1
|
Morozova I, Zorkina Y, Berdalin A, Ikonnikova A, Emelyanova M, Fedoseeva E, Antonova O, Gryadunov D, Andryushchenko A, Ushakova V, Abramova O, Zeltser A, Kurmishev M, Savilov V, Osipova N, Preobrazhenskaya I, Kostyuk G, Morozova A. Dynamics of Cognitive Impairment in MCI Patients over a Three-Year Period: The Informative Role of Blood Biomarkers, Neuroimaging, and Genetic Factors. Diagnostics (Basel) 2024; 14:1883. [PMID: 39272668 PMCID: PMC11394601 DOI: 10.3390/diagnostics14171883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Given the high growth rates of cognitive decline among the elderly population and the lack of effective etiological treatments, early diagnosis of cognitive impairment progression is an imperative task for modern science and medicine. It is of particular interest to identify predictors of an unfavorable subsequent course of cognitive disorders, specifically, rapid progression. Our study assessed the informative role of various risk factors on the dynamics of cognitive impairment among mild cognitive impairment (MCI) patients. The study included patients with MCI (N = 338) who underwent neuropsychological assessment, magnetic resonance imaging (MRI) examination, blood sampling for general and biochemical analysis, APOE genotyping, and polygenic risk score (PRS) evaluation. The APOE ε4/ε4 genotype was found to be associated with a diminished overall cognitive scores initial assessment and negative cognitive dynamics. No associations were found between cognitive changes and the PRS. The progression of cognitive impairment was associated with the width of the third ventricle and hematological parameters, specifically, hematocrit and erythrocyte levels. The absence of significant associations between the dynamics of cognitive decline and PRS over three years can be attributed to the provided suitable medical care for the prevention of cognitive impairment. Adding other risk factors and their inclusion in panels assessing the risk of progression of cognitive impairment should be considered.
Collapse
Affiliation(s)
- Irina Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 115191 Moscow, Russia
| | - Yana Zorkina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 115191 Moscow, Russia
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
| | - Alexander Berdalin
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 115191 Moscow, Russia
| | - Anna Ikonnikova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Marina Emelyanova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena Fedoseeva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Olga Antonova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitry Gryadunov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alisa Andryushchenko
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 115191 Moscow, Russia
- Department of Mental Health, Faculty of Psychology, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Valeriya Ushakova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 115191 Moscow, Russia
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
- Department of Mental Health, Faculty of Psychology, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olga Abramova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 115191 Moscow, Russia
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
| | - Angelina Zeltser
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 115191 Moscow, Russia
| | - Marat Kurmishev
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 115191 Moscow, Russia
| | - Victor Savilov
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 115191 Moscow, Russia
| | - Natalia Osipova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 115191 Moscow, Russia
| | - Irina Preobrazhenskaya
- Department of Nervous Diseases and Neurosurgery, I. M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Georgy Kostyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 115191 Moscow, Russia
- Department of Mental Health, Faculty of Psychology, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Psychiatry and Psychosomatics, I. M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
- Department of Psychiatry, Federal State Budgetary Educational Institution of Higher Education Russian Biotechnological University, 125080 Moscow, Russia
| | - Anna Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 115191 Moscow, Russia
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
| |
Collapse
|
2
|
Ge YJ, Fu Y, Gong W, Cheng W, Yu JT. Genetic architecture of brain morphology and overlap with neuropsychiatric traits. Trends Genet 2024; 40:706-717. [PMID: 38702264 DOI: 10.1016/j.tig.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 05/06/2024]
Abstract
Uncovering the genetic architectures of brain morphology offers valuable insights into brain development and disease. Genetic association studies of brain morphological phenotypes have discovered thousands of loci. However, interpretation of these loci presents a significant challenge. One potential solution is exploring the genetic overlap between brain morphology and disorders, which can improve our understanding of their complex relationships, ultimately aiding in clinical applications. In this review, we examine current evidence on the genetic associations between brain morphology and neuropsychiatric traits. We discuss the impact of these associations on the diagnosis, prediction, and treatment of neuropsychiatric diseases, along with suggestions for future research directions.
Collapse
Affiliation(s)
- Yi-Jun Ge
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Fu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Weikang Gong
- School of Data Science, Fudan University, Shanghai, China; Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 9DU, UK
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China; Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China.
