1
|
Wiśniewska K, Gaffke L, Żabińska M, Węgrzyn G, Pierzynowska K. Cellular Organelle-Related Transcriptomic Profile Abnormalities in Neuronopathic Types of Mucopolysaccharidosis: A Comparison with Other Neurodegenerative Diseases. Curr Issues Mol Biol 2024; 46:2678-2700. [PMID: 38534785 PMCID: PMC10968730 DOI: 10.3390/cimb46030169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
Mucopolysaccharidoses (MPS) are a group of diseases caused by mutations in genes encoding lysosomal enzymes that catalyze reactions of glycosaminoglycan (GAG) degradation. As a result, GAGs accumulate in lysosomes, impairing the proper functioning of entire cells and tissues. There are 14 types/subtypes of MPS, which are differentiated by the kind(s) of accumulated GAG(s) and the type of a non-functional lysosomal enzyme. Some of these types (severe forms of MPS types I and II, MPS III, and MPS VII) are characterized by extensive central nervous system disorders. The aim of this work was to identify, using transcriptomic methods, organelle-related genes whose expression levels are changed in neuronopathic types of MPS compared to healthy cells while remaining unchanged in non-neuronopathic types of MPS. The study was conducted with fibroblast lines derived from patients with neuronopathic and non-neuronopathic types of MPS and control (healthy) fibroblasts. Transcriptomic analysis has identified genes related to cellular organelles whose expression is altered. Then, using fluorescence and electron microscopy, we assessed the morphology of selected structures. Our analyses indicated that the genes whose expression is affected in neuronopathic MPS are often associated with the structures or functions of the cell nucleus, endoplasmic reticulum, or Golgi apparatus. Electron microscopic studies confirmed disruptions in the structures of these organelles. Special attention was paid to up-regulated genes, such as PDIA3 and MFGE8, and down-regulated genes, such as ARL6IP6, ABHD5, PDE4DIP, YIPF5, and CLDN11. Of particular interest is also the GM130 (GOLGA2) gene, which encodes golgin A2, which revealed an increased expression in neuronopathic MPS types. We propose to consider the levels of mRNAs of these genes as candidates for biomarkers of neurodegeneration in MPS. These genes may also become potential targets for therapies under development for neurological disorders associated with MPS and candidates for markers of the effectiveness of these therapies. Although fibroblasts rather than nerve cells were used in this study, it is worth noting that potential genetic markers characteristic solely of neurons would be impractical in testing patients, contrary to somatic cells that can be relatively easily obtained from assessed persons.
Collapse
Affiliation(s)
| | | | | | | | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.W.); (L.G.); (M.Ż.); (G.W.)
| |
Collapse
|
2
|
López-Tobón A, Shyti R, Villa CE, Cheroni C, Fuentes-Bravo P, Trattaro S, Caporale N, Troglio F, Tenderini E, Mihailovich M, Skaros A, Gibson WT, Cuomo A, Bonaldi T, Mercurio C, Varasi M, Osborne L, Testa G. GTF2I dosage regulates neuronal differentiation and social behavior in 7q11.23 neurodevelopmental disorders. SCIENCE ADVANCES 2023; 9:eadh2726. [PMID: 38019906 PMCID: PMC10686562 DOI: 10.1126/sciadv.adh2726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
Copy number variations at 7q11.23 cause neurodevelopmental disorders with shared and opposite manifestations. Deletion causes Williams-Beuren syndrome featuring hypersociability, while duplication causes 7q11.23 microduplication syndrome (7Dup), frequently exhibiting autism spectrum disorder (ASD). Converging evidence indicates GTF2I as key mediator of the cognitive-behavioral phenotypes, yet its role in cortical development and behavioral hallmarks remains largely unknown. We integrated proteomic and transcriptomic profiling of patient-derived cortical organoids, including longitudinally at single-cell resolution, to dissect 7q11.23 dosage-dependent and GTF2I-specific disease mechanisms. We observed dosage-dependent impaired dynamics of neural progenitor proliferation, transcriptional imbalances, and highly specific alterations in neuronal output, leading to precocious excitatory neuron production in 7Dup, which was rescued by restoring physiological GTF2I levels. Transgenic mice with Gtf2i duplication recapitulated progenitor proliferation and neuronal differentiation defects alongside ASD-like behaviors. Consistently, inhibition of lysine demethylase 1 (LSD1), a GTF2I effector, was sufficient to rescue ASD-like phenotypes in transgenic mice, establishing GTF2I-LSD1 axis as a molecular pathway amenable to therapeutic intervention in ASD.
