1
|
Duan K, Ban X, Wang Y, Li C, Gu Z, Li Z. Improving the Product Specificity of Maltotetraose-Forming Amylase from Pseudomonas saccharophila STB07 by Removing the Carbohydrate-Binding Module. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13709-13718. [PMID: 36238980 DOI: 10.1021/acs.jafc.2c05580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Maltotetraose (G4) is composed of four glucose units linked by the α-1,4-glycosidic bond, which has excellent adaptability in food processing and specific physiological functions. Maltotetraose-forming amylases (MFAses) are used in the industry as a promising tool for G4 production. The MFAse from Pseudomonas saccharophila STB07 (MFAPS), which belongs to the GH13, can preferentially hydrolyze substrates to G4. MFAPS contains a carbohydrate-binding module (CBM). In this study, we removed the CBM to obtain the mutant MFAPS-ΔCBM. We explored the aspects affecting the catalytic performance of enzymes through structural simulations and molecular docking. Results showed that when the CBM was removed, the thermal stability of MFAPS was slightly reduced, and its catalytic ability for long-chain substrates, such as corn starch, was significantly reduced. However, the catalytic ability and product specificity of the substrates with shorter chain length, such as maltodextrin (DE 7-9), were improved. The G1-G7 (glucose (G1), maltose (G2), maltotriose (G3), maltotetraose (G4), maltopentaose (G5), maltohexaose (G6), and maltoheptaose (G7)) contents and G4 proportion of the mutant MFAPS-ΔCBM reaction at 24 h were 11.1 and 11.6% higher than those of MFAPS, respectively. The results also showed that the forces of MFAPS on the substrate near the -4, -1, +1, and +3 subsites were critical for its product specificity.
Collapse
Affiliation(s)
- Kaiwen Duan
- School of Food Science and Technology, Jiangnan University, Wuxi214122, People's Republic of China
| | - Xiaofeng Ban
- School of Food Science and Technology, Jiangnan University, Wuxi214122, People's Republic of China
| | - Yinglan Wang
- School of Food Science and Technology, Jiangnan University, Wuxi214122, People's Republic of China
| | - Caiming Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi214122, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu214122, People's Republic of China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi214122, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu214122, People's Republic of China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi214122, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu214122, People's Republic of China
| |
Collapse
|
2
|
Verschoor JA, Kusumawardhani H, Ram AFJ, de Winde JH. Toward Microbial Recycling and Upcycling of Plastics: Prospects and Challenges. Front Microbiol 2022; 13:821629. [PMID: 35401461 PMCID: PMC8985596 DOI: 10.3389/fmicb.2022.821629] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/15/2022] [Indexed: 12/12/2022] Open
Abstract
Annually, 400 Mt of plastics are produced of which roughly 40% is discarded within a year. Current plastic waste management approaches focus on applying physical, thermal, and chemical treatments of plastic polymers. However, these methods have severe limitations leading to the loss of valuable materials and resources. Another major drawback is the rapid accumulation of plastics into the environment causing one of the biggest environmental threats of the twenty-first century. Therefore, to complement current plastic management approaches novel routes toward plastic degradation and upcycling need to be developed. Enzymatic degradation and conversion of plastics present a promising approach toward sustainable recycling of plastics and plastics building blocks. However, the quest for novel enzymes that efficiently operate in cost-effective, large-scale plastics degradation poses many challenges. To date, a wide range of experimental set-ups has been reported, in many cases lacking a detailed investigation of microbial species exhibiting plastics degrading properties as well as of their corresponding plastics degrading enzymes. The apparent lack of consistent approaches compromises the necessary discovery of a wide range of novel enzymes. In this review, we discuss prospects and possibilities for efficient enzymatic degradation, recycling, and upcycling of plastics, in correlation with their wide diversity and broad utilization. Current methods for the identification and optimization of plastics degrading enzymes are compared and discussed. We present a framework for a standardized workflow, allowing transparent discovery and optimization of novel enzymes for efficient and sustainable plastics degradation in the future.
