1
|
Pallarès-Albanell J, Ortega-Flores L, Senar-Serra T, Ruiz A, Abril JF, Rossello M, Almudi I. Gene regulatory dynamics during the development of a paleopteran insect, the mayfly Cloeon dipterum. Development 2024; 151:dev203017. [PMID: 39324209 PMCID: PMC11491810 DOI: 10.1242/dev.203017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
The evolution of insects has been marked by the appearance of key body plan innovations that promoted the outstanding ability of this lineage to adapt to new habitats, boosting the most successful radiation in animals. To understand the evolution of these new structures, it is essential to investigate which genes and gene regulatory networks participate during the embryonic development of insects. Great efforts have been made to fully understand gene expression and gene regulation during the development of holometabolous insects, in particular Drosophila melanogaster. Conversely, functional genomics resources and databases in other insect lineages are scarce. To provide a new platform to study gene regulation in insects, we generated ATAC-seq for the first time during the development of the mayfly Cloeon dipterum, which belongs to Paleoptera, the sister group to all other winged insects. With these comprehensive datasets along six developmental stages, we characterized pronounced changes in accessible chromatin between early and late embryogenesis. The application of ATAC-seq in mayflies provides a fundamental resource to understand the evolution of gene regulation in insects.
Collapse
Affiliation(s)
- Joan Pallarès-Albanell
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - Laia Ortega-Flores
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - Tòt Senar-Serra
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - Antoni Ruiz
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - Josep F. Abril
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
- Institute of Biomedicine of Universitat de Barcelona (IBUB), Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - Maria Rossello
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - Isabel Almudi
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
| |
Collapse
|
2
|
Roth S. Neofunctionalization of Toll Signaling in Insects: From Immunity to Dorsoventral Patterning. Annu Rev Cell Dev Biol 2023; 39:1-22. [PMID: 37843930 DOI: 10.1146/annurev-cellbio-120319-120223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Toll signaling plays a crucial role in pathogen defense throughout the animal kingdom. It was discovered, however, for its function in dorsoventral (DV) axis formation in Drosophila. In all other insects studied so far, but not outside the insects, Toll is also required for DV patterning. However, in insects more distantly related to Drosophila, Toll's patterning role is frequently reduced and substituted by an expanded influence of BMP signaling, the pathway implicated in DV axis formation in all major metazoan lineages. This suggests that Toll was integrated into an ancestral BMP-based patterning system at the base of the insects or during insect evolution. The observation that Toll signaling has an immune function in the extraembryonic serosa, an early differentiating tissue of most insect embryos, suggests a scenario of how Toll was co-opted from an ancestral immune function for its new role in axis formation.
Collapse
Affiliation(s)
- Siegfried Roth
- Institute of Zoology-Developmental Biology, Biocenter, University of Cologne, Cologne, Germany;
| |
Collapse
|
3
|
de Aguiar CVS, Alencar JBR, da Silva Santana G, Teles BR. Predicting the Potential Global Distribution of Scirtothrips dorsalis (Hood) (Thysanoptera: Thripidae) with Emphasis on the Americas Using an Ecological Niche Model. NEOTROPICAL ENTOMOLOGY 2023; 52:512-520. [PMID: 36884146 DOI: 10.1007/s13744-023-01038-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/23/2023] [Indexed: 05/13/2023]
Abstract
Scirtothrips dorsalis Hood (Thysanoptera: Thripidae) is an invasive pest that is popularly known as chilli thrips. This insect pest has a wide range of hosts distributed across 72 plant families, causing damage to numerous crops of great economic importance. In the Americas, it is present in the USA, Mexico, Suriname, Venezuela, Colombia, and some Caribbean Islands. Knowing the regions which have environmentally suitable conditions for the survival of this pest is important for phytosanitary monitoring and inspection. Thus, our objective was to forecast the distribution potential of S. dorsalis with a focus on the Americas. Models were produced to design this distribution, in which the environmental variables used were made available in Wordclim version 2.1. The algorithms used for the modeling were the generalized additive model (GAM), generalized linear model (GLM), maximum entropy (MAXENT), random forest (RF), and Bioclim, in addition to the ensemble, which consisted of the grouping of the algorithms used. The metrics used to evaluate the models were area over the curve (AUC), true ability statistics (TSS), and Sorensen score. All models had satisfactory results (> 0.8) for all metrics used. In North America, the model showed favorable regions on the west coast of the USA and east coast near New York. In South America, the potential distribution of the pest is significant, encompassing regions in all countries. It is concluded that S. dorsalis has suitable areas for the occurrence in the three American subcontinents and, in particular, a large part of South America.
