1
|
Ishida N, Nagata K, Fukuda J, Oguma Y, Hirashima T, Minami K, Nishimura Y, Matsuo Y. Stereotactic body radiation therapy for multiple lung cancers in a patient with six primary cancers: a case report. J Med Case Rep 2024; 18:316. [PMID: 38987857 PMCID: PMC11238481 DOI: 10.1186/s13256-024-04633-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/31/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Surgery is the standard care for patients with early-stage lung cancer, and stereotactic body radiation therapy is an option for those who are medically inoperable or refuse surgery. Medical developments in diagnostic and therapeutic strategies would prolong prognosis of patients with cancer. The number of patients with multiple cancers has also increased. Duplex primary malignant neoplasms are the most common, and triple or more primary malignant neoplasms were extremely rare. This is the first case of sextuple primary malignant neoplasms with lung cancer. CASE PRESENTATION We report a case of two courses of stereotactic body radiation therapy for an 88-year-old Japanese male patient with six primary cancers in five organs. Cancers were detected in the thyroid, prostate, esophagus, bladder, and lungs. He also had a history of angina pectoris and had undergone percutaneous coronary intervention. Although he was capable of undergoing surgery for lung cancers, he refused it because he had experienced many invasive treatments, such as surgeries and percutaneous coronary intervention. In January 2020, the first stereotactic body radiation therapy was performed for the adenocarcinoma in the right lung. In March 2022, the second stereotactic body radiation therapy was performed for the nodule of the left lung. Although he complained of mild dyspnea after the first stereotactic body radiation therapy, we did not use steroids because his peripheral oxygen saturation was within the normal range. He had pleural effusion, cardiac dilatation, and pericardial effusion 2 months after the second stereotactic body radiation therapy, which improved with the use of compression stockings. CONCLUSION A total of 43 and 17 months have passed since the first and second stereotactic body radiation therapy, respectively, there is no local recurrence and the patient can walk independently. We safely performed stereotactic body radiation therapy twice for our older patient with metachronous early-stage lung cancers. If another new tumor is detected, stereotactic body radiation therapy would be a good treatment option for the functional preservation of organs.
Collapse
Affiliation(s)
- Naoko Ishida
- Department of Radiation Oncology, Kindai University Faculty of Medicine, 377-2 Onohigashi, Osaka-Sayama, Osaka, 589-8511, Japan
- Department of Radiation Oncology, Ishikiriseiki Hospital, 18-28 Yayoi-cho, Higashiosaka, Osaka, 579-8026, Japan
| | - Kenji Nagata
- Department of Radiation Oncology, Ishikiriseiki Hospital, 18-28 Yayoi-cho, Higashiosaka, Osaka, 579-8026, Japan.
| | - Jyunki Fukuda
- Department of Radiation Oncology, Kindai University Faculty of Medicine, 377-2 Onohigashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Yasuo Oguma
- Department of Radiation Oncology, Kindai University Nara Hospital, 1248-1 Otoda Town, Ikoma, Nara, 630-0293, Japan
| | - Tomonori Hirashima
- Department of Thoracic Oncology, Ishikiriseiki Hospital, Higashiosaka, Japan
| | - Kenichi Minami
- Department of Respiratory Medicine, Ishikiriseiki Hospital, Higashiosaka, Japan
| | - Yasumasa Nishimura
- Radiation Therapy Center, Fuchu Hospital, 1-10-17 Hiko Town, Izumi, Osaka, 594-0076, Japan
| | - Yukinori Matsuo
- Department of Radiation Oncology, Kindai University Faculty of Medicine, 377-2 Onohigashi, Osaka-Sayama, Osaka, 589-8511, Japan
| |
Collapse
|
2
|
