1
|
Maas PJM, Maas-van de Kamer H, André T, Skinner D, Valderrama E, Specht CD. Eighteen new species of Neotropical Costaceae (Zingiberales). PHYTOKEYS 2023; 222:75-127. [PMID: 37252638 PMCID: PMC10210046 DOI: 10.3897/phytokeys.222.87779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 01/19/2023] [Indexed: 05/31/2023]
Abstract
In preparation for a full taxonomic revision of the Neotropical genera of Costaceae (i.e., Chamaecostus, Costus, Dimerocostus, and Monocostus), we present the description of 17 new species of Neotropical Costus and one new species of the Neotropic endemic genus Chamaecostus with notes on their distribution and ecology, vernacular names (when known), and diagnostic characters for identification. Distribution maps are included for all species, and each description is accompanied by photographic plates illustrating diagnostic characters.
Collapse
Affiliation(s)
- Paul J. M. Maas
- Naturalis Biodiversity Centre, Botany, P.O. Box 9517, 2300 RA Leiden, NetherlandsNaturalis Biodiversity CentreLeidenNetherlands
| | - Hiltje Maas-van de Kamer
- Naturalis Biodiversity Centre, Botany, P.O. Box 9517, 2300 RA Leiden, NetherlandsNaturalis Biodiversity CentreLeidenNetherlands
| | - Thiago André
- Universidade de Brasília, Departamento de Botânica, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília (DF), BrazilUniversidade de BrasíliaBrasíliaBrazil
| | - David Skinner
- Le Jardin Ombragé, Tallahassee, (Private botanical garden, Botanic Gardens Conservation International – BGCI – registration ID 50148), Florida, USALe Jardin OmbragéTallahasseeUnited States of America
| | - Eugenio Valderrama
- Cornell University, Section of Plant Biology and the L.H.Bailey Hortorium, School of Integrative Plant Science, Ithaca, NY, USACornell UniversityIthacaUnited States of America
| | - Chelsea D. Specht
- Cornell University, Section of Plant Biology and the L.H.Bailey Hortorium, School of Integrative Plant Science, Ithaca, NY, USACornell UniversityIthacaUnited States of America
| |
Collapse
|
2
|
Valderrama E, Landis JB, Skinner D, Maas PJM, Maas-van de Kramer H, André T, Grunder N, Sass C, Pinilla-Vargas M, Guan CJ, Phillips HR, de Almeida AMR, Specht CD. The genetic mechanisms underlying the convergent evolution of pollination syndromes in the Neotropical radiation of Costus L. FRONTIERS IN PLANT SCIENCE 2022; 13:874322. [PMID: 36161003 PMCID: PMC9493542 DOI: 10.3389/fpls.2022.874322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/27/2022] [Indexed: 06/16/2023]
Abstract
Selection together with variation in floral traits can act to mold floral form, often driven by a plant's predominant or most effective pollinators. To investigate the evolution of traits associated with pollination, we developed a phylogenetic framework for evaluating tempo and mode of pollination shifts across the genus Costus L., known for its evolutionary toggle between traits related to bee and bird pollination. Using a target enrichment approach, we obtained 957 loci for 171 accessions to expand the phylogenetic sampling of Neotropical Costus. In addition, we performed whole genome resequencing for a subset of 20 closely related species with contrasting pollination syndromes. For each of these 20 genomes, a high-quality assembled transcriptome was used as reference for consensus calling of candidate loci hypothesized to be associated with pollination-related traits of interest. To test for the role these candidate genes may play in evolutionary shifts in pollinators, signatures of selection were estimated as dN/dS across the identified candidate loci. We obtained a well-resolved phylogeny for Neotropical Costus despite conflict among gene trees that provide evidence of incomplete lineage sorting and/or reticulation. The overall topology and the network of genome-wide single nucleotide polymorphisms (SNPs) indicate that multiple shifts in pollination strategy have occurred across Costus, while also suggesting the presence of previously undetected signatures of hybridization between distantly related taxa. Traits related to pollination syndromes are strongly correlated and have been gained and lost in concert several times throughout the evolution of the genus. The presence of bract appendages is correlated with two traits associated with defenses against herbivory. Although labellum shape is strongly correlated with overall pollination syndrome, we found no significant impact of labellum shape on diversification rates. Evidence suggests an interplay of pollination success with other selective pressures shaping the evolution of the Costus inflorescence. Although most of the loci used for phylogenetic inference appear to be under purifying selection, many candidate genes associated with functional traits show evidence of being under positive selection. Together these results indicate an interplay of phylogenetic history with adaptive evolution leading to the diversification of pollination-associated traits in Neotropical Costus.
