1
|
Vahdati S, Khosravi B, Mahmoudi E, Zhang K, Rouzrokh P, Faghani S, Moassefi M, Tahmasebi A, Andriole KP, Chang P, Farahani K, Flores MG, Folio L, Houshmand S, Giger ML, Gichoya JW, Erickson BJ. A Guideline for Open-Source Tools to Make Medical Imaging Data Ready for Artificial Intelligence Applications: A Society of Imaging Informatics in Medicine (SIIM) Survey. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:2015-2024. [PMID: 38558368 PMCID: PMC11522208 DOI: 10.1007/s10278-024-01083-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
In recent years, the role of Artificial Intelligence (AI) in medical imaging has become increasingly prominent, with the majority of AI applications approved by the FDA being in imaging and radiology in 2023. The surge in AI model development to tackle clinical challenges underscores the necessity for preparing high-quality medical imaging data. Proper data preparation is crucial as it fosters the creation of standardized and reproducible AI models while minimizing biases. Data curation transforms raw data into a valuable, organized, and dependable resource and is a fundamental process to the success of machine learning and analytical projects. Considering the plethora of available tools for data curation in different stages, it is crucial to stay informed about the most relevant tools within specific research areas. In the current work, we propose a descriptive outline for different steps of data curation while we furnish compilations of tools collected from a survey applied among members of the Society of Imaging Informatics (SIIM) for each of these stages. This collection has the potential to enhance the decision-making process for researchers as they select the most appropriate tool for their specific tasks.
Collapse
Affiliation(s)
- Sanaz Vahdati
- Artificial Intelligence Laboratory, Department of Radiology, Mayo Clinic, 200 1st Street, SW, Rochester, MN, 55905, USA
| | - Bardia Khosravi
- Artificial Intelligence Laboratory, Department of Radiology, Mayo Clinic, 200 1st Street, SW, Rochester, MN, 55905, USA
| | - Elham Mahmoudi
- Artificial Intelligence Laboratory, Department of Radiology, Mayo Clinic, 200 1st Street, SW, Rochester, MN, 55905, USA
| | - Kuan Zhang
- Artificial Intelligence Laboratory, Department of Radiology, Mayo Clinic, 200 1st Street, SW, Rochester, MN, 55905, USA
| | - Pouria Rouzrokh
- Artificial Intelligence Laboratory, Department of Radiology, Mayo Clinic, 200 1st Street, SW, Rochester, MN, 55905, USA
| | - Shahriar Faghani
- Artificial Intelligence Laboratory, Department of Radiology, Mayo Clinic, 200 1st Street, SW, Rochester, MN, 55905, USA
| | - Mana Moassefi
- Artificial Intelligence Laboratory, Department of Radiology, Mayo Clinic, 200 1st Street, SW, Rochester, MN, 55905, USA
| | - Aylin Tahmasebi
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Katherine P Andriole
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter Chang
- Department of Radiological Sciences, Irvine Medical Center, University of California, Orange, CA, USA
| | - Keyvan Farahani
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, MD, USA
| | | | - Les Folio
- Diagnostic Imaging & Interventional Radiology Moffitt Cancer Center, Tampa, FL, USA
| | - Sina Houshmand
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Maryellen L Giger
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Judy W Gichoya
- Department of Radiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Bradley J Erickson
- Artificial Intelligence Laboratory, Department of Radiology, Mayo Clinic, 200 1st Street, SW, Rochester, MN, 55905, USA.
| |
Collapse
|
2
|
Thangaraj PM, Benson SH, Oikonomou EK, Asselbergs FW, Khera R. Cardiovascular care with digital twin technology in the era of generative artificial intelligence. Eur Heart J 2024:ehae619. [PMID: 39322420 DOI: 10.1093/eurheartj/ehae619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/16/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024] Open
Abstract
Digital twins, which are in silico replications of an individual and its environment, have advanced clinical decision-making and prognostication in cardiovascular medicine. The technology enables personalized simulations of clinical scenarios, prediction of disease risk, and strategies for clinical trial augmentation. Current applications of cardiovascular digital twins have integrated multi-modal data into mechanistic and statistical models to build physiologically accurate cardiac replicas to enhance disease phenotyping, enrich diagnostic workflows, and optimize procedural planning. Digital twin technology is rapidly evolving in the setting of newly available data modalities and advances in generative artificial intelligence, enabling dynamic and comprehensive simulations unique to an individual. These twins fuse physiologic, environmental, and healthcare data into machine learning and generative models to build real-time patient predictions that can model interactions with the clinical environment to accelerate personalized patient care. This review summarizes digital twins in cardiovascular medicine and their potential future applications by incorporating new personalized data modalities. It examines the technical advances in deep learning and generative artificial intelligence that broaden the scope and predictive power of digital twins. Finally, it highlights the individual and societal challenges as well as ethical considerations that are essential to realizing the future vision of incorporating cardiology digital twins into personalized cardiovascular care.
