1
|
Hota J, Pattnaik S, Sahoo G, Mohanty-Hejmadi P, Mahapatra PK. Homeotic transformation of tail to limbs: A novel morphogenesis in the framework of self-organization and reprogramming of cell fate during appendage regeneration. Cells Dev 2024:203987. [PMID: 39706569 DOI: 10.1016/j.cdev.2024.203987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Homeotic transformation of tail to hindlimbs in anuran tadpoles is a manifestation of the reprogramming of positional information in the event of tail regeneration. Such discovery of homeosis is of particular interest considering its occurrence in a vertebrate under the influence of a morphogen which represents a self-organizing system in the context of developmental and regenerative studies. This article reviews homeotic transformation of tail to hindlimbs including pelvic girdles induced by retinoic acid (RA) /vitamin A palmitate during tail regeneration under the scope of self-organization and the role of blastema as an organizer. Next, we present a timeline of various findings in this context.
Collapse
Affiliation(s)
- Jutshina Hota
- Department of Zoology, Rajdhani College, Bhubaneswar 751003, Odisha, India
| | - Swetamudra Pattnaik
- Department of Zoology, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India
| | - Gunanidhi Sahoo
- Department of Zoology, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India
| | | | | |
Collapse
|
2
|
Subramanian E, Elewa A, Brito G, Kumar A, Segerstolpe Å, Karampelias C, Björklund Å, Sandberg R, Echeverri K, Lui WO, Andersson O, Simon A. A small noncoding RNA links ribosome recovery and translation control to dedifferentiation during salamander limb regeneration. Dev Cell 2023; 58:450-460.e6. [PMID: 36893754 DOI: 10.1016/j.devcel.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 08/11/2022] [Accepted: 02/09/2023] [Indexed: 03/11/2023]
Abstract
Building a blastema from the stump is a key step of salamander limb regeneration. Stump-derived cells temporarily suspend their identity as they contribute to the blastema by a process generally referred to as dedifferentiation. Here, we provide evidence for a mechanism that involves an active inhibition of protein synthesis during blastema formation and growth. Relieving this inhibition results in a higher number of cycling cells and enhances the pace of limb regeneration. By small RNA profiling and fate mapping of skeletal muscle progeny as a cellular model for dedifferentiation, we find that the downregulation of miR-10b-5p is critical for rebooting the translation machinery. miR-10b-5p targets ribosomal mRNAs, and its artificial upregulation causes decreased blastema cell proliferation, reduction in transcripts that encode ribosomal subunits, diminished nascent protein synthesis, and retardation of limb regeneration. Taken together, our data identify a link between miRNA regulation, ribosome biogenesis, and protein synthesis during newt limb regeneration.
Collapse
Affiliation(s)
| | - Ahmed Elewa
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Gonçalo Brito
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anoop Kumar
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Åsa Segerstolpe
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christos Karampelias
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Åsa Björklund
- Department of Cell and Molecular Biology, National Infrastructure of Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Rickard Sandberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Karen Echeverri
- Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology and Tissue Engineering, University of Chicago, Woods Hole, MA, USA
| | - Weng-Onn Lui
- Department of Oncology-Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - András Simon
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
3
|
Allievi A, Canavesi M, Ferrario C, Sugni M, Bonasoro F. An evo-devo perspective on the regeneration patterns of continuous arm structures in stellate echinoderms. THE EUROPEAN ZOOLOGICAL JOURNAL 2022. [DOI: 10.1080/24750263.2022.2039309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- A. Allievi
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - M. Canavesi
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - C. Ferrario
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Milan, Italy
| | - M. Sugni
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Milan, Italy
- GAIA 2050 Center, Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - F. Bonasoro
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
- GAIA 2050 Center, Department of Environmental Science and Policy, University of Milan, Milan, Italy
| |
Collapse
|
4
|
Lobo D. Formalizing Phenotypes of Regeneration. Methods Mol Biol 2022; 2450:663-679. [PMID: 35359335 PMCID: PMC9761515 DOI: 10.1007/978-1-0716-2172-1_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Regeneration experiments can produce complex phenotypes including morphological outcomes and gene expression patterns that are crucial for the understanding of the mechanisms of regeneration. However, due to their inherent complexity, variability between individuals, and heterogeneous data spreading across the literature, extracting mechanistic knowledge from them is a current challenge. Toward this goal, here we present protocols to unambiguously formalize the phenotypes of regeneration and their experimental procedures using precise mathematical morphological descriptions and standardized gene expression patterns. We illustrate the application of the methodology with step-by-step protocols for planaria and limb regeneration phenotypes. The curated datasets with these methods are not only helpful for human scientists, but they represent a key formalized resource that can be easily integrated into downstream reverse engineering methodologies for the automatic extraction of mechanistic knowledge. This approach can pave the way for discovering comprehensive systems-level models of regeneration.