Collapse
Affiliation(s)
- Eugenio Valderrama
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
| | - Jacob B. Landis
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
- BTI Computational Biology Center, Boyce Thompson Institute, Ithaca, NY, United States
| | - Dave Skinner
- Le Jardin Ombragé, Tallahassee, FL, United States
| | - Paul J. M. Maas
- Section Botany, Naturalis Biodiversity Center, Leiden, Netherlands
| | | | - Thiago André
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | - Nikolaus Grunder
- Department of Biological Sciences, California State University, East Bay, Hayward, CA, United States
| | - Chodon Sass
- University and Jepson Herbaria, University of California, Berkeley, Berkeley, CA, United States
| | - Maria Pinilla-Vargas
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
| | - Clarice J. Guan
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
| | - Heather R. Phillips
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
| | | | - Chelsea D. Specht
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
| |
Collapse
|
3
|
Li X, Kuang Y, Ye Y, Chen Z, Zhang M. Diverse function of the PISTILLATA, APETALA 3, and AGAMOUS-like MADS-box genes involved in the floral development in Alpinia hainanensis (Zingiberaceae). Gene X 2022; 839:146732. [PMID: 35840006 DOI: 10.1016/j.gene.2022.146732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022] Open
Abstract
Zingiberaceae is the vital clue and key node in the decreased process of fertile stamens in Zingiberales, helping to understand the evolution of the ginger families. This study focuses on Alpinia hainanensis to investigate the function of B- and C-class MADS-box genes in floral development. The introns size of two B-class genes AhPI and AhAP3, and one C-class gene AhAG are quite variable. By contrast, the positions of the corresponding introns are conserved, resulting in a similar exon size in homologs. The typical region 70 bp-CCAATCA element was not found in the second intron of AhAG compared to AG homologs. The subcellular localization showed that AhAP3 was in both intranuclear and extranuclear. The heterodimer was formed between APETALA3 and PISTILLATA but not between the B- and C-class proteins using Y2H and BiFC. The 35S::AhAG heterologous transformed Arabidopsis had curly and smaller rosette leaves with early flowering. Floral organs had no homeotic conversion, albeit sepals and petals reduced in size. Siliques development was affected and displayed wrinkled and shorter. By contrast, 35S::AhAP3 and 35S::AhPI did not show any modified phenotype in transgenic Arabidopsis thaliana. We first proposed the model for Alpinia flower development. MADS-box transcription factor binding at particular genomic locations and interaction with partners may be crucial for the development of the floral organ.