Collapse
Affiliation(s)
- Alejandro López-Tobón
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Reinald Shyti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | - Carlo Emanuele Villa
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | - Cristina Cheroni
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Patricio Fuentes-Bravo
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Sebastiano Trattaro
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Nicolò Caporale
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Flavia Troglio
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Erika Tenderini
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Marija Mihailovich
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | - Adrianos Skaros
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - William T. Gibson
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Alessandro Cuomo
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Ciro Mercurio
- Experimental Therapeutics Program, FIRC Institute of Molecular Oncology Foundation (IFOM), 20139 Milan, Italy
| | - Mario Varasi
- Experimental Therapeutics Program, FIRC Institute of Molecular Oncology Foundation (IFOM), 20139 Milan, Italy
| | - Lucy Osborne
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Giuseppe Testa
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
3
|
King'uyu DN, Edgar EL, Figueroa C, Kirkland JM, Kopec AM. Morphine exposure during adolescence induces enduring social changes dependent on adolescent stage of exposure, sex, and social test. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537856. [PMID: 37131669 PMCID: PMC10153224 DOI: 10.1101/2023.04.21.537856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Drug exposure during adolescence, when the 'reward' circuitry of the brain is developing, can permanently impact reward-related behavior. Epidemiological studies show that opioid treatment during adolescence, such as pain management for a dental procedure or surgery, increases the incidence of psychiatric illness including substance use disorders. Moreover, the opioid epidemic currently in the United States is affecting younger individuals raising the impetus to understand the pathogenesis of the negative effects of opioids. One reward-related behavior that develops during adolescence is social behavior. We previously demonstrated that social development occurs in rats during sex-specific adolescent periods: early to mid-adolescence in males (postnatal day (P)30-40) and pre-early adolescence in females (P20-30). We thus hypothesized that morphine exposure during the female critical period would result in adult sociability deficits in females, but not males, and morphine administered during the male critical period would result in adult sociability deficits in males, but not females. We found that morphine exposure during the female critical period primarily resulted in deficits in sociability in females, while morphine exposure during the male critical period primarily resulted in deficits in sociability primarily in males. However, depending on the test performed and the social parameter measured, social alterations could be found in both sexes that received morphine exposure at either adolescent stage. These data indicate that when drug exposure occurs during adolescence, and how the endpoint data are measured, will play a large role in determining the effects of drug exposures on social development.
Collapse
Affiliation(s)
- David N King'uyu
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| | - Erin L Edgar
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| | - Christopher Figueroa
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| | - J M Kirkland
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| | - Ashley M Kopec
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| |
Collapse
|
4
|
Torres-Pérez JV, Anagianni S, Mech AM, Havelange W, García-González J, Fraser SE, Vallortigara G, Brennan CH. baz1b loss-of-function in zebrafish produces phenotypic alterations consistent with the domestication syndrome. iScience 2023; 26:105704. [PMID: 36582821 PMCID: PMC9793288 DOI: 10.1016/j.isci.2022.105704] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/15/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
BAZ1B is a ubiquitously expressed nuclear protein with roles in chromatin remodeling, DNA replication and repair, and transcription. Reduced BAZ1B expression disrupts neuronal and neural crest development. Variation in the activity of BAZ1B has been proposed to underly morphological and behavioral aspects of domestication through disruption of neural crest development. Knockdown of baz1b in Xenopus embryos and Baz1b loss-of-function (LoF) in mice leads to craniofacial defects consistent with this hypothesis. We generated baz1b LoF zebrafish using CRISPR/Cas9 gene editing to test the hypothesis that baz1b regulates behavioral phenotypes associated with domestication in addition to craniofacial features. Zebrafish with baz1b LoF show mild underdevelopment at larval stages and distinctive craniofacial features later in life. Mutant zebrafish show reduced anxiety-associated phenotypes and an altered ontogeny of social behaviors. Thus, in zebrafish, developmental deficits in baz1b recapitulate both morphological and behavioral phenotypes associated with the domestication syndrome in other species.
