1
|
Del Pilar C, Garrido-Matilla L, Del Pozo-Filíu L, Lebrón-Galán R, Arias RF, Clemente D, Alonso JR, Weruaga E, Díaz D. Intracerebellar injection of monocytic immature myeloid cells prevents the adverse effects caused by stereotactic surgery in a model of cerebellar neurodegeneration. J Neuroinflammation 2024; 21:49. [PMID: 38355633 PMCID: PMC10867997 DOI: 10.1186/s12974-023-03000-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/18/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs) constitute a recently discovered bone-marrow-derived cell type useful for dealing with neuroinflammatory disorders. However, these cells are only formed during inflammatory conditions from immature myeloid cells (IMCs) that acquire immunosuppressive activity, thus being commonly gathered from diseased animals. Then, to obtain a more clinically feasible source, we characterized IMCs directly derived from healthy bone marrow and proved their potential immunosuppressive activity under pathological conditions in vitro. We then explored their neuroprotective potential in a model of human cerebellar ataxia, the Purkinje Cell Degeneration (PCD) mouse, as it displays a well-defined neurodegenerative and neuroinflammatory process that can be also aggravated by invasive surgeries. METHODS IMCs were obtained from healthy bone marrow and co-cultured with activated T cells. The proliferation and apoptotic rate of the later were analyzed with Tag-it Violet. For in vivo studies, IMCs were transplanted by stereotactic surgery into the cerebellum of PCD mice. We also used sham-operated animals as controls of the surgical effects, as well as their untreated counterparts. Motor behavior of mice was assessed by rotarod test. The Purkinje cell density was measured by immunohistochemistry and cell death assessed with the TUNEL technique. We also analyzed the microglial phenotype by immunofluorescence and the expression pattern of inflammation-related genes by qPCR. Parametric tests were applied depending on the specific experiment: one or two way ANOVA and Student's T test. RESULTS IMCs were proven to effectively acquire immunosuppressive activity under pathological conditions in vitro, thus acting as MDSCs. Concerning in vivo studios, sham-operated PCD mice suffered detrimental effects in motor coordination, Purkinje cell survival and microglial activation. After intracranial administration of IMCs into the cerebellum of PCD mice, no special benefits were detected in the transplanted animals when compared to untreated mice. Nonetheless, this transplant almost completely prevented the impairments caused by the surgery in PCD mice, probably by the modulation of the inflammatory patterns. CONCLUSIONS Our work comprise two main translational findings: (1) IMCs can be directly used as they behave as MDSCs under pathological conditions, thus avoiding their gathering from diseased subjects; (2) IMCs are promising adjuvants when performing neurosurgery.
Collapse
Affiliation(s)
- Carlos Del Pilar
- Institute for Neuroscience of Castile and Leon, INCyL, Universidad de Salamanca, C/Pintor Fernando Gallego 1, 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
| | - Lucía Garrido-Matilla
- Institute for Neuroscience of Castile and Leon, INCyL, Universidad de Salamanca, C/Pintor Fernando Gallego 1, 37007, Salamanca, Spain
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Lucía Del Pozo-Filíu
- Institute for Neuroscience of Castile and Leon, INCyL, Universidad de Salamanca, C/Pintor Fernando Gallego 1, 37007, Salamanca, Spain
- Translational Stroke Laboratory (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Rafael Lebrón-Galán
- Neuroimmuno-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45004, Toledo, Spain
- Hospital Universitario de Toledo, Avd. Río Guadiana, s/n, 45007, Toledo, Spain
| | - Raúl F Arias
- Institute for Neuroscience of Castile and Leon, INCyL, Universidad de Salamanca, C/Pintor Fernando Gallego 1, 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
| | - Diego Clemente
- Neuroimmuno-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45004, Toledo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Carlos III Health Institute, Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain
| | - José Ramón Alonso
- Institute for Neuroscience of Castile and Leon, INCyL, Universidad de Salamanca, C/Pintor Fernando Gallego 1, 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
| | - Eduardo Weruaga
- Institute for Neuroscience of Castile and Leon, INCyL, Universidad de Salamanca, C/Pintor Fernando Gallego 1, 37007, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain.
| | - David Díaz
- Institute for Neuroscience of Castile and Leon, INCyL, Universidad de Salamanca, C/Pintor Fernando Gallego 1, 37007, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain.