Collapse
Affiliation(s)
- Xiumei Li
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Yanfeng Kuang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Yushi Ye
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Zhongjian Chen
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Mingyong Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
4
|
Zhang C, Wei L, Wang W, Qi W, Cao Z, Li H, Bao M, He Y. Identification, characterization and functional analysis of AGAMOUS subfamily genes associated with floral organs and seed development in Marigold (Tagetes erecta). BMC PLANT BIOLOGY 2020; 20:439. [PMID: 32967618 PMCID: PMC7510299 DOI: 10.1186/s12870-020-02644-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AGAMOUS (AG) subfamily genes regulate the floral organs initiation and development, fruit and seed development. At present, there has been insufficient study of the function of AG subfamily genes in Asteraceae. Marigold (Tagetes erecta) belongs to Asteraceae family whose unique inflorescence structure makes it an important research target for understanding floral organ development in plants. RESULTS Four AG subfamily genes of marigold were isolated and phylogenetically grouped into class C (TeAG1 and TeAG2) and class D (TeAGL11-1 and TeAGL11-2) genes. Expression profile analysis demonstrated that these four genes were highly expressed in reproductive organs of marigold. Subcellular localization analysis suggested that all these four proteins were located in the nucleus. Protein-protein interactions analysis indicated that class C proteins had a wider interaction manner than class D proteins. Function analysis of ectopic expression in Arabidopsis thaliana revealed that TeAG1 displayed a C function specifying the stamen identity and carpel identity, and that TeAGL11-1 exhibited a D function regulating seed development and petal development. In addition, overexpression of both TeAG1 and TeAGL11-1 leaded to curling rosette leaf and early flowering in Arabidopsis thaliana. CONCLUSIONS This study provides an insight into molecular mechanism of AG subfamily genes in Asteraceae species and technical support for improvement of several floral traits.
Collapse
Affiliation(s)
- Chunling Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070 China
| | - Ludan Wei
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070 China
| | - Wenjing Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070 China
| | - Wenquan Qi
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070 China
| | - Zhe Cao
- Crop Development Centre/Department of Plant Sciences, University of Saskatchewan, S7N5A8, Saskatoon, Canada
| | - Hang Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070 China
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070 China
| | - Yanhong He
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070 China
| |
Collapse
|
5
|
Li X, Fan T, Zou P, Zhang W, Wu X, Zhang Y, Liao J. Can the anatomy of abnormal flowers elucidate relationships of the androecial members in the ginger (Zingiberaceae)? EvoDevo 2020; 11:12. [PMID: 32537122 PMCID: PMC7285767 DOI: 10.1186/s13227-020-00157-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/29/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Interpretation of the floral structure of Zingiberaceae has long concentrated on the relationships of the androecial members. It suggested that labellum is composed of two structures rather than three or five, and glands are interpreted either as gynoecial part or as androecial members. METHODS Serial sections were used to observe the vasculature of normal and two-staminate flowers in Alpinia intermedia 'shengzhen'. Floral diagrams were drawn to interpret the morphological category of the floral organs and the relationships of the androecial members. Androecial vascular bundles were associated with carpellary dorsal bundles (CDBs) and parietal bundles (PBs) in a Zingiberales phylogeny setting using ancestral state reconstruction. RESULTS Anatomical observations demonstrate that the fertile stamen(s) incorporate parietal bundles both in normal and two-staminate flowers. The three appendages represent the three members of the outer whorl of the androecium, while the labellum represents the inner whorl of the androecium in the two-staminate flower. Reconstruction of the origin of the vascular system in the androecium suggests that the outer whorl of androecium receives its vascular supply from the CDBs, and the inner whorl of androecium receives from the PBs in both the basal banana group and the more derived ginger clade. CONCLUSIONS The present study adds to a growing body of literature suggesting that the anatomy of abnormal flowers may not provide enough evidence for elucidating the relationships of the androecial members, and help us to better understand how the vascular system is constructed during the androecial petaloidy evolution.