Collapse
Affiliation(s)
- Jose V. Torres-Pérez
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
- Departament de Biologia Cel·lular, Biologia Funcional i Antropologia física, Fac. de CC. Biològiques, Universitat de València, C/ Dr. Moliner 50, Burjassot, València 46100, Spain
| | - Sofia Anagianni
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Aleksandra M. Mech
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| | - William Havelange
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Judit García-González
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
- Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA
| | - Scott E. Fraser
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
| | | | - Caroline H. Brennan
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
5
|
Li Y, Zhao Y, Li X, Zhai L, Zheng H, Yan Y, Fu Q, Ma J, Fu H, Zhang Z, Li Z. Biological and therapeutic role of LSD1 in Alzheimer’s diseases. Front Pharmacol 2022; 13:1020556. [PMID: 36386192 PMCID: PMC9640401 DOI: 10.3389/fphar.2022.1020556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/13/2022] [Indexed: 12/02/2022] Open
Abstract
Alzheimer’s disease (AD) is a common chronic neurodegenerative disease characterized by cognitive learning and memory impairments, however, current treatments only provide symptomatic relief. Lysine-specific demethylase 1 (LSD1), regulating the homeostasis of histone methylation, plays an important role in the pathogenesis of many neurodegenerative disorders. LSD1 functions in regulating gene expression via transcriptional repression or activation, and is involved in initiation and progression of AD. Pharmacological inhibition of LSD1 has shown promising therapeutic benefits for AD treatment. In this review, we attempt to elaborate on the role of LSD1 in some aspects of AD including neuroinflammation, autophagy, neurotransmitters, ferroptosis, tau protein, as well as LSD1 inhibitors under clinical assessments for AD treatment.
Collapse
Affiliation(s)
- Yu Li
- Department of Pharmacy, Yellow River Central Hospital of Yellow River Conservancy Commission, Zhengzhou, China
| | - Yuanyuan Zhao
- Department of Pharmacy, Yellow River Central Hospital of Yellow River Conservancy Commission, Zhengzhou, China
| | - Xiaona Li
- Department of Pharmacy, Yellow River Central Hospital of Yellow River Conservancy Commission, Zhengzhou, China
| | - Liuqun Zhai
- Department of Pharmacy, Yellow River Central Hospital of Yellow River Conservancy Commission, Zhengzhou, China
| | - Hua Zheng
- Department of Pharmacy, Yellow River Central Hospital of Yellow River Conservancy Commission, Zhengzhou, China
| | - Ying Yan
- Department of Pharmacy, Yellow River Central Hospital of Yellow River Conservancy Commission, Zhengzhou, China
| | - Qiang Fu
- Department of Pharmacy, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinlian Ma
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Haier Fu
- Department of Pharmacy, Yellow River Central Hospital of Yellow River Conservancy Commission, Zhengzhou, China
- *Correspondence: Haier Fu, ; Zhenqiang Zhang, ; Zhonghua Li,
| | - Zhenqiang Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- *Correspondence: Haier Fu, ; Zhenqiang Zhang, ; Zhonghua Li,
| | - Zhonghua Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- *Correspondence: Haier Fu, ; Zhenqiang Zhang, ; Zhonghua Li,
| |
Collapse
|
6
|
Baba R, Matsuda S, Maeda R, Murakami K, Yamamoto Y, Nakatani A, Kimura H. Investigating the Therapeutic Potential of LSD1 Enzyme Activity-Specific Inhibition by TAK-418 for Social and Memory Deficits in Rodent Disease Models. ACS Chem Neurosci 2022; 13:313-321. [PMID: 35061371 DOI: 10.1021/acschemneuro.1c00713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Inhibition of lysine-specific demethylase 1 (LSD1) enzyme activity is a promising approach to treat diseases associated with epigenetic dysregulation, such as neurodevelopmental disorders. However, this concept has not been fully validated because genetic LSD1 deletion causes embryonic lethality and conventional LSD1 inhibitors cause thrombocytopenia via the dissociation of LSD1-cofactor complex. To characterize the therapeutic potential of LSD1 enzyme inhibition, we used TAK-418 and T-448, the LSD1 enzyme activity-specific inhibitors with minimal impact on the LSD1-cofactor complex. TAK-418 and T-448, by inhibiting brain LSD1 enzyme activity, consistently improved social deficits in animal models of neurodevelopmental disorders without causing thrombocytopenia. Moreover, TAK-418 improved memory deficits caused by aging or amyloid precursor protein overexpression. In contrast, TAK-418 did not improve memory deficits caused by miR-137 overexpression. Thus, miR-137 modulation may be involved in memory improvement by LSD1 inhibition. TAK-418 warrants further investigation as a novel therapeutic agent for diseases with epigenetic dysregulation.