Wang HH, Chen Y, Liu X, Zaorsky NG, Mani K, Niu ZM, Zheng BY, Zeng HY, Yan YY, Li YJ, He Y, Ji CZ, Sun BS, Meng MB. Reirradiation with stereotactic body radiotherapy for primary or secondary lung malignancies: Tumor control probability and safety analyses. Radiother Oncol 2023; 187:109817. [PMID: 37480993 DOI: 10.1016/j.radonc.2023.109817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 07/06/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Reirradiation with stereotactic body radiotherapy (SBRT) for patients with primary or secondary lung malignancies represents an appealing definitive approach, but its feasibility and safety are not well defined. The purpose of this study was to investigate the tumor control probability (TCP) and toxicity for patients receiving reirradiation with SBRT. PATIENTS AND METHODS Eligible patients with recurrence of primary or secondary lung malignancies from our hospital were subjected to reirradiation with SBRT, and PubMed- and Embase-indexed articles were reviewed. The patient characteristics, pertinent SBRT dosimetric details, local tumor control, and toxicities were extracted. The logistic dose-response models were compared for TCP and overall survival (OS) in terms of the physical dose and three-, four-, and five-fraction equivalent doses. RESULTS The data of 17 patients from our hospital and 195 patients extracted from 12 articles were summarized. Reirradiation with SBRT yielded 2-year estimates of 80% TCP for doses of 50.10 Gy, 55.85 Gy, and 60.54 Gy in three, four, and five fractions, respectively. The estimated TCP with common fractionation schemes were 50%, 60%, and 70% for 42.04 Gy, 47.44 Gy, and 53.32 Gy in five fractions, respectively. Similarly, the 2-year estimated OS was 50%, 60%, and 70% for 41.62 Gy, 46.88 Gy, and 52.55 Gy in five fractions, respectively. Central tumor localization may be associated with severe toxicity. CONCLUSIONS Reirradiation with SBRT doses of 50-60 Gy in 3-5 fractions is feasible for appropriately selected patients with recurrence of peripheral primary or secondary lung malignancies, but should be carefully considered for centrally-located tumors due to potentially severe toxicity. Further studies are warranted for optimal dose/fractionation schedules and more accurate selection of patients suitable for reirradiation with SBRT.
Collapse
Affiliation(s)
- Huan-Huan Wang
- Department of Radiation Oncology and CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Yuan Chen
- Department of Radiation Oncology and CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Xin Liu
- Department of Radiation Oncology and CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Nicholas G Zaorsky
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve School of Medicine, Cleveland, OH, USA
| | - Kyle Mani
- Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zhi-Min Niu
- Department of Radiation Oncology and CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Bo-Yu Zheng
- Department of Radiation Oncology and CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Hong-Yu Zeng
- Department of Radiation Oncology and CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Yuan-Yuan Yan
- Department of Radiation Oncology and CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Yan-Jin Li
- Department of Radiation Oncology and CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Yuan He
- Department of Radiation Oncology and CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Chao-Zhi Ji
- Department of Radiation Oncology and CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Bing-Sheng Sun
- Department of Lung Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Mao-Bin Meng
- Department of Radiation Oncology and CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China.
| |
Collapse
|
3
|
Buergy D, Würschmidt F, Gkika E, Hörner-Rieber J, Knippen S, Gerum S, Balermpas P, Henkenberens C, Voglhuber T, Kornhuber C, Barczyk S, Röper B, Rashid A, Blanck O, Wittig A, Herold HU, Brunner TB, Sweeney RA, Kahl KH, Ciernik FI, Ottinger A, Izaguirre V, Putz F, König L, Hoffmann M, Combs SE, Guckenberger M, Boda-Heggemann J. Stereotactic Body Radiotherapy of adrenal metastases - A dose-finding study. Int J Cancer 2022; 151:412-421. [PMID: 35383919 DOI: 10.1002/ijc.34017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 11/12/2022]
