exploring their potential role in the molecular characterisation of the disease. We discuss recent advances in the field of neurochemistry that enabled the detection of brain-derived proteins in blood, opening the door to much more efficient longitudinal disease monitoring. Furthermore, we identify the current challenges in the application of fluid biomarkers for MS in a real-world setting, while offering recommendations for harnessing their full potential as key paraclinical tools to improve patient management and personalise treatment.
Collapse
Affiliation(s)
- Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Diego Centonze
- IRCCS Neuromed, Pozzilli, IS, Italy
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Harald Hegen
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jens Kuhle
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Mar Tintoré
- Multiple Sclerosis Centre of Catalonia (Cemcat), Department of Neurology, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Barcelona, Spain
| | - Luisa M. Villar
- Departments of Immunology and Neurology, Multiple Sclerosis Unit, Hospital Ramon y Cajal, (IRYCIS), Madrid, Spain
| | - Eline A.J. Willemse
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- UW Department of Medicine, School of Medicine and Public Health, Madison, WI, USA
| | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
2
|
Teunissen CE. Proteomics Analysis Moves the Needle by Generating Clinical Diagnostic Markers. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200256. [PMID: 38684037 PMCID: PMC11057433 DOI: 10.1212/nxi.0000000000200256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/14/2024] [Indexed: 05/02/2024]
Affiliation(s)
- Charlotte E Teunissen
- From the Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands
| |
Collapse
|
3
|
Hsiao-Nakamoto J, Chiu CL, VandeVrede L, Ravi R, Vandenberg B, De Groot J, Tsogtbaatar B, Fang M, Auger P, Gould NS, Marchioni F, Powers CA, Davis SS, Suh JH, Alkabsh J, Heuer HW, Lago AL, Scearce-Levie K, Seeley WW, Boeve BF, Rosen HJ, Berger A, Tsai R, Di Paolo G, Boxer AL, Bhalla A, Huang F. Alterations in Lysosomal, Glial and Neurodegenerative Biomarkers in Patients with Sporadic and Genetic Forms of Frontotemporal Dementia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579529. [PMID: 38405775 PMCID: PMC10888909 DOI: 10.1101/2024.02.09.579529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Background Frontotemporal dementia (FTD) is the most common cause of early-onset dementia with 10-20% of cases caused by mutations in one of three genes: GRN, C9orf72, or MAPT. To effectively develop therapeutics for FTD, the identification and characterization of biomarkers to understand disease pathogenesis and evaluate the impact of specific therapeutic strategies on the target biology as well as the underlying disease pathology are essential. Moreover, tracking the longitudinal changes of these biomarkers throughout disease progression is crucial to discern their correlation with clinical manifestations for potential prognostic usage. Methods We conducted a comprehensive investigation of biomarkers indicative of lysosomal biology, glial cell activation, synaptic and neuronal health in cerebrospinal fluid (CSF) and plasma from non-carrier controls, sporadic FTD (symptomatic non-carriers) and symptomatic carriers of mutations in GRN, C9orf72, or MAPT, as well as asymptomatic GRN mutation carriers. We also assessed the longitudinal changes of biomarkers in GRN mutation carriers. Furthermore, we examined biomarker levels in disease impacted brain regions including middle temporal gyrus (MTG) and superior frontal gyrus (SFG) and disease-unaffected inferior occipital gyrus (IOG) from sporadic FTD and symptomatic GRN carriers. Results We confirmed glucosylsphingosine (GlcSph), a lysosomal biomarker regulated by progranulin, was elevated in the plasma from GRN mutation carriers, both symptomatic and asymptomatic. GlcSph and other lysosomal biomarkers such as ganglioside GM2 and globoside GB3 were increased in the disease affected SFG and MTG regions from sporadic FTD and symptomatic GRN mutation carriers, but not in the IOG, compared to the same brain regions from controls. The glial biomarkers GFAP in plasma and YKL40 in CSF were elevated in asymptomatic GRN carriers, and all symptomatic groups, except the symptomatic C9orf72 mutation group. YKL40 was also increased in SFG and MTG regions from sporadic FTD and symptomatic GRN mutation carriers. Neuronal injury and degeneration biomarkers NfL in CSF and plasma, and UCHL1 in CSF were elevated in patients with all forms of FTD. Synaptic biomarkers NPTXR, NPTX1/2, and VGF were reduced in CSF from patients with all forms of FTD, with the most pronounced reductions observed in symptomatic MAPT mutation carriers. Furthermore, we demonstrated plasma NfL was significantly positively correlated with disease severity as measured by CDR+NACC FTLD SB in genetic forms of FTD and CSF NPTXR was significantly negatively correlated with CDR+NACC FTLD SB in symptomatic GRN and MAPT mutation carriers. Conclusions In conclusion, our comprehensive investigation replicated alterations in biofluid biomarkers indicative of lysosomal function, glial activation, synaptic and neuronal health across sporadic and genetic forms of FTD and unveiled novel insights into the dysregulation of these biomarkers within brain tissues from patients with GRN mutations. The observed correlations between biomarkers and disease severity open promising avenues for prognostic applications and for indicators of drug efficacy in clinical trials. Our data also implicated a complicated relationship between biofluid and tissue biomarker changes and future investigations should delve into the mechanistic underpinnings of these biomarkers, which will serve as a foundation for the development of targeted therapeutics for FTD.
