1
|
Howard K, Ferris WF, van de Vyver M. The characterization and comparison of femoral bone-derived skeletal stem cells. Biochimie 2025:S0300-9084(25)00045-8. [PMID: 40023362 DOI: 10.1016/j.biochi.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Skeletal stem cells (SSCs) reside in various niche locations within long bones to maintain bone homeostasis and facilitate fracture repair. Bone fragility, associated with ageing, increases the susceptibility of the femoral head to fractures due to an increase in bone adipocytes and concomitant loss of structural integrity. However, the specific contribution of epiphyseal SSCs to fragility is unknown. To explore this, a comparative analysis was performed on the transcriptional profiles and lineage commitment of Wistar rat femoral SSCs derived from the bone marrow (BM-), diaphyseal cortical bone (CB-) and proximal epiphyseal trabecular bone (PF-SSCs) isolated from the same long bones. SSCs were characterized based on morphology, immunophenotype (CD90/CD45), growth rate (population doubling time), gene expression profiles and differentiation capacity (Oil Red O, Alizarin Red S). qRT-PCR micro-arrays were performed on SSCs to evaluate the expression of stemness, SSC and lineage-specific markers in both undifferentiated and differentiated states. Our findings support the hypothesis that SSCs from different bone regions exhibit distinct transcriptional profiles, reflecting their specific niche environments. CB-SSCs displayed superior osteogenic potential as evidenced by the expression of key osteogenic genes and higher levels of mineralization. In contrast, PF-SSCs had a reduced osteogenic capacity with a higher adipogenic potential. Overall, the study revealed the importance of niche-specific stem cell properties for use in regenerative medicine applications and provides insight into the potential role of PF-SSCs in bone fragility and fracture risk.
Collapse
Affiliation(s)
- Kayla Howard
- Experimental Medicine Research Group, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - William Frank Ferris
- Experimental Medicine Research Group, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Mari van de Vyver
- Experimental Medicine Research Group, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa.
| |
Collapse
|
2
|
Hemati S, Ghiasi M, Salimi A. Osteogenic Differentiation of Adipose Tissue-Derived Mesenchymal Stem Cells on Composite Polymeric Scaffolds: A Review. Curr Stem Cell Res Ther 2025; 20:33-49. [PMID: 38315659 DOI: 10.2174/011574888x263333231218065453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 02/07/2024]
Abstract
The mesenchymal stem cells (MSCs) are the fundamental part of bone tissue engineering for the emergence of reconstructive medicine. Bone tissue engineering has recently been considered a promising strategy for treating bone diseases and disorders. The technique needs a scaffold to provide an environment for cell attachment to maintain cell function and a rich source of stem cells combined with appropriate growth factors. MSCs can be isolated from adipose tissue (ASCs), bone marrow (BM-MSCs), or umbilical cord (UC-MSCs). In the present study, the potential of ASCs to stimulate bone formation in composite polymeric scaffolds was discussed and it showed that ASCs have osteogenic ability in vitro. The results also indicated that the ASCs have the potential for rapid growth, easier adipose tissue harvesting with fewer donor site complications and high proliferative capacity. The osteogenic differentiation capacity of ASCs varies due to the culture medium and the addition of factors that can change signaling pathways to increase bone differentiation. Furthermore, gene expression analysis has a significant impact on improving our understanding of the molecular pathways involved in ASCs and, thus, osteogenic differentiation. Adding some drugs, such as dexamethasone, to the biomaterial composite also increases the formation of osteocytes. Combining ASCs with scaffolds synthesized from natural and synthetic polymers seems to be an effective strategy for bone regeneration. Applying exopolysaccharides, such as schizophyllan, chitosan, gelatin, and alginate in composite scaffolds enhances the osteogenesis potential of ASCs in bone tissue regeneration.