Abstract
Optimal doses for the treatment of adrenal metastases with stereotactic radiotherapy (SBRT) are unknown. We aimed to identify dose-volume cut-points associated with decreased local recurrence rates (LRR). A multicenter database of patients with adrenal metastases of any histology treated with SBRT (biologically effective dose, BED10 ≥ 50Gy, ≤ 12 fractions) was analyzed. Details on dose-volume parameters were required (planning target volume: PTV-D98%, PTV-D50%, PTV-D2%; gross tumor volume: GTV-D50%, GTV-mean). Cut-points for LRR were optimized using the R maxstat package. 196 patients with 218 lesions were included, the largest histopathological subgroup was adenocarcinoma (n = 101). Cut-point optimization resulted in significant cut-points for PTV-D50% (BED10: 73.2Gy; p = 0.003), GTV-D50% (BED10: 74.2Gy; p = 0.006), GTV-mean (BED10: 73.0Gy; p = 0.007), and PTV-D2% (BED10: 78.0Gy; p = 0.02) but not for the PTV-D98% (p = 0.06). Differences in LRR were clinically relevant (LRR ≥ doubled for cut-points that were not achieved). Further dose-escalation was not associated with further improved LRR. PTV-D50%, GTV-D50%, and GTV-mean cut-points were also associated with significantly improved LRR in the adenocarcinoma subgroup. Separate dose optimizations indicated a lower cut-point for the PTV-D50% (BED10: 69.1Gy) in adenocarcinoma lesions, other values were similar (< 2% difference). Associations of cut-points with overall survival (OS) and progression-free survival were not significant but durable freedom from local recurrence was associated with OS in a landmark model (p < 0.001). To achieve a significant improvement of LRR for adrenal SBRT, a moderate escalation of PTV-D50% BED10 > 73.2Gy (adenocarcinoma: 69.1Gy) should be considered. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Daniel Buergy
- Universitätsmedizin Mannheim, Medizinische Fakultät Mannheim, Universität Heidelberg, Klinik für Strahlentherapie und Radioonkologie, Mannheim, Deutschland
| | | | - Eleni Gkika
- Universitätsklinikum Freiburg, Strahlenheilkunde, Freiburg, Deutschland
| | - Juliane Hörner-Rieber
- Universitätsklinikum Heidelberg, Klinik für Radioonkologie und Strahlentherapie, Heidelberg, Deutschland
| | - Stefan Knippen
- Universitätsklinikum Jena, Klinik für Strahlentherapie und Radioonkologie, Jena, Deutschland.,Universitätsklinikum Erlangen, Strahlenklinik, Erlangen, Deutschland
| | - Sabine Gerum
- Radioonkologie LMU München, Strahlentherapie und Radioonkologie, München, Deutschland.,Klinik für Radiotherapie und Radioonkologie, Paracelsus Universität Salzburg, Landeskrankenhaus, Salzburg, Österreich
| | - Panagiotis Balermpas
- Universitätsspital Zürich, Universität Zürich, Klinik für Radio-Onkologie, Zürich, Schweiz
| | - Christoph Henkenberens
- Medizinische Hochschule Hannover, Klinik für Strahlentherapie und Spezielle Onkologie, Hannover, Deutschland
| | - Theresa Voglhuber
- Technische Universität München (TUM), Department of Radiation Oncology, Ismaninger Straße 22, Munich
| | - Christine Kornhuber
- Universitätsklinikum Halle (Saale), Klinik für Strahlentherapie, Halle (Saale), Deutschland
| | - Steffen Barczyk
- Zentrum für Strahlentherapie und Radioonkologie, Belegklinik am St. Agnes-Hospital, Bocholt, Deutschland
| | - Barbara Röper
- DIE RADIOLOGIE, MVZ Strahlentherapie Bogenhausen - Harlaching - Neuperlach, München, Deutschland
| | - Ali Rashid
- MediClin Robert Janker Klinik, Klinik für Strahlentherapie und Radioonkologie, Bonn, Deutschland
| | - Oliver Blanck
- Universitätsklinikum Schleswig-Holstein, Klinik für Strahlentherapie, Kiel, Deutschland
| | - Andrea Wittig
- Universitätsklinikum Jena, Klinik für Strahlentherapie und Radioonkologie, Jena, Deutschland