Collapse
Affiliation(s)
- Jo-Anne Verschoor
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, Netherlands
| | | | - Arthur F. J. Ram
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, Netherlands
| | - Johannes H. de Winde
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, Netherlands
| |
Collapse
|
3
|
Khangwal I, Skariyachan S, Uttarkar A, Muddebihalkar AG, Niranjan V, Shukla P. Understanding the Xylooligosaccharides Utilization Mechanism of Lactobacillus brevis and Bifidobacterium adolescentis: Proteins Involved and Their Conformational Stabilities for Effectual Binding. Mol Biotechnol 2021; 64:75-89. [PMID: 34542815 DOI: 10.1007/s12033-021-00392-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/08/2021] [Indexed: 11/26/2022]
Abstract
Xylooligosaccharides having various degrees of polymerization such as xylobiose, xylotriose, and xylotetraose positively affect human health by interacting with gut proteins. The present study aimed to identify proteins present in gut microflora, such as xylosidase, xylulokinase, etc., with the help of retrieved whole-genome annotations and find out the mechanistic interactions of those with the above substrates. The 3D structures of proteins, namely Endo-1,4-beta-xylanase B (XynB) from Lactobacillus brevis and beta-D-xylosidase (Xyl3) from Bifidobacterium adolescentis, were computationally predicted and validated with the help of various bioinformatics tools. Molecular docking studies identified the effectual binding of these proteins to the xylooligosaccharides, and the stabilities of the best-docked complexes were analyzed by molecular dynamic simulation. The present study demonstrated that XynB and Xyl3 showed better effectual binding toward Xylobiose with the binding energies of - 5.96 kcal/mol and - 4.2 kcal/mol, respectively. The interactions were stabilized by several hydrogen bonding having desolvation energy (- 6.59 and - 7.91). The conformational stabilities of the docked complexes were observed in the four selected complexes of XynB-xylotriose, XynB-xylotetraose, Xyl3-xylobiose, and Xyn3-xylotriose by MD simulations. This study showed that the interactions of these four complexes are stable, which means they have complex metabolic activities among each other. Extending these studies of understanding, the interaction between specific probiotics enzymes and their ligands can explore the detailed design of synbiotics in the future.
Collapse
Affiliation(s)
- Ishu Khangwal
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Sinosh Skariyachan
- Department of Microbiology, St. Pius X College, Rajapuram, Kasaragod, Kerala, India
| | - Akshay Uttarkar
- Department of Biotechnology, RV College of Engineering, Bengaluru, Karnataka, India
| | | | - Vidya Niranjan
- Department of Biotechnology, RV College of Engineering, Bengaluru, Karnataka, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
4
|
Algan M, Sürmeli Y, Şanlı-Mohamed G. A novel thermostable xylanase from Geobacillus vulcani GS90: Production, biochemical characterization, and its comparative application in fruit juice enrichment. J Food Biochem 2021; 45:e13716. [PMID: 33788288 DOI: 10.1111/jfbc.13716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 11/28/2022]
Abstract
Xylanases have great attention to act as a potential role in agro-industrial processes. In this study, production, characterization, and fruit juice application of novel xylanase from thermophilic Geobacillus vulcani GS90 (GvXyl) were performed. GvXyl was purified via acetone precipitation and gel-filtration chromatography. The results showed that GvXyl had 1,671.4 U/mg of specific activity and optimally worked at pH 8 and 55°C. It was also active in a wide pH (3-9) and temperature (30-90ºC) ranges. GvXyl was highly stable at 90ºC and relatively stable at pH 3-9. The kinetic parameters of GvXyl were obtained as Km , Vmax , and kcat ; 10.2 mg/ml, 4,104 µmol min-1 mg-1 , and 3,542.6 s-1 , respectively. GvXyl had higher action than commercial xylanase in fruit juice enrichment. These results revealed that GvXyl might possess a potential influence in fruit juice processing because of its high specific activity and great thermal stability. PRACTICAL APPLICATIONS: Polysaccharides include starch, pectin, and hemicellulose create problems by lowering fruit juice quality in beverages. To overcome this problem, various clarification processes might be applied to natural fruit juices. Even though chemicals are widely used for this purpose, recently enzymes including xylanases are preferred for obtaining high-quality products. In this study, we reported the production and biochemical characterization of novel thermostable xylanase from thermophilic G. vulcani GS90 (GvXyl). Also, apple and orange juice enrichment were performed with the novel xylanase to increase the quality in terms of yield, clarity, and reducing sugar substance. The improved quality features of apple and orange juices with GvXyl was then compared to commercially available β-1,4-xylanase. The results revealed that GvXyl might possess a potential influence in fruit juice processing because of its high specific activity and great thermal stability.
