1
|
Lin CC, Chuang KC, Chen SW, Chao YH, Yen CC, Yang SH, Chen W, Chang KH, Chang YK, Chen CM. Lactoferrin Ameliorates Ovalbumin-Induced Asthma in Mice through Reducing Dendritic-Cell-Derived Th2 Cell Responses. Int J Mol Sci 2022; 23:ijms232214185. [PMID: 36430662 PMCID: PMC9696322 DOI: 10.3390/ijms232214185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
Asthma is a chronic respiratory disease with symptoms such as expiratory airflow narrowing and airway hyperresponsiveness (AHR). Millions of people suffer from asthma and are at risk of life-threatening conditions. Lactoferrin (LF) is a glycoprotein with multiple physiological functions, including antioxidant, anti-inflammatory, antimicrobial, and antitumoral activities. LF has been shown to function in immunoregulatory activities in ovalbumin (OVA)-induced delayed type hypersensitivity (DTH) in mice. Hence, the purpose of this study was to investigate the roles of LF in AHR and the functions of dendritic cells (DCs) and Th2-related responses in asthma. Twenty 8-week-old male BALB/c mice were divided into normal control (NC), ovalbumin (OVA)-sensitized, and OVA-sensitized with low dose of LF (100 mg/kg) or high dose of LF (300 mg/kg) treatment groups. The mice were challenged by intranasal instillation with 5% OVA on the 21st to 27th day after the start of the sensitization period. The AHR, cytokines in bronchoalveolar lavage fluid, and pulmonary histology of each mouse were measured. Serum OVA-specific IgE and IgG1 and OVA-specific splenocyte responses were further detected. The results showed that LF exhibited protective effects in ameliorating AHR, as well as lung inflammation and damage, in reducing the expression of Th2 cytokines and the secretion of allergen-specific antibodies, in influencing the functions of DCs, and in decreasing the level of Th2 immune responses in a BALB/c mouse model of OVA-induced allergic asthma. Importantly, we demonstrated that LF has practical application in reducing DC-induced Th2 cell responses in asthma. In conclusion, LF exhibits anti-inflammation and immunoregulation activities in OVA-induced allergic asthma. These results suggest that LF may act as a supplement to prevent asthma-induced lung injury and provide an additional agent for reducing asthma severity.
Collapse
Affiliation(s)
- Chi-Chien Lin
- Department of Life Sciences, Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Kai-Cheng Chuang
- Department of Life Sciences, Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Shih-Wei Chen
- Department of Life Sciences, Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Department of Otolaryngology, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan
| | - Ya-Hsuan Chao
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Chih-Ching Yen
- Department of Life Sciences, Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Department of Internal Medicine, China Medical University Hospital, College of Health Care, China Medical University, Taichung 404, Taiwan
| | - Shang-Hsun Yang
- Department of Physiology, Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Wei Chen
- Division of Pulmonary and Critical Care Medicine, Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Kuang-Hsi Chang
- Department of Medical Research, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan
| | - Yu-Kang Chang
- Department of Medical Research, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- The iEGG and Animal Biotechnology Center, The Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: ; Tel.: +886-4-22856309; Fax: +886-4-22874740
| |
Collapse
|
2
|
Shim KS, Song HK, Hwang YH, Chae S, Kim HK, Jang S, Kim YH, Choo BK, Yang WK, Kim SH, Kim T, Kim KM. Ethanol extract of Veronica persica ameliorates house dust mite-induced asthmatic inflammation by inhibiting STAT-3 and STAT-6 activation. Biomed Pharmacother 2022; 152:113264. [PMID: 35696941 DOI: 10.1016/j.biopha.2022.113264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022] Open
Abstract
Veronica persica is a flowering plant belonging to the family Scrophulariaceae. Here, we aimed to evaluate the pharmacological activity of the ethanol extract of Veronica persica (EEVP) in an airway inflammation model. We examined airway responsiveness to aerosolized methacholine, serum immunoglobulin (Ig)E levels, and total cell numbers in the lung and bronchoalveolar lavage fluid (BALF). Histological analysis of the lung tissue was performed using hematoxylin-eosin, Masson trichrome, or periodic acid-Schiff staining. Fluorescence-activated cell sorting analysis in the lung and BALF was applied to clarify the changes in immune cell types. Enzyme-linked immunosorbent assay and quantitative real-time polymerase chain reaction