| | - Hans-Ulrich Herold
- Cyberknife Centrum Mitteldeutschland GmbH, Institut für Radiochirurgie und Präzisionsbestrahlung, Erfurt, Deutschland
| | - Thomas B Brunner
- Universitätsklinikum Magdeburg, Klinik für Strahlentherapie, Magdeburg, Deutschland
| | - Reinhart A Sweeney
- Leopoldina Krankenhaus Schweinfurt, Klinik für Strahlentherapie, Schweinfurt, Deutschland
| | - Klaus Henning Kahl
- Universitätsklinikum Augsburg, Klinik für Strahlentherapie und Radioonkologie, Augsburg, Deutschland
| | - F Ilja Ciernik
- Städtisches Klinikum Dessau, Klinik für Strahlentherapie und Radioonkologie, Dessau, Deutschland
| | - Annette Ottinger
- Klinikum Darmstadt GmbH, Institut für Radioonkologie und Strahlentherapie, Darmstadt, Deutschland
| | - Victor Izaguirre
- Universitätsklinikum Halle (Saale), Klinik für Strahlentherapie, Halle (Saale), Deutschland
| | - Florian Putz
- Universitätsklinikum Erlangen, Strahlenklinik, Erlangen, Deutschland
| | - Laila König
- Universitätsklinikum Heidelberg, Klinik für Radioonkologie und Strahlentherapie, Heidelberg, Deutschland
| | - Michael Hoffmann
- Radioonkologie LMU München, Strahlentherapie und Radioonkologie, München, Deutschland
| | - Stephanie E Combs
- Technische Universität München (TUM), Department of Radiation Oncology, Ismaninger Straße 22, Munich.,Helmholtz Zentrum München (HMGU), Ingolstädter Landstraße 1, Neuherberg, Deutschland.,Deutsches Zentrum für Translationale Krebsforschung (DKTK) Partner Site Munich
| | - Matthias Guckenberger
- Universitätsspital Zürich, Universität Zürich, Klinik für Radio-Onkologie, Zürich, Schweiz
| | - Judit Boda-Heggemann
- Universitätsmedizin Mannheim, Medizinische Fakultät Mannheim, Universität Heidelberg, Klinik für Strahlentherapie und Radioonkologie, Mannheim, Deutschland
| |
Collapse
|
4
|
Latrèche A, Bourbonne V, Lucia F. Unrecognized thoracic radiotherapy toxicity: A review of literature. Cancer Radiother 2022; 26:616-621. [DOI: 10.1016/j.canrad.2021.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 10/19/2022]
|
5
|
Wang J, Garg S, Landes RD, Liu L, Fu Q, Seng J, Boerma M, Thrall K, Hauer-Jensen M, Pathak R. Differential Recovery of Small Intestinal Segments after Partial-Body Irradiation in Non-Human Primates. Radiat Res 2021; 196:204-212. [PMID: 34043805 DOI: 10.1667/rade-20-00272.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 05/06/2021] [Indexed: 11/03/2022]
Abstract
In the event of a radiological attack or accident, it is more likely that the absorbed radiation dose will be heterogeneous, rather than uniformly distributed throughout the body. This type of uneven dose distribution is known as partial-body irradiation (PBI). Partial exposure of the vital organs, specifically the highly radiosensitive intestines, may cause death, if the injury is significant and the post-exposure recovery is considerably compromised. Here we investigated the recovery rate and extent of recovery from PBI-induced intestinal damage in large animals. Rhesus macaques (Macaca mulatta) were randomly divided into four groups: sham-irradiated (0 Gy), 8 Gy PBI, 11 Gy PBI and 14 Gy PBI. A single dose of ionizing radiation was delivered in the abdominal region using a uniform bilateral anteroposterior and posteroanterior technique. Irradiated animals were scheduled for euthanasia on days 10, 28 or 60 postirradiation, and sham-irradiated animals on day 60. Intestinal structural injuries were assessed via crypt depth, villus height, and mucosal surface length in the four different intestinal regions (duodenum, proximal jejunum, distal jejunum and ileum) using H&E staining. Higher radiation doses corresponded with more injury at 10 days post-PBI, and faster recovery. However, at 60 days post-PBI, damage was still evident in all regions of the intestine. The proximal and distal ends (duodenum and ileum, respectively) sustained less damage and recovered more fully than the jejunum.