Collapse
Affiliation(s)
- Saideh Hemati
- Department of Cellular and Molecular Biology, Faculty of Biology, Science and Research Branch of Islamic Azad University, Tehran, Iran
| | - Mohsen Ghiasi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Salimi
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Lee SH, Jang JS, Mo S, Kim HH. TMEM175 plays a crucial role in osteoblast differentiation by regulating lysosomal function and autophagy. Mol Cells 2024; 47:100127. [PMID: 39426687 PMCID: PMC11863496 DOI: 10.1016/j.mocell.2024.100127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/04/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024] Open
Abstract
Bone provides structural support, enables movement, protects internal organs, regulates calcium and phosphorus levels, and contains bone marrow essential for hematopoiesis. Osteoblasts are specialized cells responsible for bone formation through the secretion of extracellular matrix components. Transmembrane protein 175 (TMEM175), which functions as an endosomal/lysosomal K+ channel and a lysosomal H+ channel, regulates lysosomal function and autophagy. Despite the recognized importance of lysosomes and autophagy in osteoblast differentiation, the specific role of TMEM175 in osteoblast differentiation has not been revealed. In this study, we investigated whether TMEM175 is associated with human bone mineral density and fracture and examined the role of TMEM175 in osteoblast differentiation. In analyses of single nucleotide polymorphisms of pore ion channel genes using the mouse2human database, a significant correlation between TMEM175 single nucleotide polymorphisms and human bone mineral density and fracture was identified. TMEM175 expression levels were found to increase during osteoblast differentiation from bone chip-derived mesenchymal stem cells (BMSCs). Knockdown of TMEM175 in BMSCs suppressed osteoblast differentiation, as evidenced by decreased matrix mineralization and lower expression levels of osteoblast marker genes. Further analysis indicated that TMEM175 deficiency leads to lysosomal dysfunction and partially impairs autophagic clearance during osteoblast differentiation. Moreover, the TMEM175 inhibitor 4-aminopyridine decreased osteoblast differentiation of BMSCs. Taken together, this study reveals that TMEM175 plays an important role in osteoblast differentiation by regulating lysosomal function and autophagic clearance.
Collapse
Affiliation(s)
- Seung Hye Lee
- Department of Cell and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - Ji Sun Jang
- Department of Cell and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - Shenzheng Mo
- Department of Cell and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - Hong-Hee Kim
- Department of Cell and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea.
| |
Collapse
|
4
|
Muthu S, Jeyaraman M, Narula A, Ravi VR, Gandi A, Khanna M, Maffulli N, Gupta A. Factors Influencing the Yield of Progenitor Cells in Bone Marrow Aspiration Concentrate—A Retrospective Analysis of 58 Patients. Biomedicines 2023; 11:biomedicines11030738. [PMID: 36979718 PMCID: PMC10045818 DOI: 10.3390/biomedicines11030738] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
This study aims to identify the role of subjective factors (age, sex, and comorbidities) and procedure-specific factors (aspiration volume) in influencing the yield of progenitor cells in bone marrow aspiration concentrate (BMAC) harvested from the iliac crest. A retrospective analysis was conducted on 58 patients (male:female = 31:27; mean age: 52.56 ± 18.14 years) who underwent BMAC therapy between January 2020 and June 2021. The factors analyzed include individual factors such as age, sex, and comorbid conditions, and procedural factors such as aspirate volume. The mononuclear cell (MNC) count and colony-forming unit (CFU) assay were used to assess the yield of progenitors in the aspirate. Pearson’s correlation test was performed for the age, aspirate volume, and outcome parameters, such as MNC and CFU. We used the chi-square test to analyze the role of sex and comorbidities on cellular yield. The mean volume of aspirate used for BMAC therapy was 66.65 (±17.82) mL. The mean MNC count of the BMAC was 19.94 (±16.34) × 106 cells, which formed 11 (±12) CFUs. Evidence of statistically significant positive associations was noted between the CFUs developed from the BMAC and the MNC count within them (r = 0.95, p < 0.001). The sex of the individual did not play any significant role in MNC count (p = 0.092) or CFUs formed (p = 0.448). The age of the individual showed evidence of a statistically significant negative association with the MNC count (r = −0.681, p < 0.001) and CFUs (r = −0.693, p < 0.001), as did the aspiration volume with the MNC count (r = −0.740, p < 0.001) and CFUs (r = −0.629, p < 0.001). We also noted a significant reduction in the MNC count (p = 0.002) and CFUs formed (p = 0.004) when the patients presented comorbidities. Individual factors such as age, comorbid conditions, and procedure factors such as aspirate volume significantly affected the yield of progenitor cells in the BMAC. The sex of the individual did not influence the yield of progenitor cells in BMAC.