Collapse
Affiliation(s)
- Müge Algan
- Department of Biotechnology and Bioengineering, İzmir Institute of Technology, İzmir, Turkey
| | - Yusuf Sürmeli
- Department of Biotechnology and Bioengineering, İzmir Institute of Technology, İzmir, Turkey.,Department of Agricultural Biotechnology, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Gülşah Şanlı-Mohamed
- Department of Biotechnology and Bioengineering, İzmir Institute of Technology, İzmir, Turkey.,Science Faculty, Department of Chemistry, İzmir Institute of Technology, İzmir, Turkey
| |
Collapse
|
5
|
Seemakram W, Boonrung S, Aimi T, Ekprasert J, Lumyong S, Boonlue S. Purification, characterization and partial amino acid sequences of thermo-alkali-stable and mercury ion-tolerant xylanase from Thermomyces dupontii KKU-CLD-E2-3. Sci Rep 2020; 10:21663. [PMID: 33303944 PMCID: PMC7730141 DOI: 10.1038/s41598-020-78670-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/23/2020] [Indexed: 01/23/2023] Open
Abstract
We investigated the properties of the low molecular weight thermo-alkali-stable and mercury ion-tolerant xylanase production from Thermomyces dupontii KKU-CLD-E2-3. The xylanase was purified to homogeneity by ammonium sulfate, Sephadex G-100 and DEAE-cellulose column chromatography which resulted 27.92-fold purification specific activity of 56.19 U/mg protein and a recovery yield of 2.01%. The purified xylanase showed a molecular weight of 25 kDa by SDS-PAGE and the partial peptide sequence showed maximum sequence homology to the endo-1,4-β-xylanase. The optimum temperature and pH for its activity were 80 °C and pH 9.0, respectively. Furthermore, the purified xylanase can maintain more than 75% of the original activity in pH range of 7.0-10.0 after incubation at 4 °C for 24 h, and can still maintain more than 70% of original activity after incubating at 70 °C for 90 min. Our purified xylanase was activated by Cu2+ and Hg2+ up to 277% and 235% of initial activity, respectively but inhibited by Co2+, Ag+ and SDS at a concentration of 5 mM. The Km and Vmax values of beechwood xylan were 3.38 mg/mL and 625 µmol/min/mg, respectively. Furthermore, our xylanase had activity specifically to xylan-containing substrates and hydrolyzed beechwood xylan, and the end products mainly were xylotetraose and xylobiose. The results suggested that our purified xylanase has potential to use for pulp bleaching in the pulp and paper industry.
Collapse
Affiliation(s)
- Wasan Seemakram
- Graduate School, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Santhaya Boonrung
- Biology Program, Faculty of Science, Buriram Rajabhat University, Buriram, 31000, Thailand
| | - Tadanori Aimi
- Department of Biochemistry and Biotechnology, Faculty of Agriculture, Tottori University, Tottori, 680-8553, Japan
| | - Jindarat Ekprasert
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai Univertity, Chiang Mai, 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, 10300, Thailand
| | - Sophon Boonlue
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|