Collapse
Affiliation(s)
- Daniel Lobo
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD, USA.
| |
Collapse
|
5
|
Srivastava M. Beyond Casual Resemblances: Rigorous Frameworks for Comparing Regeneration Across Species. Annu Rev Cell Dev Biol 2021; 37:415-440. [PMID: 34288710 DOI: 10.1146/annurev-cellbio-120319-114716] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The majority of animal phyla have species that can regenerate. Comparing regeneration across animals can reconstruct the molecular and cellular evolutionary history of this process. Recent studies have revealed some similarity in regeneration mechanisms, but rigorous comparative methods are needed to assess whether these resemblances are ancestral pathways (homology) or are the result of convergent evolution (homoplasy). This review aims to provide a framework for comparing regeneration across animals, focusing on gene regulatory networks (GRNs), which are substrates for assessing process homology. The homology of the wound-induced activation of Wnt signaling and of adult stem cells are discussed as examples of ongoing studies of regeneration that enable comparisons in a GRN framework. Expanding the study of regeneration GRNs in currently studied species and broadening taxonomic sampling for these approaches will identify processes that are unifying principles of regeneration biology across animals. These insights are important both for evolutionary studies of regeneration and for human regenerative medicine. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Mansi Srivastava
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA;
| |
Collapse
|
6
|
Khyeam S, Lee S, Huang GN. Genetic, Epigenetic, and Post-Transcriptional Basis of Divergent Tissue Regenerative Capacities Among Vertebrates. ADVANCED GENETICS (HOBOKEN, N.J.) 2021; 2:e10042. [PMID: 34423307 PMCID: PMC8372189 DOI: 10.1002/ggn2.10042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 12/29/2022]
Abstract
Regeneration is widespread across the animal kingdom but varies vastly across phylogeny and even ontogeny. Adult mammalian regeneration in most organs and appendages is limited, while vertebrates such as zebrafish and salamanders are able to regenerate various organs and body parts. Here, we focus on the regeneration of appendages, spinal cord, and heart - organs and body parts that are highly regenerative among fish and amphibian species but limited in adult mammals. We then describe potential genetic, epigenetic, and post-transcriptional similarities among these different forms of regeneration across vertebrates and discuss several theories for diminished regenerative capacity throughout evolution.
Collapse
Affiliation(s)
- Sheamin Khyeam
- Cardiovascular Research Institute and Department of PhysiologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell ResearchUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Sukjun Lee
- Cardiovascular Research Institute and Department of PhysiologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell ResearchUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Guo N. Huang
- Cardiovascular Research Institute and Department of PhysiologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell ResearchUniversity of CaliforniaSan FranciscoCaliforniaUSA
| |
Collapse
|
7
|
Xu C, Palade J, Fisher RE, Smith CI, Clark AR, Sampson S, Bourgeois R, Rawls A, Elsey RM, Wilson-Rawls J, Kusumi K. Anatomical and histological analyses reveal that tail repair is coupled with regrowth in wild-caught, juvenile American alligators (Alligator mississippiensis). Sci Rep 2020; 10:20122. [PMID: 33208803 PMCID: PMC7674433 DOI: 10.1038/s41598-020-77052-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Reptiles are the only amniotes that maintain the capacity to regenerate appendages. This study presents the first anatomical and histological evidence of tail repair with regrowth in an archosaur, the American alligator. The regrown alligator tails constituted approximately 6–18% of the total body length and were morphologically distinct from original tail segments. Gross dissection, radiographs, and magnetic resonance imaging revealed that caudal vertebrae were replaced by a ventrally-positioned, unsegmented endoskeleton. This contrasts with lepidosaurs, where the regenerated tail is radially organized around a central endoskeleton. Furthermore, the regrown alligator tail lacked skeletal muscle and instead consisted of fibrous connective tissue composed of type I and type III collagen fibers. The overproduction of connective tissue shares features with mammalian wound healing or fibrosis. The lack of skeletal muscle contrasts with lizards, but shares similarities with regenerated tails in the tuatara and regenerated limbs in Xenopus adult frogs, which have a cartilaginous endoskeleton surrounded by connective tissue, but lack skeletal muscle. Overall, this study of wild-caught, juvenile American alligator tails identifies a distinct pattern of wound repair in mammals while exhibiting features in common with regeneration in lepidosaurs and amphibia.