Collapse
Affiliation(s)
- Sathish Muthu
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, Uttar Pradesh, India
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul 624003, Tamil Nadu, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
| | - Madhan Jeyaraman
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, Uttar Pradesh, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- Department of Orthopaedics, ACS Medical College and Hospital, Dr. M.G.R. Educational and Research Institute, Chennai 600056, Tamil Nadu, India
- Department of Regenerative Medicine, Mother Cell Regenerative Centre (MCRC), Tiruchirappalli 620017, Tamil Nadu, India
- South Texas Orthopaedic Research Institute (STORI Inc.), Laredo, TX 78045, USA
| | - Aditya Narula
- Department of Orthopaedics, Aakaar Bone Care, Kanpur 208002, Uttar Pradesh, India
| | - V. R. Ravi
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, Uttar Pradesh, India
- Department of Regenerative Medicine, Mother Cell Regenerative Centre (MCRC), Tiruchirappalli 620017, Tamil Nadu, India
| | - Avinash Gandi
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, Uttar Pradesh, India
- Department of Regenerative Medicine, Mother Cell Regenerative Centre (MCRC), Tiruchirappalli 620017, Tamil Nadu, India
| | - Manish Khanna
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, Uttar Pradesh, India
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, School of Medicine and Surgery, University of Salerno, 84084 Fisciano, Italy
- San Giovanni di Dio e Ruggi D’Aragona Hospital “Clinica Ortopedica” Department, Hospital of Salerno, 84124 Salerno, Italy
- Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Queen Mary University of London, London E1 4DG, UK
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Stoke on Trent ST5 5BG, UK
- Correspondence: (N.M.); (A.G.)
| | - Ashim Gupta
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, Uttar Pradesh, India
- South Texas Orthopaedic Research Institute (STORI Inc.), Laredo, TX 78045, USA
- Future Biologics, Lawrenceville, GA 30043, USA
- BioIntegrate, Lawrenceville, GA 30043, USA
- Regenerative Orthopaedics, Noida 201301, Uttar Pradesh, India
- Correspondence: (N.M.); (A.G.)
| |
Collapse
|
5
|
Vinod E, Padmaja K, Ramasamy B, Sathishkumar S. Systematic review of articular cartilage derived chondroprogenitors for cartilage repair in animal models. J Orthop 2023; 35:43-53. [PMID: 36387762 PMCID: PMC9647330 DOI: 10.1016/j.jor.2022.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
Purpose of research The potential for cartilage repair using articular cartilage derived chondroprogenitors has recently gained popularity due to promising results from in-vitro and in-vivo studies. Translation of results from in-vitro to a clinical setting requires a sufficient number of animal studies displaying significant positive outcomes. Thus, this systematic review comprehensively discusses the available literature (January 2000-March 2022) on animal models employing chondroprogenitors for cartilage regeneration, highlighting the results and limitations associated with their use.As per Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, a web-based search of PubMed and SCOPUS databases was performed for the following terminologies: "chondroprogenitors", "cartilage-progenitors", and "chondrogenic-progenitors", which yielded 528 studies. A total of 12 studies met the standardized inclusion criteria, which included chondroprogenitors derived from hyaline cartilage isolated using fibronectin adhesion assay (FAA) or migratory assay from explant cultures, further analyzing the role of chondroprogenitors using in-vivo animal models. Principal results Analysis revealed that FAA chondroprogenitors demonstrated the ability to attenuate osteoarthritis, repair chondral defects and form stable cartilage in animal models. They displayed better outcomes than bone marrow-derived mesenchymal stem cells but were comparable to chondrocytes. Migratory chondroprogenitors also demonstrated superiority to BM-MSCs in terms of higher chondrogenesis and lower hypertrophy, although a direct comparison to FAA-CPs and other cell types is warranted. Major conclusions Chondroprogenitors exhibit superior properties for chondrogenic repair; however, limited data on animal studies necessitates further studies to optimize their use before clinical translation for neo-cartilage formation.
Collapse
Affiliation(s)
- Elizabeth Vinod
- Department of Physiology, Christian Medical College, Vellore, India
- Centre for Stem Cell Research, (A unit of InStem, Bengaluru), Christian Medical College, Vellore, India
| | - Kawin Padmaja
- Department of Physiology, Christian Medical College, Vellore, India
| | - Boopalan Ramasamy
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | | |
Collapse
|
6
|
Lenna S, Brozovich A, Hirase T, Paradiso F, Weiner BK, Taraballi F. Comparison between Cancellous Trabecular and Cortical Specimens from Human Lumbar Spine Samples as an Alternative Source of Mesenchymal Stromal Cells. Stem Cells Dev 2022; 31:672-683. [PMID: 36039931 DOI: 10.1089/scd.2022.0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Due to their immunosuppressive potential and ability to differentiate into multiple musculoskeletal cell lineages, mesenchymal stromal cells (MSCs) became popular in clinical trials for the treatment of musculoskeletal disorders. The aim of this study was to isolate and characterize native populations of MSCs from human cortical and cancellous bone from the posterior elements of the lumbar spine and determine what source of MSCs yield better quality and quantity of cells to be potentially use for spinal fusion repair. We were able to show that MSCs from trabecular and cortical spine had the typical MSC morphology and expression markers; the ability to differentiate in adipocyte, chondrocyte, or osteoblast but they did not have a consistent pattern in the expression of the specific differentiation lineage genes. Moreover, MSCs from both sites demonstrated an immune suppression profile suggesting that these cells may have a more promising success in applications related to immunomodulation more than exploring their ability to drive osteogenesis to prevent nonunion in spine fusion procedures.
