1
|
Li Z, Zhao Y, Luo K. Molecular Mechanisms of Heterosis and Its Applications in Tree Breeding: Progress and Perspectives. Int J Mol Sci 2024; 25:12344. [PMID: 39596408 PMCID: PMC11594601 DOI: 10.3390/ijms252212344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Heterosis, or hybrid vigor, refers to the phenomenon where hybrid progenies outperform their parents in traits such as yield and resistance. This phenomenon has been widely applied in plant breeding. Recent advances in high-throughput genomics have significantly advanced our understanding of heterosis. This review systematically summarizes the genetic, molecular, and epigenetic mechanisms underlying heterosis. Furthermore, we discuss recent advances in predictive methods for heterosis and their applications in improving growth rate, resistance to abiotic stresses, and wood yield in tree species. We also explore the role of tree genomics in unraveling the mechanisms underlying heterosis, emphasizing the potential of integrating high-resolution genomics, single-cell sequencing, and spatial transcriptomics to achieve a comprehensive understanding of heterosis from the molecular to spatial levels. Building on this, CRISPR-based gene-editing technologies can be employed to precisely edit heterotic loci, enabling the study of allele function. Additionally, molecular marker-assisted selection (MAS) can be utilized to identify heterotic loci in parental lines, facilitating the selection of optimal hybrid combinations and significantly reducing the labor and time costs of hybrid breeding. Finally, we review the utilization of heterosis in tree breeding and provide a forward-looking perspective on future research directions, highlighting the potential of integrating multi-omics approaches and emerging gene-editing tools to revolutionize tree hybrid breeding.
Collapse
Affiliation(s)
- Zeyu Li
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China; (Z.L.); (Y.Z.)
- Chongqing Key Laboratory of Forest Resource Innovation and Utilization, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yan Zhao
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China; (Z.L.); (Y.Z.)
- Chongqing Key Laboratory of Forest Resource Innovation and Utilization, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Keming Luo
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China; (Z.L.); (Y.Z.)
- Chongqing Key Laboratory of Forest Resource Innovation and Utilization, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Maldonado-Taipe N, Rey E, Tester M, Jung C, Emrani N. Leaf and shoot apical meristem transcriptomes of quinoa (Chenopodium quinoa Willd.) in response to photoperiod and plant development. PLANT, CELL & ENVIRONMENT 2024; 47:2027-2043. [PMID: 38391415 DOI: 10.1111/pce.14864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
Understanding the regulation of flowering time is crucial for adaptation of crops to new environment. In this study, we examined the timing of floral transition and analysed transcriptomes in leaf and shoot apical meristems of photoperiod-sensitive and -insensitive quinoa accessions. Histological analysis showed that floral transition in quinoa initiates 2-3 weeks after sowing. We found four groups of differentially expressed genes in quinoa genome that responded to plant development and floral transition: (i) 222 genes responsive to photoperiod in leaves, (ii) 1812 genes differentially expressed between accessions under long-day conditions in leaves, (iii) 57 genes responding to developmental changes under short-day conditions in leaves and (iv) 911 genes responding to floral transition within the shoot apical meristem. Interestingly, among numerous candidate genes, two putative FT orthologs together with other genes (e.g. SOC1, COL, AP1) were previously reported as key regulators of flowering time in other species. Additionally, we used coexpression networks to associate novel transcripts to a putative biological process based on the annotated genes within the same coexpression cluster. The candidate genes in this study would benefit quinoa breeding by identifying and integrating their beneficial haplotypes in crossing programs to develop adapted cultivars to diverse environmental conditions.