Collapse
Affiliation(s)
- Jennifer Hsiao-Nakamoto
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
- These authors contributed equally
| | - Chi-Lu Chiu
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
- These authors contributed equally
| | - Lawren VandeVrede
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Ritesh Ravi
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Brittany Vandenberg
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
- Present address: Brittany Vandenberg, Washington State University, Pullman, WA 99164, USA
| | - Jack De Groot
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
- Present address: Jack DeGroot: Prime Medicine Inc., Cambridge, MA 02139, USA
| | | | - Meng Fang
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Paul Auger
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
- Present address: Paul Auger: Nurix Therapeutics, San Francisco, CA 94158, USA
| | - Neal S Gould
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Filippo Marchioni
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Casey A Powers
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
- Present address: Casey A. Powers: Stanford University, Stanford, CA 94305, USA
| | - Sonnet S Davis
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Jung H Suh
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Jamal Alkabsh
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Hilary W Heuer
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Argentina Lario Lago
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Kimberly Scearce-Levie
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
- Present address: Kimberly Scearce-Levie: Cajal Neuroscience, Seattle, WA 98109, USA
| | - William W Seeley
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Howard J Rosen
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Amy Berger
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Richard Tsai
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Gilbert Di Paolo
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Adam L Boxer
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, 94158, USA
- These authors contributed equally
| | - Akhil Bhalla
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
- These authors contributed equally
| | - Fen Huang
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
- These authors contributed equally
| |
Collapse
|
4
|
Xu F, Xu J, Wang Q, Gao F, Fu J, Yan T, Dong Q, Su Y, Cheng X. Serum YKL-40 as a Predictive Biomarker of Cerebral Amyloid Angiopathy-Related Intracerebral Hemorrhage Recurrence. J Alzheimers Dis 2024; 99:503-511. [PMID: 38669531 DOI: 10.3233/jad-231125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Background Neuroinflammation is a major cause of secondary brain injury in intracerebral hemorrhage (ICH). To date, the prognostic value of YKL-40 (chitinase-3-like-1 protein), a biomarker of neuroinflammation, in cerebral amyloid angiopathy-related intracerebral hemorrhage (CAA-ICH) remains undiscovered. Objective To evaluate the relationships between serum YKL-40 and CAA-ICH recurrence. Methods Clinical and imaging information of 68 first-onset probable CAA-ICH cases and 95 controls were collected at baseline. Serum YKL-40 was measured by Luminex assay. Cox proportional hazards model was used to analyze the associations between YKL-40 level and CAA-ICH recurrence. Results Serum YKL-40 level was significantly higher in CAA-ICH cases than healthy controls (median [interquartile range, IQR], 46.1 [19.8, 93.4] versus 24.4 [13.9, 59.0] ng/mL, p = 0.004). Higher level of YKL-40 predicted increased risk of CAA-ICH recurrence adjusted for age, ICH volume and enlarged perivascular space score (ePVS) (above versus below 115.5 ng/ml, adjusted hazard ratios 4.721, 95% confidence intervals 1.829-12.189, p = 0.001) within a median follow-up period of 2.4 years. Adding YKL-40 to a model of only MRI imaging markers including ICH volume and ePVS score improved the discriminatory power (concordance index from 0.707 to 0.772, p = 0.001) and the reclassification power (net reclassification improvement 28.4%; integrated discrimination index 11.0%). Conclusions Serum YKL-40 level might be a candidate prognostic biomarker for CAA-ICH recurrence.