| |
Collapse
|
2
|
Zolfaghari Baghbadorani P, Rayati Damavandi A, Moradi S, Ahmadi M, Bemani P, Aria H, Mottedayyen H, Rayati Damavandi A, Eskandari N, Fathi F. Current advances in stem cell therapy in the treatment of multiple sclerosis. Rev Neurosci 2023; 34:613-633. [PMID: 36496351 DOI: 10.1515/revneuro-2022-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/18/2022] [Indexed: 08/04/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory disease related to the central nervous system (CNS) with a significant global burden. In this illness, the immune system plays an essential role in its pathophysiology and progression. The currently available treatments are not recognized as curable options and, at best, might slow the progression of MS injuries to the CNS. However, stem cell treatment has provided a new avenue for treating MS. Stem cells may enhance CNS healing and regulate immunological responses. Likewise, stem cells can come from various sources, including adipose, neuronal, bone marrow, and embryonic tissues. Choosing the optimal cell source for stem cell therapy is still a difficult verdict. A type of stem cell known as mesenchymal stem cells (MSCs) is obtainable from different sources and has a strong immunomodulatory impact on the immune system. According to mounting data, the umbilical cord and adipose tissue may serve as appropriate sources for the isolation of MSCs. Human amniotic epithelial cells (hAECs), as novel stem cell sources with immune-regulatory effects, regenerative properties, and decreased antigenicity, can also be thought of as a new upcoming contender for MS treatment. Overall, the administration of stem cells in different sets of animal and clinical trials has shown immunomodulatory and neuroprotective results. Therefore, this review aims to discuss the different types of stem cells by focusing on MSCs and their mechanisms, which can be used to treat and improve the outcomes of MS disease.
Collapse
Affiliation(s)
| | - Amirmasoud Rayati Damavandi
- Students' Scientific Research Center, Exceptional Talents Development Center, Tehran University of Medical Sciences, Keshavarz Blvrd, Vesal Shirazi St., Tehran 1417613151, Iran
| | - Samira Moradi
- School of Medicine, Hormozgan University of Medical Sciences Chamran Blvrd., Hormozgan 7919693116, Bandar Abbass, Iran
| | - Meysam Ahmadi
- School of Medicine, Shiraz University of Medical Sciences, Fars, Zand St., Shiraz 7134814336, Iran
| | - Peyman Bemani
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Hezar Jerib St., Isfahan 8174673461, Iran
| | - Hamid Aria
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Hezar Jerib St., Isfahan 8174673461, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fars, Ibn Sina Sq., Fasa 7461686688, Iran
| | - Hossein Mottedayyen
- Department of Immunology, School of Medicine, Kashan University of Medical Sciences, Ravandi Blvrd, Isfahan, Kashan 8715988141, Iran
| | - Amirhossein Rayati Damavandi
- Student's Research Committee, Pharmaceutical Sciences Branch, Islamic Azad University, Yakhchal St., Tehran 193951498, Iran
| | - Nahid Eskandari
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Hezar Jerib St., Isfahan 8174673461, Iran
| | - Farshid Fathi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Hezar Jerib St., Isfahan 8174673461, Iran
| |
Collapse
|
3
|
Carty F, Dunbar H, Hawthorne IJ, Ting AE, Stubblefield SR, Van't Hof W, English K. IFN-γ and PPARδ influence the efficacy and retention of multipotent adult progenitor cells in graft vs host disease. Stem Cells Transl Med 2021; 10:1561-1574. [PMID: 34397170 PMCID: PMC8550699 DOI: 10.1002/sctm.21-0008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/29/2021] [Accepted: 07/28/2021] [Indexed: 01/14/2023] Open
Abstract
Cell‐based therapy for the treatment of inflammatory disorders has focused on the application of mesenchymal stromal cells (MSCs) and multipotent adult progenitor cells (MAPCs). Despite the recent positive findings in industry‐sponsored clinical trials of MSCs and MAPCs for graft vs host disease (GvHD), cell therapy is efficacious in some but not all patients, highlighting the need to identify strategies to enhance cell‐based therapeutic efficacy. Here, we demonstrate the capacity for interferon (IFN)‐γ licensing to enhance human MAPC efficacy and retention following early administration in a humanized mouse model of acute GvHD (aGvHD). Activation of the nuclear receptor peroxisome proliferator‐activated receptor delta (PPARδ) negatively influenced the retention and efficacy of human MAPCs as well as IFN‐γ‐licensed MAPCs in the aGvHD model. PPARδ antagonism significantly enhanced the efficacy of human MAPCs when administered early in the humanized aGvHD model. COX‐2 expression in human MAPC was significantly decreased in IFN‐γ licensed MAPCs exposed to a PPARδ agonist. Importantly, MAPC exposure to the PPARδ antagonist in the presence of a COX‐2 inhibitor indomethacin before administration significantly reduced the efficacy of PPARδ antagonized MAPCs in the aGvHD humanized mouse model. This is the first study to demonstrate the importance of PPARδ in human MAPC efficacy in vivo and highlights the importance of understanding the disease microenvironment in which cell‐based therapies are to be administered. In particular, the presence of PPARδ ligands may negatively influence MAPC or MSC therapeutic efficacy.