Collapse
Affiliation(s)
- Stefania Lenna
- Houston Methodist Research Institute, Houston, Texas, United States;
| | - Ava Brozovich
- Houston Methodist Academic Institute, Houston, Texas, United States;
| | - Takashi Hirase
- Houston Methodist Orthopedics & Sports Medicine Texas Medical Center, Houston, Texas, United States;
| | | | - Bradley K Weiner
- The Houston Methodist Research Institute, Department of Nanomedicine, Houston, Texas, United States.,Houston Methodist Hospital, Department of Orthopedic Surgery, Houston, Texas, United States;
| | | |
Collapse
|
7
|
Padmaja K, Amirtham SM, Rebekah G, Sathishkumar S, Vinod E. Supplementation of articular cartilage-derived chondroprogenitors with bone morphogenic protein-9 enhances chondrogenesis without affecting hypertrophy. Biotechnol Lett 2022; 44:1037-1049. [PMID: 35920961 DOI: 10.1007/s10529-022-03280-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/05/2022] [Indexed: 11/02/2022]
Abstract
INTRODUCTION Chondroprogenitors (CPCs) have emerged as a promising cellular therapy for cartilage-related pathologies due to their inherent primed chondrogenic potential. Studies report that the addition of growth factors such as parathyroid hormone (PTH) and Bone Morphogenic Protein (BMP) enhance the chondroinducive potential in chondrocytes and mesenchymal stem cells. This study evaluated if supplementation of the standard culture medium for cell expansion with 1-34 PTH and BMP-9 would enhance the chondrogenic potential of CPCs and reduce their hypertrophic tendency. METHODS Human chondrocytes were isolated from patients undergoing total knee replacement for osteoarthritis (n = 3). Following fibronectin adhesion assay, passage 1 CPCs were divided and further expanded under three culture conditions (a) control, i.e., cells continued under standard culture conditions, (b) 1-34 PTH group, additional intermittent 6 h exposure with 1-34 PTH and (c) BMP-9 group, additional BMP-9 during culture expansion. All the groups were evaluated for population-doubling, cell cycle analysis, surface marker and gene expression for chondrogenesis, hypertrophy, multilineage differentiation and GAG (glycosaminoglycan)/DNA following chondrogenic differentiation. RESULTS Concerning growth kinetics, the BMP-9 group exhibited a significantly lower S-phase and population-doubling when compared to the other two groups. Qualitative analysis for chondrogenic potential (Alcian blue, Safranin O staining and Toluidine blue for GAG) revealed that the BMP-9 group exhibited the highest uptake. The BMP-9 group also showed significantly higher COL2A1 expression than the control group, with no change in the hypertrophy marker expression. CONCLUSION BMP-9 can potentially be used as an additive for CPCs expansion, to enhance their chondrogenic potential without affecting their low hypertrophic tendency. The mitigating effects of 1-34PTH on hypertrophy would benefit further investigation when used in combination with BMP-9 to enhance chondrogenesis whilst reducing hypertrophy.
Collapse
Affiliation(s)
- Kawin Padmaja
- Department of Physiology, Christian Medical College, Vellore, 632002, India
| | | | - Grace Rebekah
- Department of Biostatistics, Christian Medical College, Vellore, 632002, India
| | | | - Elizabeth Vinod
- Department of Physiology, Christian Medical College, Vellore, 632002, India. .,Centre for Stem Cell Research, (A Unit of InStem, Bengaluru), Christian Medical College, Vellore, 632002, India.