Collapse
Affiliation(s)
- Phyllis M Thangaraj
- Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, 789 Howard Ave., New Haven, CT, USA
| | - Sean H Benson
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Evangelos K Oikonomou
- Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, 789 Howard Ave., New Haven, CT, USA
| | - Folkert W Asselbergs
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Institute of Health Informatics, University College London, London, UK
- The National Institute for Health Research University College London Hospitals Biomedical Research Center, University College London, London, UK
| | - Rohan Khera
- Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, 789 Howard Ave., New Haven, CT, USA
- Section of Health Informatics, Department of Biostatistics, Yale School of Public Health, 47 College St., New Haven, CT, USA
- Department of Biomedical Informatics and Data Science, Yale School of Medicine, 100 College St. Fl 9, New Haven, CT, USA
- Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, 195 Church St. Fl 6, New Haven, CT 06510, USA
| |
Collapse
|
3
|
Ji H, Kim S, Sunwoo L, Jang S, Lee HY, Yoo S. Integrating Clinical Data and Medical Imaging in Lung Cancer: Feasibility Study Using the Observational Medical Outcomes Partnership Common Data Model Extension. JMIR Med Inform 2024; 12:e59187. [PMID: 38996330 PMCID: PMC11282389 DOI: 10.2196/59187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/10/2024] [Accepted: 06/08/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Digital transformation, particularly the integration of medical imaging with clinical data, is vital in personalized medicine. The Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) standardizes health data. However, integrating medical imaging remains a challenge. OBJECTIVE This study proposes a method for combining medical imaging data with the OMOP CDM to improve multimodal research. METHODS Our approach included the analysis and selection of digital imaging and communications in medicine header tags, validation of data formats, and alignment according to the OMOP CDM framework. The Fast Healthcare Interoperability Resources ImagingStudy profile guided our consistency in column naming and definitions. Imaging Common Data Model (I-CDM), constructed using the entity-attribute-value model, facilitates scalable and efficient medical imaging data management. For patients with lung cancer diagnosed between 2010 and 2017, we introduced 4 new tables-IMAGING_STUDY, IMAGING_SERIES, IMAGING_ANNOTATION, and FILEPATH-to standardize various imaging-related data and link to clinical data. RESULTS This framework underscores the effectiveness of I-CDM in enhancing our understanding of lung cancer diagnostics and treatment strategies. The implementation of the I-CDM tables enabled the structured organization of a comprehensive data set, including 282,098 IMAGING_STUDY, 5,674,425 IMAGING_SERIES, and 48,536 IMAGING_ANNOTATION records, illustrating the extensive scope and depth of the approach. A scenario-based analysis using actual data from patients with lung cancer underscored the feasibility of our approach. A data quality check applying 44 specific rules confirmed the high integrity of the constructed data set, with all checks successfully passed, underscoring the reliability of our findings. CONCLUSIONS These findings indicate that I-CDM can improve the integration and analysis of medical imaging and clinical data. By addressing the challenges in data standardization and management, our approach contributes toward enhancing diagnostics and treatment strategies. Future research should expand the application of I-CDM to diverse disease populations and explore its wide-ranging utility for medical conditions.