Collapse
Affiliation(s)
- Caio Victor Soares de Aguiar
- Programa de Pós-Graduação em Agricultura no Trópico Úmido, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil.
| | | | - Geovani da Silva Santana
- Programa de Pós-Graduação em Ciências Biológicas (Entomologia), Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
| | - Beatriz Ronchi Teles
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazonia, Manaus, Amazonas, Brazil
| |
Collapse
|
4
|
Freitas ÍN, Dourado AV, da Silva Matos SG, de Souza SS, da Luz TM, Rodrigues ASDL, Guimarães ATB, Mubarak NM, Rahman MM, Arias AH, Malafaia G. Short-term exposure of the mayfly larvae (Cloeon dipterum, Ephemeroptera: Baetidae) to SARS-CoV-2-derived peptides and other emerging pollutants: A new threat for the aquatic environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157813. [PMID: 35931160 PMCID: PMC9345649 DOI: 10.1016/j.scitotenv.2022.157813] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/26/2022] [Accepted: 07/31/2022] [Indexed: 05/09/2023]
Abstract
The input of SARS-CoV-2 or its fragments into freshwater ecosystems (via domestic or hospital sewage) has raised concerns about its possible impacts on aquatic organisms. Thus, using mayfly larvae [Cloeon dipterum (L.), Ephemeroptera: Baetidae] as a model system, we aimed to evaluate the possible effects of the combined short exposure of SARS-CoV-2-derived peptides (named PSPD-2001, PSPD-2002, and PSPD-2003 - at 266.2 ng/L) with multiple emerging pollutants at ambient concentrations. After six days of exposure, we observed higher mortality of larvae exposed to SARS-CoV-2-derived peptides (alone or in combination with the pollutant mix) and a lower-body condition index than those unexposed larvae. In the "PSPD" and "Mix+PSPD" groups, the activity of superoxide dismutase, catalase, DPPH radical scavenging activity, and the total thiol levels were also lower than in the "control" group. In addition, we evidenced the induction of nitrosative stress (inferred by increased nitrite production) and reduced acetylcholinesterase activity by SARS-CoV-2-derived peptides. On the other hand, malondialdehyde levels in larvae exposed to treatments were significantly lower than in unexposed larvae. The values of the integrated biomarker response index and the principal component analysis (PCA) results confirmed the similarity between the responses of animals exposed to SARS-CoV-2-derived peptides (alone and in combination with the pollutant mix). Although viral peptides did not intensify the effects of the pollutant mix, our study sheds light on the potential ecotoxicological risk associated with the spread of the new coronavirus in aquatic environments. Therefore, we recommend exploring this topic in other organisms and experimental contexts.