were applied to investigate cytokine levels and gene expression related to airway inflammation. STAT-3/6 phosphorylation was examined in primary bronchial/tracheal epithelial cells using western blot analysis. EEVP significantly suppressed total IgE levels and methacholine-induced increase of Penh value in the HDM-challenged mouse model. EEVP also attenuated the severity of airway remodeling in lung tissues and decreased eosinophil and neutrophil infiltration in the lungs and BALF. EEVP significantly reduced the production of cytokines in BAL and splenocyte culture medium, and the expression of mRNAs related to airway inflammation in the lung tissue. EEVP suppressed IL-4/13-induced STAT-3/6 phosphorylation in the epithelial cells. We showed for the first time that EEVP effectively inhibits eosinophilic airway inflammation by suppressing the expression of inflammatory factors for T cell activation and polarization, and inhibits MCP-1 production of bronchial/tracheal epithelial cells by suppressing STAT-3/6 activation. EEVP may be a potential pharmacological agent to prevent inflammatory airway diseases.
Collapse
Affiliation(s)
- Ki-Shuk Shim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Hyun-Kyung Song
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Youn-Hwan Hwang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea; Korean Convergence Medicine Major KIOM, University of Science & Technology (UST), Daejeon 34054, Republic of Korea
| | - Sungwook Chae
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea; Korean Convergence Medicine Major KIOM, University of Science & Technology (UST), Daejeon 34054, Republic of Korea
| | - Ho Kyoung Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Seol Jang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Yun Hee Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Byung-Kil Choo
- Department of Crop Science & Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Won-Kyung Yang
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon 34520, Republic of Korea
| | - Seung-Hyung Kim
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon 34520, Republic of Korea
| | - Taesoo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea.
| | - Ki Mo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea; Korean Convergence Medicine Major KIOM, University of Science & Technology (UST), Daejeon 34054, Republic of Korea.
| |
Collapse
|
3
|
Yadav S, Singh S, Mandal P, Tripathi A. Immunotherapies in the treatment of immunoglobulin E‑mediated allergy: Challenges and scope for innovation (Review). Int J Mol Med 2022; 50:95. [PMID: 35616144 DOI: 10.3892/ijmm.2022.5151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/28/2022] [Indexed: 11/05/2022] Open
Abstract
Immunoglobulin E (IgE)‑mediated allergy or hypersensitivity reactions are generally defined as an unwanted severe symptomatic immunological reaction that occurs due to shattered or untrained peripheral tolerance of the immune system. Allergen‑specific immunotherapy (AIT) is the only therapeutic strategy that can provide a longer‑lasting symptomatic and clinical break from medications in IgE‑mediated allergy. Immunotherapies against allergic diseases comprise a successive increasing dose of allergen, which helps in developing the immune tolerance against the allergen. AITs exerttheirspecial effectiveness directly or indirectly by modulating the regulator and effector components of the immune system. The number of success stories of AIT is still limited and it canoccasionallyhave a severe treatment‑associated adverse effect on patients. Therefore, the formulation used for AIT should be appropriate and effective. The present review describes the chronological evolution of AIT, and provides a comparative account of the merits and demerits of different AITs by keeping in focus the critical guiding factors, such as sustained allergen tolerance, duration of AIT, probability of mild to severe allergic reactions and dose of allergen required to effectuate an effective AIT. The mechanisms by which regulatory T cells suppress allergen‑specific effector T cells and how loss of natural tolerance against innocuous proteins induces allergy are reviewed. The present review highlights the major AIT bottlenecks and the importantregulatory requirements for standardized AIT formulations. Furthermore, the present reviewcalls attention to the problem of 'polyallergy', which is still a major challenge for AIT and the emerging concept of 'component‑resolved diagnosis' (CRD) to address the issue. Finally, a prospective strategy for upgrading CRD to the next dimension is provided, and a potential technology for delivering thoroughly standardized AIT with minimal risk is discussed.