Collapse
Affiliation(s)
- Junru Wang
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sarita Garg
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Reid D Landes
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Liya Liu
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Qiang Fu
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - John Seng
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Rupak Pathak
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
6
|
Andruska N, Stowe HB, Crockett C, Liu W, Palma D, Faivre-Finn C, Badiyan SN. Stereotactic Radiation for Lung Cancer: A Practical Approach to Challenging Scenarios. J Thorac Oncol 2021; 16:1075-1085. [PMID: 33901637 DOI: 10.1016/j.jtho.2021.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 12/18/2022]
Abstract
Stereotactic body radiation therapy (SBRT) is an effective and well-tolerated treatment for medically inoperable patients with early stage NSCLC. SBRT is a noninvasive treatment involving the delivery of ablative radiation doses with high precision in the course of a few treatments. Relative to conventionally fractionated radiation, SBRT achieves superior local control and survival. SBRT use has increased dramatically in the past 15 years and is currently considered the standard of care in cases of inoperable early stage NSCLC. It is being increasingly applied to more complex patient populations at higher risk of treatment-related toxicity. In these more complex patients, there is an increasing need to balance patient and treatment factors in selecting the optimal patients for SBRT. Here, we review several challenging clinical scenarios often encountered in thoracic multidisciplinary tumor boards.
Collapse
Affiliation(s)
- Neal Andruska
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St Louis, Missouri
| | - Hayley B Stowe
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St Louis, Missouri
| | - Cathryn Crockett
- Division of Cancer Sciences, University of Manchester and The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Wei Liu
- Division of Radiation Oncology, Western University, London, Ontario, Canada
| | - David Palma
- Division of Radiation Oncology, Western University, London, Ontario, Canada; Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Corinne Faivre-Finn
- Division of Cancer Sciences, University of Manchester and The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Shahed N Badiyan
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St Louis, Missouri.
| | | |
Collapse
|
7
|
Vlaskou Badra E, Baumgartl M, Fabiano S, Jongen A, Guckenberger M. Stereotactic radiotherapy for early stage non-small cell lung cancer: current standards and ongoing research. Transl Lung Cancer Res 2021; 10:1930-1949. [PMID: 34012804 PMCID: PMC8107760 DOI: 10.21037/tlcr-20-860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Stereotactic body radiation therapy (SBRT) allows for the non-invasive and precise delivery of ablative radiation dose. The use and availability of SBRT has increased rapidly over the past decades. SBRT has been proven to be a safe, effective and efficient treatment for early stage non-small cell lung cancer (NSCLC) and is presently considered the standard of care in the treatment of medically or functionally inoperable patients. Evidence from prospective randomized trials on the optimal treatment of patients deemed medically operable remains owing, as three trials comparing SBRT to surgery in this cohort were terminated prematurely due to poor accrual. Yet, SBRT in early stage NSCLC is associated with favorable toxicity profiles and excellent rates of local control, prompting discussion in regard of the treatment of medically operable patients, where the standard of care currently remains surgical resection. Although local control in early stage NSCLC after SBRT is high, distant failure remains an issue, prompting research interest to the combination of SBRT and systemic treatment. Evolving advances in SBRT technology further facilitate the safe treatment of patients with medically or anatomically challenging situations. In this review article, we discuss international guidelines and the current standard of care, ongoing clinical challenges and future directions from the clinical and technical point of view.