Collapse
Affiliation(s)
- Ítalo Nascimento Freitas
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | - Amanda Vieira Dourado
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil
| | | | - Sindoval Silva de Souza
- Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil
| | - Thiarlen Marinho da Luz
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | | | | | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Md Mostafizur Rahman
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Andrés Hugo Arias
- Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS)-CONICET, Florida 8000, Complejo CCT CONICET Bahía Blanca, Bahía Blanca, Argentina
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| |
Collapse
|
5
|
Gonzalez CJ, Hildebrandt TR, O'Donnell B. Characterizing Hox genes in mayflies (Ephemeroptera), with Hexagenia limbata as a new mayfly model. EvoDevo 2022; 13:15. [PMID: 35897030 PMCID: PMC9331126 DOI: 10.1186/s13227-022-00200-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hox genes are key regulators of appendage development in the insect body plan. The body plan of mayfly (Ephemeroptera) nymphs differs due to the presence of abdominal appendages called gills. Despite mayflies' phylogenetic position in Paleoptera and novel morphology amongst insects, little is known of their developmental genetics, such as the appendage-regulating Hox genes. To address this issue we present an annotated, early instar transcriptome and embryonic expression profiles for Antennapedia, Ultrabithorax, and Abdominal A proteins in the mayfly Hexagenia limbata, identify putative Hox protein sequences in the mayflies H. limbata, Cloeon dipterum, and Ephemera danica, and describe the genomic organization of the Hox gene cluster in E. danica. RESULTS Transcriptomic sequencing of early instar H. limbata nymphs yielded a high-quality assembly of 83,795 contigs, of which 22,975 were annotated against Folsomia candida, Nilaparvata lugens, Zootermopsis nevadensis and UniRef90 protein databases. Homeodomain protein phylogeny and peptide annotations identified coding sequences for eight of the ten canonical Hox genes (excluding zerknüllt/Hox3 and fushi tarazu) in H. limbata and C. dipterum, and all ten in E. danica. Mayfly Hox protein sequences and embryonic expression patterns of Antp, Ubx, and Abd-A appear highly conserved with those seen in other non-holometabolan insects. Similarly, the genomic organization of the Hox cluster in E. danica resembles that seen in most insects. CONCLUSIONS We present evidence that mayfly Hox peptide sequences and the embryonic expression patterns for Antp, Ubx, and Abd-A are extensively conserved with other insects, as is organization of the mayfly Hox gene cluster. The protein data suggest mayfly Antp, Ubx, and Abd-A play appendage promoting and repressing roles during embryogenesis in the thorax and abdomen, respectively, as in other insects. The identified expression of eight Hox genes, including Ubx and abd-A, in early instar nymphs further indicates a post-embryonic role, possibly in gill development. These data provide a basis for H. limbata as a complementary Ephemeridae model to the growing repertoire of mayfly model species and molecular techniques.
Collapse
Affiliation(s)
| | - Tobias R Hildebrandt
- Computational and Applied Mathematic Science, Plymouth State University, Plymouth, NH, USA
| | - Brigid O'Donnell
- Biological Sciences, Plymouth State University, Plymouth, NH, USA
| |
Collapse
|
6
|
Fisher CR, Kratovil JD, Angelini DR, Jockusch EL. Out from under the wing: reconceptualizing the insect wing gene regulatory network as a versatile, general module for body-wall lobes in arthropods. Proc Biol Sci 2021; 288:20211808. [PMID: 34933597 PMCID: PMC8692954 DOI: 10.1098/rspb.2021.1808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022] Open
Abstract
Body plan evolution often occurs through the differentiation of serially homologous body parts, particularly in the evolution of arthropod body plans. Recently, homeotic transformations resulting from experimental manipulation of gene expression, along with comparative data on the expression and function of genes in the wing regulatory network, have provided a new perspective on an old question in insect evolution: how did the insect wing evolve? We investigated the metamorphic roles of a suite of 10 wing- and body-wall-related genes in a hemimetabolous insect, Oncopeltus fasciatus. Our results indicate that genes involved in wing development in O. fasciatus play similar roles in the development of adult body-wall flattened cuticular evaginations. We found extensive functional similarity between the development of wings and other bilayered evaginations of the body wall. Overall, our results support the existence of a versatile development module for building bilayered cuticular epithelial structures that pre-dates the evolutionary origin of wings. We explore the consequences of reconceptualizing the canonical wing-patterning network as a bilayered body-wall patterning network, including consequences for long-standing debates about wing homology, the origin of wings and the origin of novel bilayered body-wall structures. We conclude by presenting three testable predictions that result from this reconceptualization.