Collapse
Affiliation(s)
- Sarika Yadav
- Systems Toxicology and Health Risk Assessment Group, CSIR‑Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226001, India
| | - Saurabh Singh
- Systems Toxicology and Health Risk Assessment Group, CSIR‑Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226001, India
| | - Payal Mandal
- Food, Drugs and Chemical Toxicology Group, CSIR‑Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226001, India
| | - Anurag Tripathi
- Systems Toxicology and Health Risk Assessment Group, CSIR‑Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226001, India
| |
Collapse
|
4
|
Choi JH, Kim JY, Yi MH, Kim M, Yong TS. Anisakis pegreffii Extract Induces Airway Inflammation with Airway Remodeling in a Murine Model System. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2522305. [PMID: 34580637 PMCID: PMC8464433 DOI: 10.1155/2021/2522305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/20/2021] [Indexed: 12/03/2022]
Abstract
Exposure of the respiratory system to the Anisakis pegreffii L3 crude extract (AE) induces airway inflammation; however, the mechanism underlying this inflammatory response remains unknown. AE contains allergens that promote allergic inflammation; exposure to AE may potentially lead to asthma. In this study, we aimed to establish a murine model to assess the effects of AE on characteristic features of chronic asthma, including airway hypersensitivity (AHR), airway inflammation, and airway remodeling. Mice were sensitized for five consecutive days each week for 4 weeks. AHR, lung inflammation, and airway remodeling were evaluated 24 h after the last exposure. Lung inflammation and airway remodeling were assessed from the bronchoalveolar lavage fluid (BALF). To confirm the immune response in the lungs, changes in gene expression in the lung tissue were assessed with reverse transcription-quantitative PCR. The levels of IgE, IgG1, and IgG2a in blood and cytokine levels in the BALF, splenocyte, and lung lymph node (LLN) culture supernatant were measured with ELISA. An increase in AHR was prominently observed in AE-exposed mice. Epithelial proliferation and infiltration of inflammatory cells were observed in the BALF and lung tissue sections. Collagen deposition was detected in lung tissues. AE exposure increased IL-4, IL-5, and IL-13 expression in the lung, as well as the levels of antibodies specific to AE. IL-4, IL-5, and IL-13 were upregulated only in LLN. These findings indicate that an increase in IL-4+ CD4+ T cells in the LLN and splenocyte resulted in increased Th2 response to AE exposure. Exposure of the respiratory system to AE resulted in an increased allergen-induced Th2 inflammatory response and AHR through accumulation of inflammatory and IL-4+ CD4+ T cells and collagen deposition. It was confirmed that A. pegreffii plays an essential role in causing asthma in mouse models and has the potential to cause similar effects in humans.