Collapse
Affiliation(s)
- Hyerim Ji
- Office of eHealth Research and Business, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
- Department of Health Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Seok Kim
- Office of eHealth Research and Business, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Leonard Sunwoo
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Sowon Jang
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Ho-Young Lee
- Office of eHealth Research and Business, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Sooyoung Yoo
- Office of eHealth Research and Business, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| |
Collapse
|
4
|
Jeon K, Park WY, Kahn CE, Nagy P, You SC, Yoon SH. Advancing Medical Imaging Research Through Standardization: The Path to Rapid Development, Rigorous Validation, and Robust Reproducibility. Invest Radiol 2024:00004424-990000000-00232. [PMID: 38985896 DOI: 10.1097/rli.0000000000001106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
ABSTRACT Artificial intelligence (AI) has made significant advances in radiology. Nonetheless, challenges in AI development, validation, and reproducibility persist, primarily due to the lack of high-quality, large-scale, standardized data across the world. Addressing these challenges requires comprehensive standardization of medical imaging data and seamless integration with structured medical data.Developed by the Observational Health Data Sciences and Informatics community, the OMOP Common Data Model enables large-scale international collaborations with structured medical data. It ensures syntactic and semantic interoperability, while supporting the privacy-protected distribution of research across borders. The recently proposed Medical Imaging Common Data Model is designed to encompass all DICOM-formatted medical imaging data and integrate imaging-derived features with clinical data, ensuring their provenance.The harmonization of medical imaging data and its seamless integration with structured clinical data at a global scale will pave the way for advanced AI research in radiology. This standardization will enable federated learning, ensuring privacy-preserving collaboration across institutions and promoting equitable AI through the inclusion of diverse patient populations. Moreover, it will facilitate the development of foundation models trained on large-scale, multimodal datasets, serving as powerful starting points for specialized AI applications. Objective and transparent algorithm validation on a standardized data infrastructure will enhance reproducibility and interoperability of AI systems, driving innovation and reliability in clinical applications.
Collapse
Affiliation(s)
- Kyulee Jeon
- From the Department of Biomedical Systems Informatics, Yonsei University, Seoul, South Korea (K.J., S.C.Y.); Institution for Innovation in Digital Healthcare, Yonsei University, Seoul, South Korea (K.J., S.C.Y.); Biomedical Informatics and Data Science, Johns Hopkins University, Baltimore, MD (W.Y.P., P.N.); Department of Radiology, University of Pennsylvania, Philadelphia, PA (C.E.K.); and Department of Radiology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea (S.H.Y.)
| | | | | | | | | | | |
Collapse
|
5
|
Khera R, Oikonomou EK, Nadkarni GN, Morley JR, Wiens J, Butte AJ, Topol EJ. Transforming Cardiovascular Care With Artificial Intelligence: From Discovery to Practice: JACC State-of-the-Art Review. J Am Coll Cardiol 2024; 84:97-114. [PMID: 38925729 DOI: 10.1016/j.jacc.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 06/28/2024]
Abstract
Artificial intelligence (AI) has the potential to transform every facet of cardiovascular practice and research. The exponential rise in technology powered by AI is defining new frontiers in cardiovascular care, with innovations that span novel diagnostic modalities, new digital native biomarkers of disease, and high-performing tools evaluating care quality and prognosticating clinical outcomes. These digital innovations promise expanded access to cardiovascular screening and monitoring, especially among those without access to high-quality, specialized care historically. Moreover, AI is propelling biological and clinical discoveries that will make future cardiovascular care more personalized, precise, and effective. The review brings together these diverse AI innovations, highlighting developments in multimodal cardiovascular AI across clinical practice and biomedical discovery, and envisioning this new future backed by contemporary science and emerging discoveries. Finally, we define the critical path and the safeguards essential to realizing this AI-enabled future that helps achieve optimal cardiovascular health and outcomes for all.
Collapse
Affiliation(s)
- Rohan Khera
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA; Center for Outcomes Research and Evaluation (CORE), New Haven, Connecticut, USA; Section of Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, Connecticut, USA; Section of Health Informatics, Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA.