Collapse
Affiliation(s)
- Cera R. Fisher
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Justin D. Kratovil
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | | | - Elizabeth L. Jockusch
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
7
|
Regulation of metamorphosis in neopteran insects is conserved in the paleopteran Cloeon dipterum (Ephemeroptera). Proc Natl Acad Sci U S A 2021; 118:2105272118. [PMID: 34417295 DOI: 10.1073/pnas.2105272118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the Paleozoic era, more than 400 Ma, a number of insect groups continued molting after forming functional wings. Today, however, flying insects stop molting after metamorphosis when they become fully winged. The only exception is the mayflies (Paleoptera, Ephemeroptera), which molt in the subimago, a flying stage between the nymph and the adult. However, the identity and homology of the subimago still is underexplored. Debate remains regarding whether this stage represents a modified nymph, an adult, or a pupa like that of butterflies. Another relevant question is why mayflies have the subimago stage despite the risk of molting fragile membranous wings. These questions have intrigued numerous authors, but nonetheless, clear answers have not yet been found. By combining morphological studies, hormonal treatments, and molecular analysis in the mayfly Cloeon dipterum, we found answers to these old questions. We observed that treatment with a juvenile hormone analog in the last nymphal instar stimulated the expression of the Kr-h1 gene and reduced that of E93, which suppress and trigger metamorphosis, respectively. The regulation of metamorphosis thus follows the MEKRE93 pathway, as in neopteran insects. Moreover, the treatment prevented the formation of the subimago. These findings suggest that the subimago must be considered an instar of the adult mayfly. We also observed that the forelegs dramatically grow between the last nymphal instar, the subimago, and the adult. This necessary growth spread over the last two stages could explain, at least in part, the adaptive sense of the subimago.
Collapse
|
8
|
Brüggemann M, Hund-Rinke K, Böhmer W, Schaefers C. Development of an Alternative Test System for Chronic Testing of Lotic Macroinvertebrate Species: A Case Study with the Insecticide Imidacloprid. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2229-2239. [PMID: 33844353 DOI: 10.1002/etc.5070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/14/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
There are currently few suitable test systems for the chronic toxicity testing of aquatic macroinvertebrates under stream conditions. Therefore, a new test system mimicking running water conditions was developed for testing with lotic insects. This system uses small test cages, with 10 of these suspended inside each 25-L container and rotating at 0.1 m/s, to create a water flow for the individual organism inside each cage. To test the performance of the new exposure system, chronic effects (21 d) of the neonicotinoid imidacloprid were investigated with field-collected larvae of the stonefly Protonemura sp. Endpoints were survival, growth, and/or emergence (depending on the developmental stage of the larvae at the start of the exposure). Two experiments conducted 1 yr apart showed good reproducibility: growth 10% effect concentration (EC10) values were 15.3 and 18.5 μg/L and no-observed-effect concentration (NOEC) values were 30.3 and 21.5 μg/L. A third experiment, performed with further-developed larval instars, showed a significant effect of imidacloprid on emergence (with EC10 of 5.97 μg/L and NOEC of 2.89 μg/L) and a significant effect on survival (with median lethal concentration of 44.7 µg/L). The results of the present study show that the newly developed test system provides a suitable approach for toxicity testing with stonefly larvae and potentially for other lotic macroinvertebrate species. Environ Toxicol Chem 2021;40:2229-2239. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Maria Brüggemann
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Kerstin Hund-Rinke
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Walter Böhmer
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Christoph Schaefers
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| |
Collapse
|
9
|
Rosová K, Sinitshenkova ND, Prokop J. Evidence for wing development in the Late Palaeozoic Palaeodictyoptera revisited. ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 63:101061. [PMID: 34098321 DOI: 10.1016/j.asd.2021.101061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
The numerous fossil specimens described as consecutive series of different larval stages of two species, Tchirkovaea guttata and Paimbia fenestrata (Palaeodictyoptera: Tchirkovaeidae), were reinvestigated with emphasis on comparing the development and growth of their wings with that of the wings of a recent mayfly, Cloeon dipterum. This unique fossil material was for a long time considered as undisputed evidence for an unusual type of wing development in Palaeozoic insects. The original idea was that the larvae of Palaeodictyopterida had wings, which were articulated and fully movable in their early stages of postembryonic development and that these gradually enlarging wings changed their position from longitudinal to perpendicular to the body axis. Moreover, the development of wings was supposed to include two or more subimaginal instars, implying that the fully winged instars moulted several times during their postembryonic development. The results of the present study revealed that there is no evidence that this series of nymphal, subimaginal and imaginal wings provide support for the original idea of wing development in Palaeozoic insects. On the contrary, our results indicate, that the supposed palaeodictyopteran larval wings are in fact wing pads with a wing developing inside the cuticular sheath as in recent hemimetabolous insects. Moreover, this study newly reinterpreted the wing pad base of Parathesoneura carpenteri and confirmed the presence of nygma like structures on wings and wing pads of palaeodictyopteran Tchirkovaeidae.