Collapse
Affiliation(s)
- Cindy Xu
- School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, AZ, 85287, USA
| | - Joanna Palade
- School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, AZ, 85287, USA
| | - Rebecca E Fisher
- School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, AZ, 85287, USA.,Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Cameron I Smith
- School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, AZ, 85287, USA
| | - Andrew R Clark
- School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, AZ, 85287, USA
| | - Samuel Sampson
- School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, AZ, 85287, USA
| | | | - Alan Rawls
- School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, AZ, 85287, USA
| | - Ruth M Elsey
- Rockefeller Wildlife Refuge, Louisiana Department of Wildlife and Fisheries, Grand Chenier, LA, 70643, USA
| | - Jeanne Wilson-Rawls
- School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, AZ, 85287, USA.
| | - Kenro Kusumi
- School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, AZ, 85287, USA.
| |
Collapse
|
8
|
Levin M. The Biophysics of Regenerative Repair Suggests New Perspectives on Biological Causation. Bioessays 2020; 42:e1900146. [PMID: 31994772 DOI: 10.1002/bies.201900146] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/03/2019] [Indexed: 12/13/2022]
Abstract
Evolution exploits the physics of non-neural bioelectricity to implement anatomical homeostasis: a process in which embryonic patterning, remodeling, and regeneration achieve invariant anatomical outcomes despite external interventions. Linear "developmental pathways" are often inadequate explanations for dynamic large-scale pattern regulation, even when they accurately capture relationships between molecular components. Biophysical and computational aspects of collective cell activity toward a target morphology reveal interesting aspects of causation in biology. This is critical not only for unraveling evolutionary and developmental events, but also for the design of effective strategies for biomedical intervention. Bioelectrical controls of growth and form, including stochastic behavior in such circuits, highlight the need for the formulation of nuanced views of pathways, drivers of system-level outcomes, and modularity, borrowing from concepts in related disciplines such as cybernetics, control theory, computational neuroscience, and information theory. This approach has numerous practical implications for basic research and for applications in regenerative medicine and synthetic bioengineering.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
9
|
Robust phenotypic maintenance of limb cells during heterogeneous culture in a physiologically relevant polymeric-based constructed graft system. Sci Rep 2020; 10:11739. [PMID: 32678185 PMCID: PMC7367281 DOI: 10.1038/s41598-020-68658-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/29/2020] [Indexed: 11/08/2022] Open
Abstract
A major challenge during the simultaneous regeneration of multiple tissues is the ability to maintain the phenotypic characteristics of distinct cell populations on one construct, especially in the presence of different exogenous soluble cues such as growth factors. Therefore, in this study, we questioned whether phenotypic maintenance over a distinct population of cells can be achieved by providing biomimetic structural cues relevant to each cell phenotype into the construct's design and controlling the presentation of growth factors in a region-specific manner. To address this question, we developed a polymeric-based constructed graft system (CGS) as a physiologically relevant model that consists of three combined regions with distinct microstructures and growth factor types. Regions A and B of the CGS exhibited similar microstructures to the skin and soft tissues and contained rhPDGF-BB and rhIGF-I, while region C exhibited a similar microstructure to the bone tissue and contained rhBMP-2. Primary rat skin fibroblasts, soft tissue fibroblasts, and osteoblasts were then cultured on regions A, B, and C of the CGS, respectively and their phenotypic characteristics were evaluated in this heterogenous environment. In the absence of growth factors, we found that the structural cues presented in every region played a key role in maintaining the region-specific cell functions and heterogeneity during a heterogeneous culture. In the presence of growth factors, we found that spatially localizing the growth factors at their respective regions resulted in enhanced region-specific cell functions and maintained region-specific cell heterogeneity compared to supplementation, which resulted in a significant reduction of cell growth and loss of phenotype. Our data suggest that providing biomimetic structural cues relevant to each cell phenotype and controlling the presentation of growth factors play a crucial role in ensuring heterogeneity maintenance of distinct cell populations during a heterogeneous culture. The presented CGS herein provides a reliable platform for investigating different cells responses to heterogeneous culture in a physiologically relevant microenvironment. In addition, the model provides a unique platform for evaluating the feasibility and efficacy of different approaches for simultaneously delivering multiple growth factors or molecules from a single construct to achieve enhanced cell response while maintaining cellular heterogeneity during a heterogenous culture.