Collapse
Affiliation(s)
- Xiumei Li
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agricultural Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Tian Fan
- School of Life Science, Guangzhou University, Guangzhou, 510006 China
| | - Pu Zou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
| | - Wenhu Zhang
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agricultural Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Xiuju Wu
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agricultural Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Yixin Zhang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128 China
| | - Jingping Liao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
| |
Collapse
|
6
|
Su S, Shao X, Zhu C, Xu J, Tang Y, Luo D, Huang X. An AGAMOUS-like factor is associated with the origin of two domesticated varieties in Cymbidium sinense (Orchidaceae). HORTICULTURE RESEARCH 2018; 5:48. [PMID: 30181888 PMCID: PMC6119200 DOI: 10.1038/s41438-018-0052-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 05/08/2018] [Accepted: 05/17/2018] [Indexed: 05/15/2023]
Abstract
Cymbidium has been artificially domesticated for centuries in Asia, which produced numerous cultivated varieties. Flowers with stamenoid tepals or those with multiple tepals have been found in different species of Cymbidium; however, the molecular basis controlling the formation of these phenotypes is still largely unknown. Previous work demonstrated that AGAMOUS/AG lineage MADS genes function in floral meristem determinacy as well as in reproductive organs development in both dicots and monocots, indicating a possible relationship with the origin of two flower varieties in Cymbidium. Here, we characterized and analyzed two AG lineage paralogues, CsAG1 and CsAG2, from Cymbidium sinense, both of which were highly expressed in the gynostemium column of a standard C. sinense. Interestingly, we detected ectopic expression of CsAG1 rather than CsAG2 in all floral organs of a stamenoid-tepal variety and significant down-regulation of CsAG1 in a variety with multiple tepals. Over-expression of CsAG1 in wild type Arabidopsis resulted in petal-to-stamen homeotic conversion, suggesting a conserved C-function of CsAG1 in the development of Cymbidium flower. Altogether, our results supported a hypothesis that disruption of a single AG-like factor would be associated with the formation of two domesticated varieties in C. sinense.
Collapse
Affiliation(s)
- Shihao Su
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Aichi Japan
| | - Xiaoyu Shao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Changfa Zhu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Jiayin Xu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Yuhuan Tang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Da Luo
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Xia Huang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| |
Collapse
|
7
|
Almeida AMR, Piñeyro-Nelson A, Yockteng RB, Specht CD. Comparative analysis of whole flower transcriptomes in the Zingiberales. PeerJ 2018; 6:e5490. [PMID: 30155368 PMCID: PMC6110254 DOI: 10.7717/peerj.5490] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 07/30/2018] [Indexed: 01/14/2023] Open
Abstract
The advancement of next generation sequencing technologies (NGS) has revolutionized our ability to generate large quantities of data at a genomic scale. Despite great challenges, these new sequencing technologies have empowered scientists to explore various relevant biological questions on non-model organisms, even in the absence of a complete sequenced reference genome. Here, we analyzed whole flower transcriptome libraries from exemplar species across the monocot order Zingiberales, using a comparative approach in order to gain insight into the evolution of the molecular mechanisms underlying flower development in the group. We identified 4,153 coding genes shared by all floral transcriptomes analyzed, and 1,748 genes that are only retrieved in the Zingiberales. We also identified 666 genes that are unique to the ginger lineage, and 2,001 that are only found in the banana group, while in the outgroup species Dichorisandra thyrsiflora J.C. Mikan (Commelinaceae) we retrieved 2,686 unique genes. It is possible that some of these genes underlie lineage-specific molecular mechanisms of floral diversification. We further discuss the nature of these lineage-specific datasets, emphasizing conserved and unique molecular processes with special emphasis in the Zingiberales. We also briefly discuss the strengths and shortcomings of de novo assembly for the study of developmental processes across divergent taxa from a particular order. Although this comparison is based exclusively on coding genes, with particular emphasis in transcription factors, we believe that the careful study of other regulatory mechanisms, such as non-coding RNAs, might reveal new levels of complexity, which were not explored in this work.