| | - Evangelos K Oikonomou
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Girish N Nadkarni
- The Samuel Bronfman Department of Medicine, Division of Data Driven and Digital Medicine (D3M), Icahn School of Medicine at Mount Sinai, New York, New York, USA; The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jessica R Morley
- Digital Ethics Center, Yale University, New Haven, Connecticut, USA
| | - Jenna Wiens
- Electrical Engineering and Computer Science, Computer Science and Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Atul J Butte
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, California, USA; Center for Data-Driven Insights and Innovation, University of California Health, Oakland, California, USA
| | - Eric J Topol
- Molecular Medicine, Scripps Research Translational Institute, Scripps Research, La Jolla, California, USA
| |
Collapse
|
6
|
Yang L, Wang B, Shi X, Li B, Xie J, Wang C. Application research of radiomics in colorectal cancer: A bibliometric study. Medicine (Baltimore) 2024; 103:e37827. [PMID: 38608072 PMCID: PMC11018182 DOI: 10.1097/md.0000000000037827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/15/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Radiomics has shown great potential in the clinical field of colorectal cancer (CRC). However, few bibliometric studies have systematically analyzed existing research in this field. The purpose of this study is to understand the current research status and future development directions of CRC. METHODS Search the English documents on the application of radiomics in the field of CRC research included in the Web of Science Core Collection from its establishment to October 2023. VOSviewer and CiteSpace software were used to conduct bibliometric and visual analysis of online publications related to countries/regions, authors, journals, references, and keywords in this field. RESULTS A total of 735 relevant documents published from Web of Science Core Collection to October 2023 were retrieved, and a total of 419 documents were obtained based on the screening criteria, including 376 articles and 43 reviews. The number of publications is increasing year by year. Among them, China publishes the most relevant documents (n = 238), which is much higher than Italy (n = 69) and the United States (n = 63). Tian Jie is the author with the most publications and citations (n = 17, citations = 2128), GE Healthcare is the most productive institution (n = 26), Frontiers in Oncology is the journal with the most publications (n = 60), and European Radiology is the most cited journal (n = 776). Hot spots for the application of radiomics in CRC include magnetic resonance, neoadjuvant chemoradiotherapy, survival, texture analysis, and machine learning. These directions are the current hot spots for the application of radiomics research in CRC and may be the direction of continued development in the future. CONCLUSION Through bibliometric analysis, the application of radiomics in CRC has been increasing year by year. The application of radiomics improves the accuracy of preoperative diagnosis, prediction, and prognosis of CRC. The results of bibliometrics analysis provide a valuable reference for the research direction of radiomics. However, radiomics still faces many challenges in the future, such as the single nature of the data source which may affect the comprehensiveness of the results. Future studies can further expand the data sources and build a multicenter public database to more comprehensively reflect the research status and development trend of CRC radiomics.
Collapse
Affiliation(s)
- Lihong Yang
- Department of Radiology and Medical Imaging Research Institute, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Binjie Wang
- Department of Radiology and Medical Imaging Research Institute, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Xiaoying Shi
- Department of Radiology and Medical Imaging Research Institute, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Bairu Li
- Department of Radiology and Medical Imaging Research Institute, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Jiaqiang Xie
- Department of Breast and Thyroid Surgery, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Changfu Wang
- Department of Radiology and Medical Imaging Research Institute, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| |
Collapse
|
7
|
Brancato V, Esposito G, Coppola L, Cavaliere C, Mirabelli P, Scapicchio C, Borgheresi R, Neri E, Salvatore M, Aiello M. Standardizing digital biobanks: integrating imaging, genomic, and clinical data for precision medicine. J Transl Med 2024; 22:136. [PMID: 38317237 PMCID: PMC10845786 DOI: 10.1186/s12967-024-04891-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/14/2024] [Indexed: 02/07/2024] Open
Abstract
Advancements in data acquisition and computational methods are generating a large amount of heterogeneous biomedical data from diagnostic domains such as clinical imaging, pathology, and next-generation sequencing (NGS), which help characterize individual differences in patients. However, this information needs to be available and suitable to promote and support scientific research and technological development, supporting the effective adoption of the precision medicine approach in clinical practice. Digital biobanks can catalyze this process, facilitating the sharing of curated and standardized imaging data, clinical, pathological and molecular data, crucial to enable the development of a comprehensive and personalized data-driven diagnostic approach in disease management and fostering the development of computational predictive models. This work aims to frame this perspective, first by evaluating the state of standardization of individual diagnostic domains and then by identifying challenges and proposing a possible solution towards an integrative approach that can guarantee the suitability of information that can be shared through a digital biobank. Our analysis of the state of the art shows the presence and use of reference standards in biobanks and, generally, digital repositories for each specific domain. Despite this, standardization to guarantee the integration and reproducibility of the numerical descriptors generated by each domain, e.g. radiomic, pathomic and -omic features, is still an open challenge. Based on specific use cases and scenarios, an integration model, based on the JSON format, is proposed that can help address this problem. Ultimately, this work shows how, with specific standardization and promotion efforts, the digital biobank model can become an enabling technology for the comprehensive study of diseases and the effective development of data-driven technologies at the service of precision medicine.