Collapse
Affiliation(s)
- Eugenia Vlaskou Badra
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michael Baumgartl
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Silvia Fabiano
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Aurélien Jongen
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Finazzi T, Palacios MA, Haasbeek CJ, Admiraal MA, Spoelstra FO, Bruynzeel AM, Slotman BJ, Lagerwaard FJ, Senan S. Stereotactic MR-guided adaptive radiation therapy for peripheral lung tumors. Radiother Oncol 2020; 144:46-52. [DOI: 10.1016/j.radonc.2019.10.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/25/2019] [Accepted: 10/18/2019] [Indexed: 12/22/2022]
|
9
|
Kennedy WR, Gabani P, Nikitas J, Robinson CG, Bradley JD, Roach MC. Repeat stereotactic body radiation therapy (SBRT) for salvage of isolated local recurrence after definitive lung SBRT. Radiother Oncol 2020; 142:230-235. [PMID: 31481272 PMCID: PMC7655115 DOI: 10.1016/j.radonc.2019.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE Optimal management of isolated local recurrences after stereotactic body radiation therapy (SBRT) for early non-small cell lung cancer (NSCLC) is unknown and literature describing repeat SBRT for in-field recurrences after initial SBRT are sparse. We investigate the safety and efficacy of salvage SBRT for isolated local failures after initial SBRT for NSCLC. METHODS/MATERIALS Patients receiving SBRT for isolated local recurrence after initial SBRT for early NSCLC were identified using a prospective registry. Both courses were 3-5 fractions with a biologically effective dose (BED10) of ≥100 Gy. Local failure was defined as within 1 cm of the initial planning target volume (PTV) or an overlap of the ≥25% isodose lines of the first and second treatments. Failures >1 cm beyond the PTV and without ≥25% overlap, or with additional recurrence sites were excluded. Kaplan-Meier analysis was used to estimate survival. RESULTS A total 21 patients receiving salvage SBRT from 2008 to 2017 were identified. Median interval from initial SBRT to salvage SBRT was 23 months (7-52). Six patients (29%) had central tumors. Median follow-up time from salvage SBRT was 24 months (3-60). Median overall survival after salvage was 39 months. After reirradiation, two-year primary tumor control was 81%, regional nodal control was 89%, distant control was 75% and overall survival was 68%. Grade 2 pneumonitis occurred in 2 patients (10%) and grade 2 chest wall toxicity in 4 patients (19%). No grade 3+ toxicity was observed. CONCLUSIONS Salvage SBRT for isolated local failures after initial SBRT appears safe, with low treatment-related toxicity and encouraging rates of tumor control.
Collapse
Affiliation(s)
- William R Kennedy
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, United States
| | - Prashant Gabani
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, United States
| | - John Nikitas
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, United States
| | - Clifford G Robinson
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, United States
| | - Jeffrey D Bradley
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, United States
| | - Michael C Roach
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, United States.
| |
Collapse
|
10
|
Baka N, Batra V, Yeung V, Lin S. Diagnosis and Management of Gastro-pleural Fistula in Metastatic Malignancy. Cureus 2019; 11:e4455. [PMID: 31205841 PMCID: PMC6561524 DOI: 10.7759/cureus.4455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gastro-pleural fistula is a rare condition, and the diagnosis can be challenging, as demonstrated in our case. The management is even more complex, with wide gamut of management strategies from more conservative management such as endoscopic closures and minimally invasive video-assisted thoracoscopic surgery (VATS) to open surgical repair. We present the case of a 55-year-old female with metastatic renal cell cancer with prior radiation therapy and cabozantinib treatment who was diagnosed with gastro-pleural fistula after extensive workup. She underwent endoscopic closure and subsequent jejunostomy tube feeding, venting gastrostomy tube, and draining chest tube. Antibiotics and chest tube drainage were primary modalities for treatment of her empyema. Subsequently, she required laparoscopic surgery for fistula repair.