Collapse
Affiliation(s)
- Kateřina Rosová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, CZ 128 00, Praha 2, Czech Republic.
| | - Nina D Sinitshenkova
- Palaeontological Institute of the Russian Academy of Sciences, Profsoyuznaya 123, Moscow, Russia
| | - Jakub Prokop
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, CZ 128 00, Praha 2, Czech Republic
| |
Collapse
|
10
|
Saxton NA, Powell GS, Bybee SM. Prevalence of leg regeneration in damselflies reevaluated: A case study in Coenagrionidae. ARTHROPOD STRUCTURE & DEVELOPMENT 2020; 59:100995. [PMID: 32977262 DOI: 10.1016/j.asd.2020.100995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
The leg regeneration capabilities of damselflies are understudied. Here we present the first data of regenerated limbs across a genus of damselfly based on adult specimens collected in the field to illustrate the prevalence of limb loss among nymphs. We show that this phenomenon is much more prevalent than previously thought, as 42 percent of individuals were found with regenerated limbs. Furthermore, we test for patterns within these data to begin to unravel the potential causes of limb loss in nymphal damselflies, showing that intrinsic factors such as sex and species cannot explain the patterns of limb loss pointing to environmental factors as the probable cause. We argue that Odonata limb regeneration provides a potentially unique perspective into the nymphal stage of these organisms.
Collapse
Affiliation(s)
- Natalie A Saxton
- Department of Biology, Brigham Young University, 4102 LSB, Provo, UT 84602, USA.
| | - Gareth S Powell
- Department of Biology, Brigham Young University, 4102 LSB, Provo, UT 84602, USA
| | - Seth M Bybee
- Department of Biology, Brigham Young University, 4102 LSB, Provo, UT 84602, USA; Monte L. Bean Museum, Brigham Young University, Provo, UT, USA
| |
Collapse
|
11
|
Ruiz-Sobrino A, Martín-Blanco CA, Navarro T, Almudí I, Masiero G, Jiménez-Caballero M, Buchwalter DB, Funk DH, Gattolliat JL, Lemos MC, Jiménez F, Casares F. Space colonization by branching trachea explains the morphospace of a simple respiratory organ. Dev Biol 2020; 462:50-59. [PMID: 32109442 DOI: 10.1016/j.ydbio.2020.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 10/24/2022]
Abstract
Branching morphogenesis helps increase the efficiency of gas and liquid transport in many animal organs. Studies in several model organisms have highlighted the molecular and cellular complexity behind branching morphogenesis. To understand this complexity, computational models have been developed with the goal of identifying the "major rules" that globally explain the branching patterns. These models also guide further experimental exploration of the biological processes that execute and maintain these rules. In this paper we introduce the tracheal gills of mayfly (Ephemeroptera) larvae as a model system to study the generation of branched respiratory patterns. First, we describe the gills of the mayfly Cloeon dipterum, and quantitatively characterize the geometry of its branching trachea. We next extend this characterization to those of related species to generate the morphospace of branching patterns. Then, we show how an algorithm based on the "space colonization" concept (SCA) can generate this branching morphospace via growth towards a hypothetical attractor molecule (M). SCA differs from other branch-generating algorithms in that the geometry generated depends to a great extent on its perception of the "external" space available for branching, uses few rules and, importantly, can be easily translated into a realistic "biological patterning algorithm". We identified a gene in the C. dipterum genome (Cd-bnl) that is orthologous to the fibroblast growth factor branchless (bnl), which stimulates growth and branching of embryonic trachea in Drosophila. In C. dipterum, this gene is expressed in the gill margins and areas of finer tracheolar branching from thicker trachea. Thus, Cd-bnl may perform the function of M in our model. Finally, we discuss this general mechanism in the context of other branching pattern-generating algorithms.