Collapse
Affiliation(s)
| | - Giuseppina Esposito
- Bio Check Up S.R.L, 80121, Naples, Italy
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131, Naples, Italy
| | | | | | - Peppino Mirabelli
- UOS Laboratori di Ricerca e Biobanca, AORN Santobono-Pausilipon, Via Teresa Ravaschieri, 8, 80122, Naples, Italy
| | - Camilla Scapicchio
- Academic Radiology, Department of Translational Research, University of Pisa, via Roma, 67, 56126, Pisa, Italy
| | - Rita Borgheresi
- Academic Radiology, Department of Translational Research, University of Pisa, via Roma, 67, 56126, Pisa, Italy
| | - Emanuele Neri
- Academic Radiology, Department of Translational Research, University of Pisa, via Roma, 67, 56126, Pisa, Italy
| | | | | |
Collapse
|
8
|
Ouellet S, Lemaréchal Y, Berumen-Murillo F, Lavallée MC, Vigneault É, Martin AG, Foster W, Thomson RM, Després P, Beaulieu L. A Monte Carlo dose recalculation pipeline for durable datasets: an I-125 LDR prostate brachytherapy use case. Phys Med Biol 2023; 68:235001. [PMID: 37863069 DOI: 10.1088/1361-6560/ad058b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/20/2023] [Indexed: 10/22/2023]
Abstract
Monte Carlo (MC) dose datasets are valuable for large-scale dosimetric studies. This work aims to build and validate a DICOM-compliant automated MC dose recalculation pipeline with an application to the production of I-125 low dose-rate prostate brachytherapy MC datasets. Built as a self-contained application, the recalculation pipeline ingested clinical DICOM-RT studies, reproduced the treatment into the Monte Carlo simulation, and outputted a traceable and durable dose distribution in the DICOM dose format. MC simulations with TG43-equivalent conditions using both TOPAS andegs_brachyMC codes were compared to TG43 calculations to validate the pipeline. The consistency of the pipeline when generating TG186 simulations was measured by comparing simulations made with both MC codes. Finally,egs_brachysimulations were run on a 240-patient cohort to simulate a large-scale application of the pipeline. Compared to line source TG43 calculations, simulations with both MC codes had more than 90% of voxels with a global difference under ±1%. Differences of 2.1% and less were seen in dosimetric indices when comparing TG186 simulations from both MC codes. The large-scale comparison ofegs_brachysimulations with treatment planning system dose calculation seen the same dose overestimation of TG43 calculations showed in previous studies. The MC dose recalculation pipeline built and validated against TG43 calculations in this work efficiently produced durable MC dose datasets. Since the dataset could reproduce previous dosimetric studies within 15 h at a rate of 20 cases per 25 min, the pipeline is a promising tool for future large-scale dosimetric studies.