Collapse
Affiliation(s)
- Fiona Carty
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Hazel Dunbar
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Ian J Hawthorne
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | | | | | - Wouter Van't Hof
- Athersys, Inc, Cleveland, Ohio, USA.,Cleveland Cord Blood Center, Cleveland, Ohio, USA
| | - Karen English
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
4
|
Laing RW, Stubblefield S, Wallace L, Roobrouck VD, Bhogal RH, Schlegel A, Boteon YL, Reynolds GM, Ting AE, Mirza DF, Newsome PN, Mergental H, Afford SC. The Delivery of Multipotent Adult Progenitor Cells to Extended Criteria Human Donor Livers Using Normothermic Machine Perfusion. Front Immunol 2020; 11:1226. [PMID: 32714318 PMCID: PMC7344318 DOI: 10.3389/fimmu.2020.01226] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/15/2020] [Indexed: 12/30/2022] Open
Abstract
Background: Pre-clinical research with multi-potent adult progenitor cells (MAPC® cells, Multistem, Athersys Inc., Cleveland, Ohio) suggests their potential as an anti-inflammatory and immunomodulatory therapy in organ transplantation. Normothermic machine perfusion of the liver (NMP-L) has been proposed as a way of introducing therapeutic agents into the donor organ. Delivery of cellular therapy to human donor livers using this technique has not yet been described in the literature. The primary objectives of this study were to develop a technique for delivering cellular therapy to human donor livers using NMP-L and demonstrate engraftment. Methods: Six discarded human livers were perfused for 6 h at 37°C using the Liver Assist (Organ Assist, Groningen). 50 × 106 CMPTX-labeled MAPC cells were infused directly into the right lobe via the hepatic artery (HA, n = 3) or portal vein (PV, n = 3) over 20 min at different time points during the perfusion. Perfusion parameters were recorded and central and peripheral biopsies were taken at multiple time-points from both lobes and subjected to standard histological stains and confocal microscopy. Perfusate was analyzed using a 35-plex multiplex assay and proteomic analysis. Results: There was no detrimental effect on perfusion flow parameters on infusion of MAPC cells by either route. Three out of six livers met established criteria for organ viability. Confocal microscopy demonstrated engraftment of MAPC cells across vascular endothelium when perfused via the artery. 35-plex multiplex analysis of perfusate yielded 13 positive targets, 9 of which appeared to be related to the infusion of MAPC cells (including Interleukin's 1b, 4, 5, 6, 8, 10, MCP-1, GM-CSF, SDF-1a). Proteomic analysis revealed 295 unique proteins in the perfusate from time-points following the infusion of cellular therapy, many of which have strong links to MAPC cells and mesenchymal stem cells in the literature. Functional enrichment analysis demonstrated their immunomodulatory potential. Conclusion: We have demonstrated that cells can be delivered directly to the target organ, prior to host immune cell population exposure and without compromising the perfusion. Transendothelial migration occurs following arterial infusion. MAPC cells appear to secrete a host of soluble factors that would have anti-inflammatory and immunomodulatory benefits in a human model of liver transplantation.