Collapse
Affiliation(s)
- A Ruiz-Sobrino
- CABD, GEM-DMC2 Unit (CSIC-Pablo de Olavide University-Junta de Andalucía), 41013, Seville, Spain
| | - C A Martín-Blanco
- CABD, GEM-DMC2 Unit (CSIC-Pablo de Olavide University-Junta de Andalucía), 41013, Seville, Spain
| | - T Navarro
- CABD, GEM-DMC2 Unit (CSIC-Pablo de Olavide University-Junta de Andalucía), 41013, Seville, Spain
| | - I Almudí
- CABD, GEM-DMC2 Unit (CSIC-Pablo de Olavide University-Junta de Andalucía), 41013, Seville, Spain
| | - G Masiero
- CABD, GEM-DMC2 Unit (CSIC-Pablo de Olavide University-Junta de Andalucía), 41013, Seville, Spain
| | - M Jiménez-Caballero
- CABD, GEM-DMC2 Unit (CSIC-Pablo de Olavide University-Junta de Andalucía), 41013, Seville, Spain
| | - D B Buchwalter
- North Carolina State University, Department of Biological Sciences, Raleigh, NC, 27695, USA
| | - D H Funk
- Stroud Water Research Center, Avondale, PA, 19311, USA
| | - J L Gattolliat
- Musée Cantonal de Zoologie, CH-1014, Lausanne, Switzerland; University of Lausanne (UNIL), Department of Ecology and Evolution, CH-1015, Lausanne, Switzerland
| | - M C Lemos
- Department of Condensed Matter Physics, University of Sevilla, 41012, Sevilla, Spain
| | - F Jiménez
- Department of Condensed Matter Physics, University of Sevilla, 41012, Sevilla, Spain.
| | - F Casares
- CABD, GEM-DMC2 Unit (CSIC-Pablo de Olavide University-Junta de Andalucía), 41013, Seville, Spain.
| |
Collapse
|
12
|
Almudi I, Vizueta J, Wyatt CDR, de Mendoza A, Marlétaz F, Firbas PN, Feuda R, Masiero G, Medina P, Alcaina-Caro A, Cruz F, Gómez-Garrido J, Gut M, Alioto TS, Vargas-Chavez C, Davie K, Misof B, González J, Aerts S, Lister R, Paps J, Rozas J, Sánchez-Gracia A, Irimia M, Maeso I, Casares F. Genomic adaptations to aquatic and aerial life in mayflies and the origin of insect wings. Nat Commun 2020; 11:2631. [PMID: 32457347 PMCID: PMC7250882 DOI: 10.1038/s41467-020-16284-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/27/2020] [Indexed: 01/11/2023] Open
Abstract
The evolution of winged insects revolutionized terrestrial ecosystems and led to the largest animal radiation on Earth. However, we still have an incomplete picture of the genomic changes that underlay this diversification. Mayflies, as one of the sister groups of all other winged insects, are key to understanding this radiation. Here, we describe the genome of the mayfly Cloeon dipterum and its gene expression throughout its aquatic and aerial life cycle and specific organs. We discover an expansion of odorant-binding-protein genes, some expressed specifically in breathing gills of aquatic nymphs, suggesting a novel sensory role for this organ. In contrast, flying adults use an enlarged opsin set in a sexually dimorphic manner, with some expressed only in males. Finally, we identify a set of wing-associated genes deeply conserved in the pterygote insects and find transcriptomic similarities between gills and wings, suggesting a common genetic program. Globally, this comprehensive genomic and transcriptomic study uncovers the genetic basis of key evolutionary adaptations in mayflies and winged insects.