Collapse
Affiliation(s)
- Samuel Ouellet
- Département de physique, de génie physique et d'optique, et Centre de recherche sur le cancer, Université Laval, Québec, Québec, Canada
- Service de radio-oncologie et Axe Oncologie du CRCHU de Québec, CHU de Québec-Université Laval, Quebec, QC, Canada
| | - Yannick Lemaréchal
- Département de physique, de génie physique et d'optique, et Centre de recherche sur le cancer, Université Laval, Québec, Québec, Canada
- Service de radio-oncologie et Axe Oncologie du CRCHU de Québec, CHU de Québec-Université Laval, Quebec, QC, Canada
| | - Francisco Berumen-Murillo
- Département de physique, de génie physique et d'optique, et Centre de recherche sur le cancer, Université Laval, Québec, Québec, Canada
- Service de radio-oncologie et Axe Oncologie du CRCHU de Québec, CHU de Québec-Université Laval, Quebec, QC, Canada
| | - Marie-Claude Lavallée
- Département de physique, de génie physique et d'optique, et Centre de recherche sur le cancer, Université Laval, Québec, Québec, Canada
- Service de radio-oncologie et Axe Oncologie du CRCHU de Québec, CHU de Québec-Université Laval, Quebec, QC, Canada
| | - Éric Vigneault
- Service de radio-oncologie et Axe Oncologie du CRCHU de Québec, CHU de Québec-Université Laval, Quebec, QC, Canada
| | - André-Guy Martin
- Service de radio-oncologie et Axe Oncologie du CRCHU de Québec, CHU de Québec-Université Laval, Quebec, QC, Canada
| | - William Foster
- Service de radio-oncologie et Axe Oncologie du CRCHU de Québec, CHU de Québec-Université Laval, Quebec, QC, Canada
| | - Rowan M Thomson
- Carleton Laboratory for Radiotherapy Physics, Department of Physics, Carleton University, Ottawa, Ontario, Canada
| | - Philippe Després
- Département de physique, de génie physique et d'optique, et Centre de recherche sur le cancer, Université Laval, Québec, Québec, Canada
- Service de radio-oncologie et Axe Oncologie du CRCHU de Québec, CHU de Québec-Université Laval, Quebec, QC, Canada
| | - Luc Beaulieu
- Département de physique, de génie physique et d'optique, et Centre de recherche sur le cancer, Université Laval, Québec, Québec, Canada
- Service de radio-oncologie et Axe Oncologie du CRCHU de Québec, CHU de Québec-Université Laval, Quebec, QC, Canada
| |
Collapse
|
9
|
Mackenzie A, Lewis E, Loveland J. Successes and challenges in extracting information from DICOM image databases for audit and research. Br J Radiol 2023; 96:20230104. [PMID: 37698251 PMCID: PMC10607388 DOI: 10.1259/bjr.20230104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 09/13/2023] Open
Abstract
In radiography, much valuable associated data (metadata) is generated during image acquisition. The current setup of picture archive and communication systems (PACS) can make extraction of this metadata difficult, especially as it is typically stored with the image. The aim of this work is to examine the current challenges in extracting image metadata and to discuss the potential benefits of using this rich information. This work focuses on breast screening, though the conclusions are applicable to other modalities.The data stored in PACS contain information, currently underutilised, and is of great benefit for auditing and improving imaging and radiographic practice. From the literature, we present examples of the potential clinical benefit such as audits of dose, and radiographic practice, as well as more advanced research highlighting the effects of radiographic practice, e.g. cancer detection rates affected by imaging technology.This review considers the challenges in extracting data, namely,• The search tools for data on most PACS are inadequate being both time-consuming and limited in elements that can be searched.• Security and information governance considerations• Anonymisation of data if required• Data curationThe review describes some solutions that have been successfully implemented.• Retrospective extraction: direct query on PACS• Extracting data prospectively• Use of structured reports• Use of trusted research environmentsUltimately, the data access process will be made easier by inclusion during PACS procurement. Auditing data from PACS can be used to improve quality of imaging and workflow, all of which will be a clinical benefit to patients.