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Korbmacher M, van der Meer D, Beck D, Askeland-Gjerde DE, Eikefjord E, Lundervold A, Andreassen OA, Westlye LT, Maximov II. Distinct Longitudinal Brain White Matter Microstructure Changes and Associated Polygenic Risk of Common Psychiatric Disorders and Alzheimer's Disease in the UK Biobank. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100323. [PMID: 39132576 PMCID: PMC11313202 DOI: 10.1016/j.bpsgos.2024.100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 03/24/2024] [Accepted: 04/16/2024] [Indexed: 08/13/2024] Open
Abstract
Background During the course of adulthood and aging, white matter (WM) structure and organization are characterized by slow degradation processes such as demyelination and shrinkage. An acceleration of such aging processes has been linked to the development of a range of diseases. Thus, an accurate description of healthy brain maturation, particularly in terms of WM features, is fundamental to the understanding of aging. Methods We used longitudinal diffusion magnetic resonance imaging to provide an overview of WM changes at different spatial and temporal scales in the UK Biobank (UKB) (n = 2678; agescan 1 = 62.38 ± 7.23 years; agescan 2 = 64.81 ± 7.1 years). To examine the genetic overlap between WM structure and common clinical conditions, we tested the associations between WM structure and polygenic risk scores for the most common neurodegenerative disorder, Alzheimer's disease, and common psychiatric disorders (unipolar and bipolar depression, anxiety, obsessive-compulsive disorder, autism, schizophrenia, attention-deficit/hyperactivity disorder) in longitudinal (n = 2329) and cross-sectional (n = 31,056) UKB validation data. Results Our findings indicate spatially distributed WM changes across the brain, as well as distributed associations of polygenic risk scores with WM. Importantly, brain longitudinal changes reflected genetic risk for disorder development better than the utilized cross-sectional measures, with regional differences giving more specific insights into gene-brain change associations than global averages. Conclusions We extend recent findings by providing a detailed overview of WM microstructure degeneration on different spatial levels, helping to understand fundamental brain aging processes. Further longitudinal research is warranted to examine aging-related gene-brain associations.
Collapse
Affiliation(s)
- Max Korbmacher
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Mohn Medical Imaging and Visualization Centre, Bergen, Norway
| | - Dennis van der Meer
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Dani Beck
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Daniel E. Askeland-Gjerde
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Eli Eikefjord
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Bergen, Norway
| | - Arvid Lundervold
- Mohn Medical Imaging and Visualization Centre, Bergen, Norway
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ole A. Andreassen
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Lars T. Westlye
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Ivan I. Maximov
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
4
|
Lancaster T, Creese B, Escott-Price V, Driver I, Menzies G, Khan Z, Corbett A, Ballard C, Williams J, Murphy K, Chandler H. Proof-of-concept recall-by-genotype study of extremely low and high Alzheimer's polygenic risk reveals autobiographical deficits and cingulate cortex correlates. Alzheimers Res Ther 2023; 15:213. [PMID: 38087383 PMCID: PMC10714651 DOI: 10.1186/s13195-023-01362-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Genome-wide association studies demonstrate that Alzheimer's disease (AD) has a highly polygenic architecture, where thousands of independent genetic variants explain risk with high classification accuracy. This AD polygenic risk score (AD-PRS) has been previously linked to preclinical cognitive and neuroimaging features observed in asymptomatic individuals. However, shared variance between AD-PRS and neurocognitive features are small, suggesting limited preclinical utility. METHODS Here, we recruited sixteen clinically asymptomatic individuals (mean age 67; range 58-76) with either extremely low / high AD-PRS (defined as at least 2 standard deviations from the wider sample mean (N = 4504; N EFFECTIVE = 90)) with comparable age sex and education level. We assessed group differences in autobiographical memory and T1-weighted structural neuroimaging features. RESULTS We observed marked reductions in autobiographical recollection (Cohen's d = - 1.66; P FDR = 0.014) and midline structure (cingulate) thickness (Cohen's d = - 1.55, P FDR = 0.05), with no difference in hippocampal volume (P > 0.3). We further confirm the negative association between AD-PRS and cingulate thickness in a larger study with a comparable age (N = 31,966, β = - 0.002, P = 0.011), supporting the validity of our approach. CONCLUSIONS These observations conform with multiple streams of prior evidence suggesting alterations in cingulate structures may occur in individuals with higher AD genetic risk. We were able to use a genetically informed research design strategy that significantly improved the efficiency and power of the study. Thus, we further demonstrate that the recall-by-genotype of AD-PRS from wider samples is a promising approach for the detection, assessment, and intervention in specific individuals with increased AD genetic risk.
Collapse
Affiliation(s)
- Thomas Lancaster
- Department of Psychology, University of Bath, Bath, UK.
- School of Physics and Astronomy, Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK.
- Dementia Research Institute (UKDRI), Cardiff University, Cardiff, UK.
| | - Byron Creese
- Department of Clinical and Biomedical Science, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
- Department of Life Sciences, Brunel University London, Uxbridge, west London, UK
| | - Valentina Escott-Price
- Division of Neuroscience and Mental Health, School of Medicine, Cardiff University, Cardiff, UK
| | - Ian Driver
- School of Physics and Astronomy, Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK
| | - Georgina Menzies
- Dementia Research Institute (UKDRI), Cardiff University, Cardiff, UK
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Zunera Khan
- Institute of Psychiatry, King's College London, Psychology & Neuroscience, London, UK
| | - Anne Corbett
- Deptartment of Health & Community Sciences, University of Exeter, Exeter, UK
| | - Clive Ballard
- Department of Clinical and Biomedical Science, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Julie Williams
- Dementia Research Institute (UKDRI), Cardiff University, Cardiff, UK
| | - Kevin Murphy
- School of Physics and Astronomy, Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK
| | - Hannah Chandler
- School of Physics and Astronomy, Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK
| |
Collapse
|