Collapse
Affiliation(s)
- Feifan Xu
- Department of Neurology, National Centre for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiajie Xu
- Department of Neurology, National Centre for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiong Wang
- Department of Neurology, First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- Neurodegenerative Disorder Research Centre and Institute on Aging and Brain Disorders, University of Science and Technology of China, Hefei, China
| | - Feng Gao
- Neurodegenerative Disorder Research Centre and Institute on Aging and Brain Disorders, University of Science and Technology of China, Hefei, China
| | - Jiayu Fu
- Department of Neurology, National Centre for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Tingmeng Yan
- Department of Neurology, National Centre for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology, National Centre for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ya Su
- Department of Neurology, National Centre for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin Cheng
- Department of Neurology, National Centre for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Zhang Y, Tian J, Ni J, Wei M, Li T, Shi J. Peripheral Blood and Cerebrospinal Fluid Levels of YKL-40 in Alzheimer's Disease: A Systematic Review and Meta-Analysis. Brain Sci 2023; 13:1364. [PMID: 37891733 PMCID: PMC10605482 DOI: 10.3390/brainsci13101364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
The pathogenesis associated with Alzheimer's disease (AD) is particularly complicated, and early diagnosis and course monitoring of the disease are not ideal based on the available core biomarkers. As a biomarker closely related to neuroinflammation, YKL-40 provides a potential scalable approach in AD, but its association remains controversial and inconclusive with AD. We conducted this study to assess the utility of YKL-40 levels in peripheral blood and cerebrospinal fluid (CSF) of AD patients and healthy controls (HCs) by meta-analysis. We systematically searched and screened relevant trials for comparing YKL-40 levels between AD patients and HCs in PubMed, Embase, Cochrane, and Web of Science, with a search deadline of 14 March 2023 for each database. A total of 17 eligible and relevant studies involving 1811 subjects, including 949 AD patients and 862 HCs, were included. The results showed that YKL-40 levels in the peripheral blood of AD patients and HCs did not possess significant differences. Subgroup analysis showed YKL-40 significantly differed in plasma (SMD = 0.527, 95%CI: [0.302, 0.752]; p = 0.000), but did not in serum. In the case of comparison with HCs, YKL-40 was significantly higher in CSF of AD patients (SMD = 0.893, 95%CI: [0.665, 1.121]; p = 0.000). Besides that, when we performed a combined analysis of total YKL-40 in both peripheral blood and CSF, overall YKL-40 concentrations were also significantly increased among AD patients (SMD = 0.608, 95%CI: [0.272, 0.943]; p = 0.000). YKL-40 provides support and rationale for the neuroinflammatory pathogenesis of AD. The significance of CSF levels of YKL-40 for early screening of AD is definite. Plasma levels of YKL-40 also appear to assist in discriminating AD patients from HCs, which facilitates early screening and monitoring of the natural course of AD.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Shi
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; (Y.Z.); (J.T.); (J.N.); (M.W.); (T.L.)
| |
Collapse
|
6
|
Ahmad I, Wergeland S, Oveland E, Bø L. An Association of Chitinase-3 Like-Protein-1 With Neuronal Deterioration in Multiple Sclerosis. ASN Neuro 2023; 15:17590914231198980. [PMID: 38062768 PMCID: PMC10710113 DOI: 10.1177/17590914231198980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/28/2023] [Accepted: 08/16/2023] [Indexed: 12/18/2023] Open
Abstract
Elevated levels of Chitinase-3-like protein-1 (CHI3L1) in cerebrospinal fluid have previously been linked to inflammatory activity and disease progression in multiple sclerosis (MS) patients. This study aimed to investigate the presence of CHI3L1 in the brains of MS patients and in the cuprizone model in mice (CPZ), a model of toxic/metabolic demyelination and remyelination in different brain areas. In MS gray matter (GM), CHI3L1 was detected primarily in astrocytes and in a subset of pyramidal neurons. In neurons, CHI3L1 immunopositivity was associated with lipofuscin-like substance accumulation, a sign of cellular aging that can lead to cell death. The density of CHI3L1-positive neurons was found to be significantly higher in normal-appearing MS GM tissue compared to that of control subjects (p = .014). In MS white matter (WM), CHI3L1 was detected in astrocytes located within lesion areas, as well as in perivascular normal-appearing areas and in phagocytic cells from the initial phases of lesion development. In the CPZ model, the density of CHI3L1-positive cells was strongly associated with microglial activation in the WM and choroid plexus inflammation. Compared to controls, CHI3L1 immunopositivity in WM was increased from an early phase of CPZ exposure. In the GM, CHI3L1 immunopositivity increased later in the CPZ exposure phase, particularly in the deep GM region. These results indicate that CHI3L1 is associated with neuronal deterioration, pre-lesion pathology, along with inflammation in MS.