Collapse
Affiliation(s)
- Ana Maria R Almeida
- Department of Biological Sciences, California State University, Hayward, Hayward, CA, United States of America
| | - Alma Piñeyro-Nelson
- Department of Food and Animal Production, Autonomous Metropolitan University, Xochimilco, Mexico City, DF, Mexico
| | - Roxana B Yockteng
- Centro de Investigaciones Tibaitatá, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Tibaitatá, Colombia.,Institut de Systématique, Evolution, Biodiversité-UMR-CNRS, National Museum of Natural History, Paris, France
| | - Chelsea D Specht
- School of Integrative Plant Sciences, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
8
|
Tian X, Zou P, Miao M, Ning Z, Liao J. RNA-Seq analysis reveals the distinctive adaxial-abaxial polarity in the asymmetric one-theca stamen of Canna indica. Mol Genet Genomics 2017; 293:391-400. [PMID: 29138931 DOI: 10.1007/s00438-017-1392-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 11/02/2017] [Indexed: 01/27/2023]
Abstract
Proper establishment of adaxial-abaxial polarity is essential for the development of lateral organs, while former researches were mostly focused on the polarity regulation in leaves, and little is known in stamens, especially in the asymmetric ones. Canna indica (Zingiberales: Cannaceae) is a widely cultivated ornamental plant and the representative species to study the evolutionary development of Zingiberales. The androecium of Canna indica comprises 3-4 petaloid staminodes and a fertile stamen (FS), which consists of a one-theca anther and a petaloid appendage. The partially petaloid stamen is considered as an intermediate state organ from a two-thecae stamen to a completely petaloid staminode. Using RNA-Seq, we quantified the expressions of the transcripts in anther and petaloid appendage, and detected 64,430 and 57,041 unigenes in these two organs, respectively. 4574 unigenes were down-regulated, and 3525 were up-regulated in petaloid appendage compared with those in anther. GO enrichment analysis indicated that the function of cytokinin is more related to cell differentiation in anther, while auxin is more to cell division in petaloid appendage. B- and C-class floral homeotic genes were expressed in these two androecium parts. Most of the class III HD-ZIP family members, which specify adaxial identity, were expressed lower in petaloid appendage than in anther; while KANADIs and YABBYs, which promote abaxial identity, exhibited opposite expression patterns. In situ hybridization showed that the adaxial marker gene was mainly expressed in the region between the two protrusions of the anther, while the abaxial marker was mainly expressed in petaloid appendage. We hypothesize that the adaxial-abaxial polarity participates in the distinctive anther-petaloid appendage patterning within the asymmetric FS of Canna indica.
Collapse
Affiliation(s)
- Xueyi Tian
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China
| | - Pu Zou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China
| | - Mingzhi Miao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China.,Guiyang University, Jianlongdong Road 103, Nanming District, Guiyang, 550005, China
| | - Zulin Ning
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China.
| | - Jingping Liao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China.
| |
Collapse
|
9
|
PIñeyro-Nelson A, Almeida AMRD, Sass C, Iles WJD, Specht CD. Change of Fate and Staminodial Laminarity as Potential Agents of Floral Diversification in the Zingiberales. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:41-54. [PMID: 28120453 DOI: 10.1002/jez.b.22724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 11/30/2016] [Accepted: 12/02/2016] [Indexed: 12/30/2022]
Abstract
The evolution of floral morphology in the monocot order Zingiberales shows a trend in which androecial whorl organs are progressively modified into variously conspicuous "petaloid" structures with differing degrees of fertility. Petaloidy of androecial members results from extensive laminarization of an otherwise radially symmetric structure. The genetic basis of the laminarization of androecial members has been addressed through recent candidate gene studies focused on understanding the spatiotemporal expression patterns of genes known to be necessary to floral organ formation. Here, we explore the correlation between gene duplication events and floral and inflorescence morphological diversification across the Zingiberales by inferring ancestral character states and gene copy number using the most widely accepted phylogenetic hypotheses. Our results suggest that the duplication and differential loss of GLOBOSA (GLO) copies is correlated with a change in the degree of the laminarization of androecial members. We also find an association with increased diversification in most families. We hypothesize that retention of paralogs in flower development genes could have led to a developmental shift affecting androecial organs with potential adaptive consequences, thus favoring diversification in some lineages but not others.