Collapse
Affiliation(s)
- Nadia Baka
- Miscellaneous, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, USA
| | - Vivek Batra
- Medical Oncology, Thomas Jefferson University Hospital, Philadelphia, USA
| | - Vincent Yeung
- Internal Medicine, Thomas Jefferson University Hospital, Philadelphia, USA
| | - Shuwen Lin
- Internal Medicine, Thomas Jefferson University Hospital, Philadelphia, USA
| |
Collapse
|
11
|
Matsuo Y. A Systematic Literature Review on Salvage Radiotherapy for Local or Regional Recurrence After Previous Stereotactic Body Radiotherapy for Lung Cancer. Technol Cancer Res Treat 2019; 17:1533033818798633. [PMID: 30198413 PMCID: PMC6131295 DOI: 10.1177/1533033818798633] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Purpose: The purpose of this review article was to summarize available data on the efficacy and safety of salvage radiotherapy for isolated local or regional recurrence after prior stereotactic body radiotherapy for lung cancer. Methods: Studies were systematically searched on PubMed, following which suitable papers were selected. Reported outcomes and toxicities were qualitatively reviewed. Results: Nineteen papers, which were retrospective studies based on single institution experiences, were selected. Sixteen papers were on salvage radiotherapy for local tumor recurrence, and the remaining 3 papers evaluated radiotherapy for regional failures after stereotactic body radiotherapy for lung cancer. Patient cohorts in the selected papers seemed very frail with 2-year survival of 30% to 40% after the salvage. Local control was reported to be approximately 60% to 70%, which is worse than that after primary stereotactic body radiotherapy. Reported rates of toxicity grade 3 or worse were considered acceptable. Larger target volume and central tumor localization were suggested as risk factors for severe toxicities. Dosimetric data on patients having toxicities were found to help with considering dose constraints for organs at risk. Conclusion: Based on data from a limited number of articles, salvage radiotherapy is a reasonable treatment option for select patients with local or regional tumor recurrence after prior stereotactic body radiotherapy for lung cancer. Optimal patient selection and dose prescription can be clarified with a larger study that include more data on experiences with salvage radiotherapy.
Collapse
Affiliation(s)
- Yukinori Matsuo
- 1 Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
12
|
Ogawa Y, Shibamoto Y, Hashizume C, Kondo T, Iwata H, Tomita N, Ogino H. Repeat stereotactic body radiotherapy (SBRT) for local recurrence of non-small cell lung cancer and lung metastasis after first SBRT. Radiat Oncol 2018; 13:136. [PMID: 30055636 PMCID: PMC6064122 DOI: 10.1186/s13014-018-1080-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/17/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND This study evaluated the safety and efficacy of repeat SBRT for local recurrence of stage I non-small-cell lung cancer (NSCLC) and solitary lung metastasis. METHODS Thirty-one patients with in-field local relapse of NSCLC (n = 23) or lung metastasis (n = 8) underwent repeat SBRT. All patients had grade 2 or lower radiation pneumonitis after the first SBRT. Local recurrence was diagnosed with CT and FDG-PET in 17 patients and by biopsy in 14. The median interval between the first and second SBRT was 18 months (range, 4-80). The first SBRT dose was mainly 48-52 Gy in 4 fractions (n = 25) according to the institutional protocols. Second SBRT doses were determined based on the tumor size and distance to organs at risk, and were mostly 48-52 Gy in 4 fractions (n = 13) or 60 Gy in 8 fractions (n = 13). RESULTS At 3 years, overall survival and local control rates were 36 and 53%, respectively, for all 31 patients. Four patients showed no further recurrence for > 5 years (63-111 months) after the second SBRT. Radiation pneumonitis after the second SBRT was grade 2 in 4 patients, and no grade 3 pneumonitis was observed. CONCLUSION Repeat SBRT was safe. Local control and survival rates were higher than expected. SBRT should be an important treatment option for local recurrence of NSCLC or lung metastasis after previous local SBRT. TRIAL REGISTRATION This retrospective study was approved by the ethics committee of our institution (September, 2017; approval number: 27-10).
Collapse
Affiliation(s)
- Yasutaka Ogawa
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yuta Shibamoto
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| | - Chisa Hashizume
- Nagoya Radiosurgery Center, Nagoya Kyoritsu Hospital, Nagoya, Japan
| | - Takuhito Kondo
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiromitsu Iwata
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya, Japan
| | - Natsuo Tomita
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroyuki Ogino
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya, Japan
| |
Collapse
|
13
|
Milano MT, Mihai A, Kong FM(S. Review of thoracic reirradiation with stereotactic body radiation therapy. Pract Radiat Oncol 2018; 8:251-265. [DOI: 10.1016/j.prro.2018.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 01/21/2018] [Accepted: 01/25/2018] [Indexed: 12/25/2022]
|