Collapse
|
10
|
Landete-Castillejos T, Kierdorf H, Gomez S, Luna S, García AJ, Cappelli J, Pérez-Serrano M, Pérez-Barbería J, Gallego L, Kierdorf U. Antlers - Evolution, development, structure, composition, and biomechanics of an outstanding type of bone. Bone 2019; 128:115046. [PMID: 31446115 DOI: 10.1016/j.bone.2019.115046] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023]
Abstract
Antlers are bony appendages of deer that undergo periodic regeneration from the top of permanent outgrowths (the pedicles) of the frontal bones. Of the "less familiar" bone types whose study was advocated by John Currey to gain a better understanding of structure-function relationships of mineralized tissues and organs, antlers were of special interest to him. The present review summarizes our current knowledge about the evolution, development, structure, mineralization, and biomechanics of antlers and how their formation is affected by environmental factors like nutrition. Furthermore, the potential role of antlers as a model in bone biology and several fields of biomedicine as well as their use as a monitoring tool in environmental studies are discussed.
Collapse
Affiliation(s)
- T Landete-Castillejos
- Instituto de Investigación en Recursos Cinegéticos, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Escuela Técnica Superior de Ingenieros Agrónomos y Montes, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Sección de Recursos Cinegéticos y Ganaderos, Instituto de Desarrollo Regional, Universidad de Castilla-La Mancha, 02071 Albacete, Spain.
| | - H Kierdorf
- Department of Biology, University of Hildesheim, 31141 Hildesheim, Germany
| | - S Gomez
- Universidad de Cádiz, 11071 Cádiz, Spain
| | - S Luna
- Universidad de Cádiz, 11071 Cádiz, Spain
| | - A J García
- Instituto de Investigación en Recursos Cinegéticos, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Escuela Técnica Superior de Ingenieros Agrónomos y Montes, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Sección de Recursos Cinegéticos y Ganaderos, Instituto de Desarrollo Regional, Universidad de Castilla-La Mancha, 02071 Albacete, Spain
| | - J Cappelli
- Instituto de Investigación en Recursos Cinegéticos, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Escuela Técnica Superior de Ingenieros Agrónomos y Montes, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Sección de Recursos Cinegéticos y Ganaderos, Instituto de Desarrollo Regional, Universidad de Castilla-La Mancha, 02071 Albacete, Spain
| | - M Pérez-Serrano
- Instituto de Investigación en Recursos Cinegéticos, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Escuela Técnica Superior de Ingenieros Agrónomos y Montes, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Sección de Recursos Cinegéticos y Ganaderos, Instituto de Desarrollo Regional, Universidad de Castilla-La Mancha, 02071 Albacete, Spain
| | - J Pérez-Barbería
- Instituto de Investigación en Recursos Cinegéticos, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Escuela Técnica Superior de Ingenieros Agrónomos y Montes, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Sección de Recursos Cinegéticos y Ganaderos, Instituto de Desarrollo Regional, Universidad de Castilla-La Mancha, 02071 Albacete, Spain
| | - L Gallego
- Instituto de Investigación en Recursos Cinegéticos, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Escuela Técnica Superior de Ingenieros Agrónomos y Montes, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Sección de Recursos Cinegéticos y Ganaderos, Instituto de Desarrollo Regional, Universidad de Castilla-La Mancha, 02071 Albacete, Spain
| | - U Kierdorf
- Department of Biology, University of Hildesheim, 31141 Hildesheim, Germany
| |
Collapse
|
11
|
No Correlation between Endo- and Exoskeletal Regenerative Capacities in Teleost Species. FISHES 2019. [DOI: 10.3390/fishes4040051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The regeneration of paired appendages in certain fish and amphibian lineages is a well established and extensively studied regenerative phenomenon. The teleost fin is comprised of a proximal endoskeletal part (considered homologous to the Tetrapod limb) and a distal exoskeletal one, and these two parts form their bony elements through different ossification processes. In the past decade, a significant body of literature has been generated about the biology of exoskeletal regeneration in zebrafish. However, it is still not clear if this knowledge can be applied to the regeneration of endoskeletal parts. To address this question, we decided to compare endo- and exoskeletal regenerative capacity in zebrafish (Danio rerio) and mudskippers (Periophthalmus barbarous). In contrast to the reduced endoskeleton of zebrafish, Periophthalmus has well developed pectoral fins with a large and easily accessible endoskeleton. We performed exo- and endoskeletal amputations in both species and followed the regenerative processes. Unlike the almost flawless exoskeletal regeneration observed in zebrafish, regeneration following endoskeletal amputation is often impaired in this species. This difference is even more pronounced in Periophthalmus where we could observe no regeneration in endoskeletal structures. Therefore, regeneration is regulated differentially in the exo- and endoskeleton of teleost species.
Collapse
|