Collapse
Affiliation(s)
- Alma PIñeyro-Nelson
- Department of Food and Animal Production, Autonomous Metropolitan University, Xochimilco, Mexico City, Mexico
- Department of Plant and Microbial Biology, Department of Integrative Biology, and the University and Jepson Herbaria, University of California-Berkeley, Berkeley, California
| | - Ana Maria Rocha De Almeida
- Programa de Pós-Graduação em Genética e Biodiversidade, Universidade Federal da Bahia, Rua Barão de Geremoabo, Salvador/BA, Brazil
- Department of Biological Sciences, California State University East Bay (CSUEB), Hayward, California
| | - Chodon Sass
- Department of Plant and Microbial Biology, Department of Integrative Biology, and the University and Jepson Herbaria, University of California-Berkeley, Berkeley, California
| | - William James Donaldson Iles
- Department of Plant and Microbial Biology, Department of Integrative Biology, and the University and Jepson Herbaria, University of California-Berkeley, Berkeley, California
| | - Chelsea Dvorak Specht
- Department of Plant and Microbial Biology, Department of Integrative Biology, and the University and Jepson Herbaria, University of California-Berkeley, Berkeley, California
| |
Collapse
|
10
|
Tian X, Yu Q, Liu H, Liao J. Temporal-Spatial Transcriptome Analyses Provide Insights into the Development of Petaloid Androecium in Canna indica. FRONTIERS IN PLANT SCIENCE 2016; 7:1194. [PMID: 27582744 PMCID: PMC4987385 DOI: 10.3389/fpls.2016.01194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
Canna indica (Zingiberales) is one of the most important ornamental species characterized with beautiful petaloid staminodes, which are considered to evolve from stamens. However, the genetic basis for the development of petaloid staminodes remains unclear largely because the genomic sequences are not available. By using RNA-Seq, we sequenced the transcripts in the flower of C. indica, and quantified the temporal gene expressions in flower primordium and differentiated flower, as well as the spatial gene expressions in petal and petaloid staminode. In total, 118,869 unigenes were assembled, among which 67,299 unigenes were annotated. Quantification analysis identified the differentially expressed genes in the temporal and spatial two comparisons, based on which, Gene Ontology enrichment analysis highlighted the representative terms in each sample, such as specification of organ number in flower primordium, growth in differentiated flower, secondary cell wall biogenesis in petal and cell division in petaloid staminode. Among the 51 analyzed MADS-box unigenes, 37 were up-regulated in differentiated flower compared with those in flower primordium. A-class unigenes were expressed higher in petal than in petaloid staminode, and C-class unigenes were expressed oppositely, whereas B-class unigenes demonstrated close expression levels in these two organs, indicating that petaloid staminode retains stamen identity to some degree. In situ hybridization provided more detailed expression patterns of these unigenes, and revealed the extended expression of B-class to the carpel at later stages when the style turned flat. These results constitute a preliminary basis for the study of flower development in C. indica and can be applied in further study of the evolution of Zingiberales.