Collapse
Affiliation(s)
- Richard W Laing
- NIHR Liver Biomedical Research Unit, Centre for Liver Research, College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | | | - Lorraine Wallace
- NIHR Liver Biomedical Research Unit, Centre for Liver Research, College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | | | - Ricky H Bhogal
- NIHR Liver Biomedical Research Unit, Centre for Liver Research, College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Andrea Schlegel
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Yuri L Boteon
- NIHR Liver Biomedical Research Unit, Centre for Liver Research, College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Gary M Reynolds
- NIHR Liver Biomedical Research Unit, Centre for Liver Research, College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | | | - Darius F Mirza
- NIHR Liver Biomedical Research Unit, Centre for Liver Research, College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Philip N Newsome
- NIHR Liver Biomedical Research Unit, Centre for Liver Research, College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Hynek Mergental
- NIHR Liver Biomedical Research Unit, Centre for Liver Research, College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Simon C Afford
- NIHR Liver Biomedical Research Unit, Centre for Liver Research, College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
5
|
Khan RS, Newsome PN. A Comparison of Phenotypic and Functional Properties of Mesenchymal Stromal Cells and Multipotent Adult Progenitor Cells. Front Immunol 2019; 10:1952. [PMID: 31555259 PMCID: PMC6724467 DOI: 10.3389/fimmu.2019.01952] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/02/2019] [Indexed: 12/15/2022] Open
Abstract
Both Multipotent Adult Progenitor Cells and Mesenchymal Stromal Cells are bone-marrow derived, non-haematopoietic adherent cells, that are well-known for having immunomodulatory and pro-angiogenic properties, whilst being relatively non-immunogenic. However, they are phenotypically and functionally distinct cell types, which has implications for their efficacy in different settings. In this review we compare the phenotypic and functional properties of these two cell types, to help in determining which would be the superior cell type for different applications.
Collapse
Affiliation(s)
- Reenam S Khan
- National Institute for Health Research (NIHR), Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Philip N Newsome
- National Institute for Health Research (NIHR), Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
6
|
Al-Jaibaji O, Swioklo S, Gijbels K, Vaes B, Figueiredo FC, Connon CJ. Alginate encapsulated multipotent adult progenitor cells promote corneal stromal cell activation via release of soluble factors. PLoS One 2018; 13:e0202118. [PMID: 30192833 PMCID: PMC6128465 DOI: 10.1371/journal.pone.0202118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/28/2018] [Indexed: 01/26/2023] Open
Abstract
To reduce the increasing need for corneal transplantation, attempts are currently aiming to restore corneal clarity, one potent source of cells are multipotent adult progenitor cells (MAPC®). These cells release a powerful cocktail of paracrine factors that can guide wound healing and tissue regeneration. However, their role in corneal regeneration has been overlooked. Thus, we sought to explore the potential of combining the cytoprotective storage feature of alginate, with MAPC to generate a storable cell-laden gel for corneal wound healing. 72 hours following hypothermic storage, alginate encapsulation was shown to maintain MAPC viability at either 4 or 15°C. Encapsulated MAPC (2 x106 cells/mL) stored at 15°C presented the optimum temperature that allowed for cell recovery. These cells had the ability to reattach to tissue culture plastic whilst exhibiting normal phenotype and this was maintained in serum-free and xenobiotic-free medium. Furthermore, corneal stromal cells presented a significant decrease in scratch-wounds in the presence of alginate encapsulated MAPC compared to a no-cell control (p = 0.018). This study shows that immobilization of MAPC within an alginate hydrogel does not hinder their ability to affect a secondary cell population via soluble factors and that these effects are successfully retained following hypothermic storage.
Collapse
Affiliation(s)
- Olla Al-Jaibaji
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Stephen Swioklo
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | | | | - Che J. Connon
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Wilson JJ, Foyle KL, Foeng J, Norton T, McKenzie DR, Payne N, Bernard CC, McColl SR, Comerford I. Redirecting adult mesenchymal stromal cells to the brain: a new approach for treating CNS autoimmunity and neuroinflammation? Immunol Cell Biol 2018; 96:347-357. [PMID: 29377354 DOI: 10.1111/imcb.12014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/15/2022]
Abstract
Mesenchymal stromal cells or stem cells (MSCs) have been shown to participate in tissue repair and are immunomodulatory in neuropathological settings. Given this, their potential use in developing a new generation of personalized therapies for autoimmune and inflammatory diseases of the central nervous system (CNS) will be explored. To effectively exert these effector functions, MSCs must first gain entry into damaged neural tissues, a process that has been demonstrated to be a limiting factor in their therapeutic efficacy. In this review, we discuss approaches to maximize the therapeutic efficacy of MSCs by altering their intrinsic trafficking programs to effectively enter neuropathological sites. To this end, we explore the significant role of chemokine receptors and adhesion molecules in directing cellular traffic to the inflamed CNS and the capacity of MSCs to adopt these molecular mechanisms to gain entry to this site. We postulate that understanding and exploiting these migratory mechanisms may be key to the development of cell-based therapies tailored to respond to the migratory cues unique to the nature and stage of progression of individual CNS disorders.