| |
Collapse
|
8
|
Gresham RC, Kumar D, Copp J, Lee MA, Leach JK. Characterization of Induction and Targeting of Senescent Mesenchymal Stromal Cells. Tissue Eng Part C Methods 2022; 28:239-249. [PMID: 35438548 PMCID: PMC9247679 DOI: 10.1089/ten.tec.2022.0048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) from older donors have limited potential for bone tissue formation compared with cells from younger donors, and cellular senescence has been postulated as an underlying cause. There is a critical need for methods to induce premature senescence to study this phenomenon efficiently and reproducibly. However, the field lacks consensus on the appropriate method to induce and characterize senescence. Moreover, we have a limited understanding of the effects of commonly used induction methods on senescent phenotype. To address this significant challenge, we assessed the effect of replicative, hydrogen peroxide, etoposide, and irradiation-induced senescence on human MSCs using a battery of senescent cell characteristics. All methods arrested proliferation and resulted in increased cell spreading compared with low passage controls. Etoposide and irradiation increased expression of senescence-related genes in MSCs at early time points, proinflammatory cytokine secretion, DNA damage, and production of senescence-associated β-galactosidase. We then evaluated the effect of fisetin, a flavonoid and candidate senolytic agent, to clear senescent cells and promote osteogenic differentiation of MSCs entrapped in gelatin methacryloyl (GelMA) hydrogels in vitro. When studying a mixture of nonsenescent and senescent MSCs, we did not observe decreases in senescent markers or increases in osteogenesis with fisetin treatment. However, the application of the same treatment toward a heterogeneous population of human bone marrow-derived cells entrapped in GelMA decreased senescent markers and increased osteogenesis after 14 days in culture. These results identify best practices for inducing prematurely senescent MSCs and motivate the need for further study of fisetin as a senolytic agent. Impact Statement The accumulation of senescent cells within the body has detrimental effects on tissue homeostasis. To study the role of senescent cells on tissue repair and regeneration, there is a need for effective means to induce premature cell senescence. Herein, we characterized the influence of common stressors to induce premature senescence in human mesenchymal stromal cells (MSCs). Irradiation of MSCs resulted in a phenotype most similar to quiescent, high-passage cells. These studies establish key biomarkers for evaluation when studying senescent cells in vitro.
Collapse
Affiliation(s)
- Robert C.H. Gresham
- Department of Orthopedic Surgery, School of Medicine, University of California Davis Health, Sacramento, California, USA
| | - Devanshi Kumar
- Department of Biomedical Engineering, University of California, Davis, Davis, California, USA
| | - Jonathan Copp
- Department of Orthopedic Surgery, School of Medicine, University of California Davis Health, Sacramento, California, USA.,Department of Orthopedic Trauma Surgery, Forrest General Hospital, Hattiesburg, Mississippi, USA
| | - Mark A. Lee
- Department of Orthopedic Surgery, School of Medicine, University of California Davis Health, Sacramento, California, USA
| | - J. Kent Leach
- Department of Orthopedic Surgery, School of Medicine, University of California Davis Health, Sacramento, California, USA.,Department of Biomedical Engineering, University of California, Davis, Davis, California, USA.,Address correspondence to: J. Kent Leach, PhD, Department of Orthopaedic Surgery, School of Medicine, University of California, Davis Health, 4800 Y Street, Suite 3600, Sacramento, CA 95817, USA
| |
Collapse
|
9
|
Tao C, Liu J, Li Z, Lai P, Zhang S, Qu J, Tang Y, Liu A, Zou Z, Bai X, Li J. DNMT1 is a negative regulator of osteogenesis. Biol Open 2022; 11:274589. [PMID: 35238333 PMCID: PMC8905718 DOI: 10.1242/bio.058534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 12/10/2021] [Indexed: 11/21/2022] Open
Abstract
The role and underlying mechanisms of DNA methylation in osteogenesis/chondrogenesis remain poorly understood. We here reveal DNA methyltransferase 1 (DNMT1), which is responsible for copying DNA methylation onto the newly synthesized DNA strand after DNA replication, is overexpressed in sponge bone of people and mice with senile osteoporosis and required for suppression of osteoblast (OB) differentiation of mesenchymal stem cells (MSCs) and osteoprogenitors. Depletion of DNMT1 results in demethylation at the promoters of key osteogenic genes such as RORA and Fgfr2, and consequent upregulation of their transcription in vitro. Mechanistically, DNMT1 binds exactly to the promoters of these genes and are responsible for their 5-mc methylation. Conversely, simultaneous depletion of RORA or Fgfr2 blunts the effects of DNMT1 silencing on OB differentiation, suggesting RORA or Fgfr2 may be crucial for modulating osteogenic differentiation downstream of DNMT1. Collectively, these results reveal DNMT1 as a key repressor of OB differentiation and bone formation while providing us a new rationale for specific inhibition of DNMT1 as a potential therapeutic strategy to treat age-related bone loss. Summary: DNMT1 is overexpressed in sponge bone of people and mice with senile osteoporosis and required for suppression of osteoblast (OB) differentiation of mesenchymal stem cells (MSCs) and osteoprogenitors.