Collapse
Affiliation(s)
- Isabel Almudi
- GEM-DMC2 Unit, The CABD (CSIC-UPO-JA), Ctra. de Utrera km 1, 41013, Seville, Spain.
| | - Joel Vizueta
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Christopher D R Wyatt
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centre for Biodiversity and Environment Research, University College London, Gower Street, London, WC1E 6BT, UK
| | - Alex de Mendoza
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, E1 4NS, London, UK
| | - Ferdinand Marlétaz
- Molecular Genetics Unit, Okinawa Institute of Science and Technology, Onna-son, Japan
| | - Panos N Firbas
- GEM-DMC2 Unit, The CABD (CSIC-UPO-JA), Ctra. de Utrera km 1, 41013, Seville, Spain
| | - Roberto Feuda
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Giulio Masiero
- GEM-DMC2 Unit, The CABD (CSIC-UPO-JA), Ctra. de Utrera km 1, 41013, Seville, Spain
| | - Patricia Medina
- GEM-DMC2 Unit, The CABD (CSIC-UPO-JA), Ctra. de Utrera km 1, 41013, Seville, Spain
| | - Ana Alcaina-Caro
- GEM-DMC2 Unit, The CABD (CSIC-UPO-JA), Ctra. de Utrera km 1, 41013, Seville, Spain
| | - Fernando Cruz
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Jessica Gómez-Garrido
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Tyler S Alioto
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Carlos Vargas-Chavez
- Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Kristofer Davie
- Laboratory of Computational Biology, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Louvain, Belgium
- Department of Human Genetics, KU Leuven, Oude Markt 13, 3000, Louvain, Belgium
| | - Bernhard Misof
- Zoological Research Museum Alexander Koenig, Adenauerallee 160, 53113, Bonn, Germany
| | - Josefa González
- Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Stein Aerts
- Laboratory of Computational Biology, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Louvain, Belgium
- Department of Human Genetics, KU Leuven, Oude Markt 13, 3000, Louvain, Belgium
| | - Ryan Lister
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Jordi Paps
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Julio Rozas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Alejandro Sánchez-Gracia
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Ignacio Maeso
- GEM-DMC2 Unit, The CABD (CSIC-UPO-JA), Ctra. de Utrera km 1, 41013, Seville, Spain
| | - Fernando Casares
- GEM-DMC2 Unit, The CABD (CSIC-UPO-JA), Ctra. de Utrera km 1, 41013, Seville, Spain.
| |
Collapse
|
13
|
Sibley P, Lagadic L, McCoole M, Norberg-King T, Roessink I, Soucek D, Watson-Leung T, Wirtz J. Mayflies in Ecotoxicity Testing: Methodological Needs and Knowledge Gaps. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2020; 16:292-293. [PMID: 32097538 DOI: 10.1002/ieam.4245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Paul Sibley
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Laurent Lagadic
- Bayer CropScience LP, Environmental Safety, Chesterfield, Missouri, USA
| | - Matt McCoole
- Bayer AG, Crop Science Division, Environmental Safety, Monheim, Germany
| | | | - Ivo Roessink
- Wageningen Environmental Research, Wageningen, Netherlands
| | - David Soucek
- Illinois Natural History Survey, Champaign, Illinois, USA
| | - Trudy Watson-Leung
- Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada
| | - Jeff Wirtz
- Compliance Services International, Lakewood, Washington, USA
| |
Collapse
|