Collapse
Affiliation(s)
- Jasmine J Wilson
- The Chemokine Biology Laboratory, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Kerrie L Foyle
- The Chemokine Biology Laboratory, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jade Foeng
- The Chemokine Biology Laboratory, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Todd Norton
- The Chemokine Biology Laboratory, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Duncan R McKenzie
- The Chemokine Biology Laboratory, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Natalie Payne
- Multiple Sclerosis Research Group, Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Claude C Bernard
- Multiple Sclerosis Research Group, Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Shaun R McColl
- The Chemokine Biology Laboratory, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Iain Comerford
- The Chemokine Biology Laboratory, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
8
|
Donders R, Bogie JF, Ravanidis S, Gervois P, Vanheusden M, Marée R, Schrynemackers M, Smeets HJ, Pinxteren J, Gijbels K, Walbers S, Mays RW, Deans R, Van Den Bosch L, Stinissen P, Lambrichts I, Gyselaers W, Hellings N. Human Wharton's Jelly-Derived Stem Cells Display a Distinct Immunomodulatory and Proregenerative Transcriptional Signature Compared to Bone Marrow-Derived Stem Cells. Stem Cells Dev 2018; 27:65-84. [DOI: 10.1089/scd.2017.0029] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Raf Donders
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jeroen F.J. Bogie
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | | | - Pascal Gervois
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Marjan Vanheusden
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Raphaël Marée
- University of Liège, GIGA Bioinformatics Core Facility, Liège, Belgium
| | | | - Hubert J.M. Smeets
- Maastricht UMC+, Department of Genetics and Cell Biology, Research School GROW and CARIM, Maastricht, the Netherlands
| | - Jef Pinxteren
- ReGenesys BVBA, Bio-Incubator Leuven, Heverlee, Belgium
| | | | - Sara Walbers
- ReGenesys BVBA, Bio-Incubator Leuven, Heverlee, Belgium
| | - Robert W. Mays
- Department of Regenerative Medicine, Athersys, Inc., Cleveland, Ohio
| | - Robert Deans
- Department of Regenerative Medicine, Athersys, Inc., Cleveland, Ohio
| | - Ludo Van Den Bosch
- KU Leuven, Laboratory of Neurobiology, Experimental Neurology and VIB, Center for Brain & Disease, Leuven, Belgium
| | - Piet Stinissen
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Ivo Lambrichts
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Wilfried Gyselaers
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- Ziekenhuis Oost-Limburg, Campus St. Jan, Genk, Belgium
| | - Niels Hellings
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
9
|
Crosstalk with Inflammatory Macrophages Shapes the Regulatory Properties of Multipotent Adult Progenitor Cells. Stem Cells Int 2017; 2017:2353240. [PMID: 28785285 PMCID: PMC5529661 DOI: 10.1155/2017/2353240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/27/2017] [Accepted: 06/12/2017] [Indexed: 01/25/2023] Open
Abstract
Macrophages and microglia are key effector cells in immune-mediated neuroinflammatory disorders. Driving myeloid cells towards an anti-inflammatory, tissue repair-promoting phenotype is considered a promising strategy to halt neuroinflammation and promote central nervous system (CNS) repair. In this study, we defined the impact of multipotent adult progenitor cells (MAPC), a stem cell population sharing common mesodermal origin with mesenchymal stem cells (MSCs), on the phenotype of macrophages and the reciprocal interactions between these two cell types. We show that MAPC suppress the secretion of tumor necrosis factor alpha (TNF-α) by inflammatory macrophages partially through a cyclooxygenase 2- (COX-2-) dependent mechanism. In turn, we demonstrate that inflammatory macrophages trigger the immunomodulatory properties of MAPC, including an increased expression of immunomodulatory mediators (e.g., inducible nitric oxide synthase (iNOS) and COX-2), chemokines, and chemokine receptors. Macrophage-primed MAPC secrete soluble factors that suppress TNF-α release by macrophages. Moreover, the MAPC secretome suppresses the antigen-specific proliferation of autoreactive T cells and the T cell stimulatory capacity of macrophages. Finally, MAPC increase their motility towards secreted factors of activated macrophages. Collectively, these in vitro findings reveal intimate reciprocal interactions between MAPC and inflammatory macrophages, which are of importance in the design of MAPC-based therapeutic strategies for neuroinflammatory disorders in which myeloid cells play a crucial role.
Collapse
|
10
|
|