Collapse
Affiliation(s)
- Jun Ho Choi
- Department of Environmental Medical Biology, Institute of Tropical Medicine & Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ju Yeong Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine & Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Myung-hee Yi
- Department of Environmental Medical Biology, Institute of Tropical Medicine & Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Myungjun Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine & Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Tai-Soon Yong
- Department of Environmental Medical Biology, Institute of Tropical Medicine & Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
5
|
Benedé S, Pérez-Rodríguez L, Martínez-Blanco M, Molina E, López-Fandiño R. Oral Exposure to House Dust Mite Activates Intestinal Innate Immunity. Foods 2021; 10:foods10030561. [PMID: 33803079 PMCID: PMC8000190 DOI: 10.3390/foods10030561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/22/2021] [Accepted: 03/04/2021] [Indexed: 12/21/2022] Open
Abstract
SCOPE House dust mite (HDM) induces Th2 responses in lungs and skin, but its effects in the intestine are poorly known. We aimed to study the involvement of HDM in the initial events that would promote sensitization through the oral route and eventually lead to allergy development. METHODS AND RESULTS BALB/c mice were exposed intragastrically to proteolytically active and inactive HDM, as such, or in combination with egg white (EW), and inflammatory and type 2 responses were evaluated. Oral administration of HDM, by virtue of its proteolytic activity, promoted the expression, in the small intestine, of genes encoding tight junction proteins, proinflammatory and Th2-biasing cytokines, and it caused expansion of group 2 innate immune cells, upregulation of Th2 cytokines, and dendritic cell migration and activation. In lymphoid tissues, its proteolytically inactivated counterpart also exerted an influence on the expression of surface DC molecules involved in interactions with T cells and in Th2 cell differentiation, which was confirmed in in vitro experiments. However, in our experimental setting we did not find evidence for the promotion of sensitization to coadministered EW. CONCLUSION Orally administered HDM upregulates tissue damage factors and also acts as an activator of innate immune cells behaving similarly to potent oral Th2 adjuvants.
Collapse
|
6
|
Huang F, Ju YH, Wang HB, Li YN. Maternal vitamin D deficiency impairs Treg and Breg responses in offspring mice and deteriorates allergic airway inflammation. Allergy Asthma Clin Immunol 2020; 16:89. [PMID: 33072159 PMCID: PMC7557044 DOI: 10.1186/s13223-020-00487-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
Background Vitamin D (VitD) can regulate immune responses and maternal VitD-deficiency can affect immune responses in the offspring. This study aimed at investigating the effects of maternal VitD-deficiency during pregnancy on Treg and Breg responses in offspring mice with house dust mite (HDM)-induced allergic airway inflammation. Methods Female BALB/c mice were randomized and fed with normal chow or VitD-deficient diet until their offspring weaned. The offspring mice were fed with normal chow and injected with vehicle or HDM to induce allergic airway inflammation. The levels of serum 25(OH)D, cytokines and infiltrate numbers as well as percentages of Tregs and Bregs in the bronchoalveolar lavage fluid (BALF) were analyzed. The relative levels of VitD receptor (VDR), VitD-binding protein (VDBP), Cytochromes P450 (CYP) 27b1, and CYP24A1 mRNA transcripts in the lungs of different groups of mice were measured. Results Maternal VitD-deficiency significantly reduced serum 25(OH)D levels in offspring mice. VitD-deficiency significantly increased the relative levels of VDR, VDBP and CYP27B1 mRNA transcripts, but decreased CYP24A1 expression in the lungs of mice. In comparison with the control mice, significantly elevated levels of pro-inflammatory cytokines, increased numbers of lymphocytes and eosinophils, but decreased levels of anti-inflammatory cytokines were detected in the BALF of VitD-deficient mice. VitD-deficiency significantly increased the frequency of Th1, Th2, Th9, Th17 cells, but decreased regulatory T (Tregs) and B cells (Bregs) in the BALF of mice with allergic airway inflammation. Conclusion Maternal VitD-deficiency lowed serum 25(OH)D levels and enhanced HDM-induced allergic airway inflammation in the offspring by impairing Breg and Treg responses.
Collapse
Affiliation(s)
- Fei Huang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, 130033 Jilin China
| | - Yang-Hua Ju
- Department of Pediatrics, the First Hospital of Jilin University, Changchun, 130021 Jilin China
| | - Hong-Bo Wang
- Department of Pediatrics, the First Hospital of Jilin University, Changchun, 130021 Jilin China
| | - Ya-Nan Li
- Department of Pediatrics, the First Hospital of Jilin University, Changchun, 130021 Jilin China.,Institute of Pediatrics, the First Hospital of Jilin University, Changchun, 130021 Jilin China
| |
Collapse
|