Collapse
Affiliation(s)
- Intakhar Ahmad
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Stig Wergeland
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Norwegian MS-registry and biobank, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Neuro-SysMed, Haukeland University Hospital, Bergen, Norway
| | - Eystein Oveland
- Proteomics Unit at the University of Bergen (PROBE), Department of Biomedicine, University of Bergen, Bergen, Norway
- Institute of Marine Research, IMR, Bergen, Norway
| | - Lars Bø
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
7
|
Bartra C, Irisarri A, Villoslada A, Corpas R, Aguirre S, García-Lara E, Suñol C, Pallàs M, Griñán-Ferré C, Sanfeliu C. Neuroprotective Epigenetic Changes Induced by Maternal Treatment with an Inhibitor of Soluble Epoxide Hydrolase Prevents Early Alzheimer's Disease Neurodegeneration. Int J Mol Sci 2022; 23:ijms232315151. [PMID: 36499477 PMCID: PMC9740580 DOI: 10.3390/ijms232315151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Modulation of Alzheimer's disease (AD) risk begins early in life. During embryo development and postnatal maturation, the brain receives maternal physiological influences and establishes epigenetic patterns that build its level of resilience to late-life diseases. The soluble epoxide hydrolase inhibitor N-[1-(1-oxopropyl)-4-piperidinyl]-N'-[4-(trifluoromethoxy)phenyl] urea (TPPU), reported as ant-inflammatory and neuroprotective against AD pathology in the adult 5XFAD mouse model of AD, was administered to wild-type (WT) female mice mated to heterozygous 5XFAD males during gestation and lactation. Two-month-old 5XFAD male and female offspring of vehicle-treated dams showed memory loss as expected. Remarkably, maternal treatment with TPPU fully prevented memory loss in 5XFAD. TPPU-induced brain epigenetic changes in both WT and 5XFAD mice, modulating global DNA methylation (5-mC) and hydroxymethylation (5-hmC) and reducing the gene expression of some histone deacetylase enzymes (Hdac1 and Hdac2), might be on the basis of the long-term neuroprotection against cognitive impairment and neurodegeneration. In the neuropathological analysis, both WT and 5XFAD offspring of TPPU-treated dams showed lower levels of AD biomarkers of tau hyperphosphorylation and microglia activation (Trem2) than the offspring of vehicle-treated dams. Regarding sex differences, males and females were similarly protected by maternal TPPU, but females showed higher levels of AD risk markers of gliosis and neurodegeneration. Taken together, our results reveal that maternal treatment with TPPU impacts in preventing or delaying memory loss and AD pathology by inducing long-term modifications in the epigenetic machinery and its marks.
Collapse
Affiliation(s)
- Clara Bartra
- Institut d′Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Científicas (CSIC), 08036 Barcelona, Spain
- Institut d′Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Alba Irisarri
- Institut d′Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Científicas (CSIC), 08036 Barcelona, Spain
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, 08028 Barcelona, Spain
| | - Ainhoa Villoslada
- Institut d′Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Científicas (CSIC), 08036 Barcelona, Spain
| | - Rubén Corpas
- Institut d′Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Científicas (CSIC), 08036 Barcelona, Spain
- Institut d′Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Samuel Aguirre
- Institut d′Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Científicas (CSIC), 08036 Barcelona, Spain
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, 08028 Barcelona, Spain
| | - Elisa García-Lara
- Institut d′Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Científicas (CSIC), 08036 Barcelona, Spain
- Institut d′Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Cristina Suñol
- Institut d′Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Científicas (CSIC), 08036 Barcelona, Spain
- Institut d′Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, 08028 Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Christian Griñán-Ferré
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, 08028 Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Coral Sanfeliu
- Institut d′Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Científicas (CSIC), 08036 Barcelona, Spain
- Institut d′Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-363-8338
| |
Collapse
|
8
|
Al-Ghraiybah NF, Wang J, Alkhalifa AE, Roberts AB, Raj R, Yang E, Kaddoumi A. Glial Cell-Mediated Neuroinflammation in Alzheimer's Disease. Int J Mol Sci 2022; 23:10572. [PMID: 36142483 PMCID: PMC9502483 DOI: 10.3390/ijms231810572] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder; it is the most common cause of dementia and has no treatment. It is characterized by two pathological hallmarks, the extracellular deposits of amyloid beta (Aβ) and the intraneuronal deposits of Neurofibrillary tangles (NFTs). Yet, those two hallmarks do not explain the full pathology seen with AD, suggesting the involvement of other mechanisms. Neuroinflammation could offer another explanation for the progression of the disease. This review provides an overview of recent advances on the role of the immune cells' microglia and astrocytes in neuroinflammation. In AD, microglia and astrocytes become reactive by several mechanisms leading to the release of proinflammatory cytokines that cause further neuronal damage. We then provide updates on neuroinflammation diagnostic markers and investigational therapeutics currently in clinical trials to target neuroinflammation.