Collapse
Affiliation(s)
| | | | - John Loveland
- NCCPM, Royal Surrey NHS Foundation Trust, Guildford, United Kingdom
| |
Collapse
|
10
|
Clunie DA, Flanders A, Taylor A, Erickson B, Bialecki B, Brundage D, Gutman D, Prior F, Seibert JA, Perry J, Gichoya JW, Kirby J, Andriole K, Geneslaw L, Moore S, Fitzgerald TJ, Tellis W, Xiao Y, Farahani K, Luo J, Rosenthal A, Kandarpa K, Rosen R, Goetz K, Babcock D, Xu B, Hsiao J. Report of the Medical Image De-Identification (MIDI) Task Group - Best Practices and Recommendations. ARXIV 2023:arXiv:2303.10473v2. [PMID: 37033463 PMCID: PMC10081345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Affiliation(s)
| | | | | | | | | | | | | | - Fred Prior
- University of Arkansas for Medical Sciences
| | | | | | | | - Justin Kirby
- Frederick National Laboratory for Cancer Research
| | | | | | | | | | | | - Ying Xiao
- University of Pennsylvania Health System
| | | | - James Luo
- National Heart, Lung, and Blood Institute (NHLBI)
| | - Alex Rosenthal
- National Institute of Allergy and Infectious Diseases (NIAID)
| | - Kris Kandarpa
- National Institute of Biomedical Imaging and Bioengineering (NIBIB)
| | - Rebecca Rosen
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
| | | | - Debra Babcock
- National Institute of Neurological Disorders and Stroke (NINDS)
| | - Ben Xu
- National Institute on Alcohol Abuse and Alcoholism (NIAAA)
| | | |
Collapse
|
11
|
Sharing and Cooperation of Improved Cross-Entropy Optimization Algorithm in Telemedicine Multimedia Information Processing. Int J Telemed Appl 2023; 2023:7353489. [PMID: 36923109 PMCID: PMC10010882 DOI: 10.1155/2023/7353489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/01/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
In order to improve the efficiency of medical multimedia information sharing, this paper combines cloud computing technology and SOA (service-oriented architecture) technology to build a medical multimedia information sharing system. Building a medical information sharing platform requires integrating information resources stored in information systems of medical institutions and nonmedical information systems related to medical information and forming a huge resource pool. It is important to mine and analyze the information resources in the resource pool to realize the sharing and interaction of medical information. To this end, this paper proposes a gain-adaptive control algorithm with online adjustable parameters and investigates the extension of the mutual entropy optimization algorithm in the control domain and its integrated processing capability in the process of medical multimedia information processing. In addition, this paper constructs a medical multimedia information sharing and collaboration platform with medical multimedia information sharing and telemedicine as the core and verifies the effectiveness of the platform through experiments. The simulation results and comparison results with other systems prove that the system in this paper can realize fast data processing, retrieve and analyze massive data, and meet the demand of remote intelligent diagnosis under the premise of safety and stability. Meanwhile, the system in this paper can help hospitals achieve fast and accurate diagnosis, which has strong theoretical and practical values.
Collapse
|
12
|
White RD, Demirer M, Gupta V, Sebro RA, Kusumoto FM, Erdal BS. Pre-deployment assessment of an AI model to assist radiologists in chest X-ray detection and identification of lead-less implanted electronic devices for pre-MRI safety screening: realized implementation needs and proposed operational solutions. J Med Imaging (Bellingham) 2022; 9:054504. [PMID: 36310648 PMCID: PMC9603740 DOI: 10.1117/1.jmi.9.5.054504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 09/23/2022] [Indexed: 09/29/2023] Open
Abstract
Purpose Chest X-ray (CXR) use in pre-MRI safety screening, such as for lead-less implanted electronic device (LLIED) recognition, is common. To assist CXR interpretation, we "pre-deployed" an artificial intelligence (AI) model to assess (1) accuracies in LLIED-type (and consequently safety-level) identification, (2) safety implications of LLIED nondetections or misidentifications, (3) infrastructural or workflow requirements, and (4) demands related to model adaptation to real-world conditions. Approach A two-tier cascading methodology for LLIED detection/localization and identification on a frontal CXR was applied to evaluate the performance of the original nine-class AI model. With the unexpected early appearance of LLIED types during simulated real-world trialing, retraining of a newer 12-class version preceded retrialing. A zero footprint (ZF) graphical user interface (GUI)/viewer with DICOM-based output was developed for inference-result display and adjudication, supporting end-user engagement and model continuous learning and/or modernization. Results During model testing or trialing using both the nine-class and 12-class models, robust detection/localization was consistently 100%, with mAP 0.99 from fivefold cross-validation. Safety-level categorization was high during both testing ( AUC ≥ 0.98 and ≥ 0.99 , respectively) and trialing (accuracy 98% and 97%, respectively). LLIED-type identifications by the two models during testing (1) were 98.9% and 99.5% overall correct and (2) consistently showed AUC ≥ 0.92 (1.00 for 8/9 and 9/12 LLIED-types, respectively). Pre-deployment trialing of both models demonstrated overall type-identification accuracies of 94.5% and 95%, respectively. Of the small number of misidentifications, none involved MRI-stringently conditional or MRI-unsafe types of LLIEDs. Optimized ZF GUI/viewer operations led to greater user-friendliness for radiologist engagement. Conclusions Our LLIED-related AI methodology supports (1) 100% detection sensitivity, (2) high identification (including MRI-safety) accuracy, and (3) future model deployment with facilitated inference-result display and adjudication for ongoing model adaptation to future real-world experiences.