Collapse
Affiliation(s)
- Rina Baba
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Satoru Matsuda
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Ryota Maeda
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Koji Murakami
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yukiko Yamamoto
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Atsushi Nakatani
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Haruhide Kimura
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
7
|
Levi G, de Lombares C, Giuliani C, Iannuzzi V, Aouci R, Garagnani P, Franceschi C, Grimaud-Hervé D, Narboux-Nême N. DLX5/6 GABAergic Expression Affects Social Vocalization: Implications for Human Evolution. Mol Biol Evol 2021; 38:4748-4764. [PMID: 34132815 PMCID: PMC8557472 DOI: 10.1093/molbev/msab181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
DLX5 and DLX6 are two closely related transcription factors involved in brain development and in GABAergic differentiation. The DLX5/6 locus is regulated by FoxP2, a gene involved in language evolution and has been associated with neurodevelopmental disorders and mental retardation. Targeted inactivation of Dlx5/6 in mouse GABAergic neurons (Dlx5/6VgatCre mice) results in behavioral and metabolic phenotypes notably increasing lifespan by 33%. Here, we show that Dlx5/6VgatCre mice present a hyper-vocalization and hyper-socialization phenotype. While only 7% of control mice emitted more than 700 vocalizations/10 min, 30% and 56% of heterozygous or homozygous Dlx5/6VgatCre mice emitted more than 700 and up to 1,400 calls/10 min with a higher proportion of complex and modulated calls. Hyper-vocalizing animals were more sociable: the time spent in dynamic interactions with an unknown visitor was more than doubled compared to low-vocalizing individuals. The characters affected by Dlx5/6 in the mouse (sociability, vocalization, skull, and brain shape…) overlap those affected in the "domestication syndrome". We therefore explored the possibility that DLX5/6 played a role in human evolution and "self-domestication" comparing DLX5/6 genomic regions from Neanderthal and modern humans. We identified an introgressed Neanderthal haplotype (DLX5/6-N-Haplotype) present in 12.6% of European individuals that covers DLX5/6 coding and regulatory sequences. The DLX5/6-N-Haplotype includes the binding site for GTF2I, a gene associated with Williams-Beuren syndrome, a hyper-sociability and hyper-vocalization neurodevelopmental disorder. The DLX5/6-N-Haplotype is significantly underrepresented in semi-supercentenarians (>105 years of age), a well-established human model of healthy aging and longevity, suggesting their involvement in the coevolution of longevity, sociability, and speech.
Collapse
Affiliation(s)
- Giovanni Levi
- Physiologie Moléculaire et Adaptation, CNRS UMR7221, Département AVIV, Muséum National d'Histoire Naturelle, Paris, France
| | - Camille de Lombares
- Physiologie Moléculaire et Adaptation, CNRS UMR7221, Département AVIV, Muséum National d'Histoire Naturelle, Paris, France
| | - Cristina Giuliani
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Italy
| | - Vincenzo Iannuzzi
- Alma Mater Research Institute on Global Challenges and Climate Change, University of Bologna, Italy
| | - Rym Aouci
- Physiologie Moléculaire et Adaptation, CNRS UMR7221, Département AVIV, Muséum National d'Histoire Naturelle, Paris, France
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky University, Nizhniy Novgorod, Russia
| | - Dominique Grimaud-Hervé
- Histoire Naturelle de l’Homme Préhistorique, CNRS UMR 7194, Département H&E, Muséum National d'Histoire Naturelle, Paris, France
| | - Nicolas Narboux-Nême
- Physiologie Moléculaire et Adaptation, CNRS UMR7221, Département AVIV, Muséum National d'Histoire Naturelle, Paris, France
| |
Collapse
|
8
|
Osborne LR, Mervis CB. 7q11.23 deletion and duplication. Curr Opin Genet Dev 2021; 68:41-48. [DOI: 10.1016/j.gde.2021.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 01/24/2023]
|