Collapse
Affiliation(s)
- Xueyi Tian
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Qianxia Yu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Huanfang Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| | - Jingping Liao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| |
Collapse
|
11
|
Marcellini S, González F, Sarrazin AF, Pabón-Mora N, Benítez M, Piñeyro-Nelson A, Rezende GL, Maldonado E, Schneider PN, Grizante MB, Da Fonseca RN, Vergara-Silva F, Suaza-Gaviria V, Zumajo-Cardona C, Zattara EE, Casasa S, Suárez-Baron H, Brown FD. Evolutionary Developmental Biology (Evo-Devo) Research in Latin America. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 328:5-40. [PMID: 27491339 DOI: 10.1002/jez.b.22687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 12/29/2022]
Abstract
Famous for its blind cavefish and Darwin's finches, Latin America is home to some of the richest biodiversity hotspots of our planet. The Latin American fauna and flora inspired and captivated naturalists from the nineteenth and twentieth centuries, including such notable pioneers such as Fritz Müller, Florentino Ameghino, and Léon Croizat who made a significant contribution to the study of embryology and evolutionary thinking. But, what are the historical and present contributions of the Latin American scientific community to Evo-Devo? Here, we provide the first comprehensive overview of the Evo-Devo laboratories based in Latin America and describe current lines of research based on endemic species, focusing on body plans and patterning, systematics, physiology, computational modeling approaches, ecology, and domestication. Literature searches reveal that Evo-Devo in Latin America is still in its early days; while showing encouraging indicators of productivity, it has not stabilized yet, because it relies on few and sparsely distributed laboratories. Coping with the rapid changes in national scientific policies and contributing to solve social and health issues specific to each region are among the main challenges faced by Latin American researchers. The 2015 inaugural meeting of the Pan-American Society for Evolutionary Developmental Biology played a pivotal role in bringing together Latin American researchers eager to initiate and consolidate regional and worldwide collaborative networks. Such networks will undoubtedly advance research on the extremely high genetic and phenotypic biodiversity of Latin America, bound to be an almost infinite source of amazement and fascinating findings for the Evo-Devo community.
Collapse
Affiliation(s)
- Sylvain Marcellini
- Laboratorio de Desarrollo y Evolución, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Favio González
- Facultad de Ciencias, Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Andres F Sarrazin
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | | - Mariana Benítez
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Alma Piñeyro-Nelson
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana, Xochimilco, Ciudad de México, México
| | - Gustavo L Rezende
- Universidade Estadual do Norte Fluminense, CBB, LQFPP, Campos dos Goytacazes, RJ, Brazil
| | - Ernesto Maldonado
- EvoDevo Lab, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | | | | | - Rodrigo Nunes Da Fonseca
- Núcleo em Ecologia e Desenvolvimento SócioAmbiental de Macaé (NUPEM), Campus Macaé, Universidade Federal do Rio de Janeiro, Macae, RJ, Brazil
| | | | | | | | | | - Sofia Casasa
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | - Federico D Brown
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
12
|
Davila-Velderrain J, Martinez-Garcia JC, Alvarez-Buylla ER. Dynamic network modelling to understand flowering transition and floral patterning. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2565-72. [PMID: 27025221 DOI: 10.1093/jxb/erw123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Differentiation and morphogenetic processes during plant development are particularly robust. At the cellular level, however, plants also show great plasticity in response to environmental conditions, and can even reverse apparently terminal differentiated states with remarkable ease. Can we understand and predict both robust and plastic systemic responses as a general consequence of the non-trivial interplay between intracellular regulatory networks, extrinsic environmental signalling, and tissue-level mechanical constraints? Flower development has become an ideal model system to study these general questions of developmental biology, which are especially relevant to understanding stem cell patterning in plants, animals, and human disease. Decades of detailed study of molecular developmental genetics, as well as novel experimental techniques for in vivo assays in both wild-type and mutant plants, enable the postulation and testing of experimentally grounded mathematical and computational network dynamical models. Research in our group aims to explain the emergence of robust transitions that occur at the shoot apical meristem, as well as flower development, as the result of the collective action of key molecular components in regulatory networks subjected to intra-organismal signalling and extracellular constraints. Here we present a brief overview of recent work from our group, and that of others, focusing on the use of simple dynamical models to address cell-fate specification and cell-state stochastic dynamics during flowering transition and cell-state transitions at the shoot apical meristem of Arabidopsis thaliana. We also focus on how our work fits within the general field of plant developmental modelling, which is being developed by many others.
Collapse
Affiliation(s)
- J Davila-Velderrain
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Cd Universitaria, México, DF 04510, México
| | - J C Martinez-Garcia
- Departamento de Control Autómatico, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, AP 14-740, 07300 México, DF, México
| | - E R Alvarez-Buylla
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Cd Universitaria, México, DF 04510, México Instituto de Ecología, Universidad Nacional Autónoma de México, Cd Universitaria, México, DF 04510, México
| |
Collapse
|