Collapse
Affiliation(s)
- Richard D. White
- Mayo Clinic, Department of Radiology, Center for Augmented Intelligence in Imaging, Jacksonville, Florida, United States
| | - Mutlu Demirer
- Mayo Clinic, Department of Radiology, Center for Augmented Intelligence in Imaging, Jacksonville, Florida, United States
| | - Vikash Gupta
- Mayo Clinic, Department of Radiology, Center for Augmented Intelligence in Imaging, Jacksonville, Florida, United States
| | - Ronnie A. Sebro
- Mayo Clinic, Department of Radiology, Center for Augmented Intelligence in Imaging, Jacksonville, Florida, United States
| | - Frederick M. Kusumoto
- Mayo Clinic, Department of Cardiovascular Medicine, Jacksonville, Florida, United States
| | - Barbaros Selnur Erdal
- Mayo Clinic, Department of Radiology, Center for Augmented Intelligence in Imaging, Jacksonville, Florida, United States
| |
Collapse
|
13
|
Aiello M. Is Radiomics Growing towards Clinical Practice? J Pers Med 2022; 12:jpm12091373. [PMID: 36143158 PMCID: PMC9502934 DOI: 10.3390/jpm12091373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/28/2022] Open
|
14
|
Roca-Espiau M, Valero-Tena E, Ereño-Ealo MJ, Giraldo P. Structured bone marrow report as an assessment tool in patients with hematopoietic disorders. Quant Imaging Med Surg 2022; 12:3717-3724. [PMID: 35782234 PMCID: PMC9246758 DOI: 10.21037/qims-21-1191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/30/2022] [Indexed: 10/12/2024]
Abstract
BACKGROUND There are multiple hematological and other entities (metastases, infections) that can affect the bone marrow (BM). The gold standard imaging technique for BM examination is magnetic resonance imaging (MRI). Technological advances have made it possible to digitalize image files and create applications that help to produce higher quality structured reports, facilitating the analysis of data and unifying the criteria collected, making it possible to fill an existing gap. The aim of this study is to present a structured report model applicable to BM studies by MRI. METHODS We have carried out a systematic review following the recommendations of the PRISMA checklist report to explore previous publications applying structured BM MRI reporting. Eligibility criteria: the selection of articles carried out by MeSH thesaurus. Original or review articles of BM pathology assessed by MRI. Our group with a wide experience in the evaluation of BM by MRI have designed a model for BM report using eight items: demographic data, diagnostic suspicion, technical data, type of exam initial or control, distribution and patterns involvement, complications and location, total assessment comments. RESULTS We have not found articles that reflect the existence of a structured report of BM examination by MRI. Only one descriptive article has been identified on guidelines for acquisition, interpretation and reporting which refers to a single entity. With the selected parameters, a software has been developed that allows to fill in the sections of the structured report with ease and immediacy and to send the result directly to the clinician. DISCUSSION Structured reports are the result of applying a logical structure to the radiological report, and the rules of elaboration comprise several criteria: (I) using a uniform language. The standardization of terminology avoids ambiguity in reporting and makes it easier to compare reports. (II) Accurately describe the radiological findings, following a prescribed order with review questions and answers. (III) Drafting using diagnostic screening tables. (IV) Respect the radiologists' workflow by facilitating the work and not hindering it. The final report of this work has been the product of the clinical-radiological collaboration in our working group.
Collapse
Affiliation(s)
- Mercedes Roca-Espiau
- Diagnostic Radiology, FEETEG, Zaragoza, Spain
- Spanish Foundation for Gaucher Disease and other Lysosomal Disorders (FEETEG), Zaragoza, Spain
| | - Esther Valero-Tena
- Spanish Foundation for Gaucher Disease and other Lysosomal Disorders (FEETEG), Zaragoza, Spain
- Rheumatology Department, MAZ Hospital, Zaragoza, Spain
| | | | - Pilar Giraldo
- Spanish Foundation for Gaucher Disease and other Lysosomal Disorders (FEETEG), Zaragoza, Spain
- Hematology Department, Quironsalud Hospital, Zaragoza, Spain
| |
Collapse
|