Collapse
Affiliation(s)
- Nour F. Al-Ghraiybah
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Junwei Wang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Amer E. Alkhalifa
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Andrew B. Roberts
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Ruchika Raj
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Euitaek Yang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Amal Kaddoumi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| |
Collapse
|
9
|
Hok-A-Hin YS, Dijkstra AA, Rábano A, Hoozemans JJ, Castillo L, Seelaar H, van Swieten JC, Pijnenburg YAL, Teunissen CE, Del Campo M. Apolipoprotein L1 is increased in frontotemporal lobar degeneration post-mortem brain but not in ante-mortem cerebrospinal fluid. Neurobiol Dis 2022; 172:105813. [PMID: 35820647 DOI: 10.1016/j.nbd.2022.105813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022] Open
Abstract
AIMS Frontotemporal Dementia (FTD) is caused by frontal-temporal lobar degeneration (FTLD), characterized mainly by brain protein aggregates of tau (FTLD-Tau) or TDP-43 (FTLD-TDP). The clinicopathological heterogeneity makes ante-mortem diagnosis of these pathological subtypes challenging. Our proteomics study showed increased Apolipoprotein L1 (APOL1) levels in CSF from FTD patients, which was prominently expressed in FTLD-Tau. We aimed to understand APOL1 expression in FTLD post-mortem brain tissue and to validate its potential as a CSF biomarker for FTD and its pathological subtypes. METHODS APOL1 levels were analyzed in the frontal cortex of FTLD (including FTLD-Tau and FTLD-TDP) and non-demented controls by immunohistochemistry (FTLD total = 18 (12 FTLD-Tau and 6 FTLD-TDP); controls = 9), western blot (WB), and a novel prototype ELISA (FTLD total = 44 (21 FTLD-Tau and 23 FTLD-TDP); controls = 9). The association of APOL1 immunoreactivity with phosphorylated Tau (pTau) and TDP-43 (pTDP-43) immunoreactivity was assessed. CSF APOL1 was analyzed in confirmed FTD patients (n = 27, including 12 FTLD-Tau and 15 FTLD-TDP) and controls (n = 15) using the same ELISA. RESULTS APOL1 levels were significantly increased in FTLD post-mortem tissue compared to controls as measured by immunohistochemistry, WB, and ELISA. However, no differences between the pathological subtypes were observed. APOL1 immunoreactivity was present in neuronal and glial cells but did not co-localize with pTau or pTDP-43. CSF APOL1 levels were comparable between FTD patients and controls and between pathological subtypes. CONCLUSION APOL1 is upregulated in FTLD pathology irrespective of the subtypes, indicating a role of this novel protein in FTD pathophysiology. The APOL1 levels detected in brain tissue were not mirrored in the CSF, limiting its potential as a specific FTD biofluid-based biomarker using our current immunoassay.
Collapse
Affiliation(s)
- Yanaika S Hok-A-Hin
- Neurochemistry Laboratory, Clinical Chemistry Department, Amsterdam Neuroscience, VU University Medical Centers, the Netherlands.
| | - Anke A Dijkstra
- Department of Pathology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, the Netherlands
| | - Alberto Rábano
- CIEN Tissue Bank, Alzheimer's Centre Reina Sofía-CIEN Foundation, Madrid, Spain
| | - Jeroen J Hoozemans
- Department of Pathology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, the Netherlands
| | - Lucía Castillo
- Neurochemistry Laboratory, Clinical Chemistry Department, Amsterdam Neuroscience, VU University Medical Centers, the Netherlands
| | - Harro Seelaar
- Department of Neurology and Alzheimer Center, Erasmus Medical Center Rotterdam, Rotterdam, the Netherlands
| | - John C van Swieten
- Department of Neurology and Alzheimer Center, Erasmus Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Yolande A L Pijnenburg
- Alzheimer Centre Amsterdam and Department of Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, the Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Clinical Chemistry Department, Amsterdam Neuroscience, VU University Medical Centers, the Netherlands
| | - Marta Del Campo
- Neurochemistry Laboratory, Clinical Chemistry Department, Amsterdam Neuroscience, VU University Medical Centers, the Netherlands; Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo- CEU, CEU Universities, Madrid, Spain
| |
Collapse
|