Collapse
Affiliation(s)
| | - Elodie Rey
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mark Tester
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Christian Jung
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Nazgol Emrani
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
3
|
Liu C, Mao B, Zhang Y, Tian L, Ma B, Chen Z, Wei Z, Li A, Shao Y, Cheng G, Li L, Li W, Zhang D, Ding X, Peng J, Peng Y, He J, Ye N, Yuan D, Chu C, Duan M. The OsWRKY72-OsAAT30/OsGSTU26 module mediates reactive oxygen species scavenging to drive heterosis for salt tolerance in hybrid rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:709-730. [PMID: 38483018 DOI: 10.1111/jipb.13640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/23/2024] [Indexed: 04/11/2024]
Abstract
Hybrid rice (Oryza sativa) generally outperforms its inbred parents in yield and stress tolerance, a phenomenon termed heterosis, but the underlying mechanism is not completely understood. Here, we combined transcriptome, proteome, physiological, and heterosis analyses to examine the salt response of super hybrid rice Chaoyou1000 (CY1000). In addition to surpassing the mean values for its two parents (mid-parent heterosis), CY1000 exhibited a higher reactive oxygen species scavenging ability than both its parents (over-parent heterosis or heterobeltiosis). Nonadditive expression and allele-specific gene expression assays showed that the glutathione S-transferase gene OsGSTU26 and the amino acid transporter gene OsAAT30 may have major roles in heterosis for salt tolerance, acting in an overdominant fashion in CY1000. Furthermore, we identified OsWRKY72 as a common transcription factor that binds and regulates OsGSTU26 and OsAAT30. The salt-sensitive phenotypes were associated with the OsWRKY72paternal genotype or the OsAAT30maternal genotype in core rice germplasm varieties. OsWRKY72paternal specifically repressed the expression of OsGSTU26 under salt stress, leading to salinity sensitivity, while OsWRKY72maternal specifically repressed OsAAT30, resulting in salinity tolerance. These results suggest that the OsWRKY72-OsAAT30/OsGSTU26 module may play an important role in heterosis for salt tolerance in an overdominant fashion in CY1000 hybrid rice, providing valuable clues to elucidate the mechanism of heterosis for salinity tolerance in hybrid rice.
Collapse
Affiliation(s)
- Citao Liu
- Hunan Provincial Key Laboratory of Stress Biology, College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Bigang Mao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Yanxia Zhang
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Lei Tian
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Biao Ma
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhuo Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhongwei Wei
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Aifu Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ye Shao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Gongye Cheng
- Hunan Provincial Key Laboratory of Stress Biology, College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Lingling Li
- Hunan Provincial Key Laboratory of Stress Biology, College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Wenyu Li
- Hunan Provincial Key Laboratory of Stress Biology, College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Di Zhang
- Hunan Provincial Key Laboratory of Stress Biology, College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Xiaoping Ding
- Hunan Provincial Key Laboratory of Stress Biology, College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | | | - Yulin Peng
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Jiwai He
- Hunan Provincial Key Laboratory of Stress Biology, College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Nenghui Ye
- Hunan Provincial Key Laboratory of Stress Biology, College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Dingyang Yuan
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Chengcai Chu
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Meijuan Duan
- Hunan Provincial Key Laboratory of Stress Biology, College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
4
|
Madhunapantula VP, Talekar SC, Kachapur RM, Salakinkop SR, Lal M, Naidu G. Frequency of heterotic hybrids in relation to general combining ability of parents in sweet corn. PeerJ 2023; 11:e16134. [PMID: 38144181 PMCID: PMC10740663 DOI: 10.7717/peerj.16134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/29/2023] [Indexed: 12/26/2023] Open
Abstract
The success of developing prominent hybrids directly depends on the selection of parents with good combining ability which can transfer desirable genes with additive effects to their progeny. The data of 42 hybrids generated using 7 × 7 full diallel design; their seven parents along with three check hybrids were subjected to combining ability analysis from the experiment that was carried out during rainy season 2019. The analysis of variance showed significant general combining ability, and specific combining ability mean sum of squares for all the thirteen characters studied. It is obvious from the results that three lines (SC Sel 2, SC Sel 1 and SC Sel 3) showed high overall general combining ability status, suggesting these lines as good general combiners across traits. Eighteen hybrids had high overall specific combining ability status, while nearly 52% (22 hybrids), 57% (24 hybrids) and 47% (20 hybrids) of crosses showed high overall mid-parent, better-parent and standard heterosis. The unique superiority of crosses involving high overall general combiner parent in the crosses highlighted the importance of using such parents to realize high heterotic crosses. A non-linear relationship between high overall specific combining ability status and heterotic status of hybrids was noticed. The probability of obtaining a cross with high standard heterosis was more with employing parents with high general combining ability status.
Collapse
|