Collapse
Affiliation(s)
- Chen Tao
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jia Liu
- Department of Orthopedics, Affliated hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Ziqi Li
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Pinglin Lai
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Sheng Zhang
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiankun Qu
- Department of Surgery, Tan Cheng County Maternal and Child Health Care Hospital, Linyi, Shandong 276100, China
| | - Yujin Tang
- Department of Orthopedics, Affliated hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Anling Liu
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhipeng Zou
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaochun Bai
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Jianwei Li
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
10
|
Matsumura N, Li X, Uchikawa-Kitaya E, Li N, Dong H, Chen K, Yoshizawa M, Kagami H. Tissue Engineering with Compact Bone-Derived Cell Spheroids Enables Bone Formation around Transplanted Tooth. Tissue Eng Regen Med 2022; 19:377-387. [PMID: 35119647 PMCID: PMC8971212 DOI: 10.1007/s13770-021-00423-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Although tooth transplantation is a desirable treatment option for congenital defects of permanent teeth in children, transplantation to a narrow alveolar ridge is not feasible. In this study, we investigated the possibility of bone tissue engineering simultaneously with tooth transplantation to enhance the width of the alveolar bone. METHODS Bone marrow mononuclear cells or cortical bone-derived mesenchymal stromal cell spheroids were seeded onto atelocollagen sponge and transplanted with freshly extracted molars from mice of the same strain. New bone formation around the tooth root was evaluated using micro-computed tomography and histological analysis. Tooth alone, or tooth with scaffold but without cells, was also transplanted and served as controls. RESULTS Micro-computed tomography showed new bone formation in the furcation area in all four groups. Remarkable bone formation outside the root was also observed in the cortical bone-derived mesenchymal stromal cell group, but was scarce in the other three groups. Histological analysis revealed that the space between the new bone and the root was filled with collagen fibers in all four groups, indicating that the periodontal ligament was maintained. CONCLUSION This study demonstrates the potential of simultaneous alveolar bone expansion employing bone tissue engineering approach using cortical bone-derived mesenchymal stromal cell spheroids for tooth transplantation. The use of an orthotopic transplantation model may further clarify the feasibility and functional recovery of the transplanted tooth over a longer period.
Collapse
Affiliation(s)
- Nahomi Matsumura
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, 399-0781, Japan
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, 399-0781, Japan
| | - Xianqi Li
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, 399-0781, Japan
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, 399-0781, Japan
- Division of Hard Tissue Research, Institute of Oral Science, Matsumoto Dental University, 1780 Hirooka Gobara, Shiojiri, 399-0781, Japan
| | - Eri Uchikawa-Kitaya
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, 399-0781, Japan
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, 399-0781, Japan
| | - Ni Li
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, 399-0781, Japan
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, 200031, China
| | - Hongwei Dong
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, 399-0781, Japan
| | - Kai Chen
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, 399-0781, Japan
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Michiko Yoshizawa
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, 399-0781, Japan
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, 399-0781, Japan
| | - Hideaki Kagami
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, 399-0781, Japan.
- Division of Hard Tissue Research, Institute of Oral Science, Matsumoto Dental University, 1780 Hirooka Gobara, Shiojiri, 399-0781, Japan.
- Department of General Medicine, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-9639, Japan.
| |
Collapse
|
11
|
Gong Y, Li Z, Zou S, Deng D, Lai P, Hu H, Yao Y, Hu L, Zhang S, Li K, Wei T, Zhao X, Xiao G, Chen Z, Jiang Y, Bai X, Zou Z. Vangl2 limits chaperone-mediated autophagy to balance osteogenic differentiation in mesenchymal stem cells. Dev Cell 2021; 56:2103-2120.e9. [PMID: 34214490 DOI: 10.1016/j.devcel.2021.06.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 04/04/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022]
Abstract
Lysosomes are the recycling center and nutrient signaling hub of the cell. Here, we show that lysosomes also control mesenchymal stem cell (MSC) differentiation by proteomic reprogramming. The chaperone-mediated autophagy (CMA) lysosome subgroup promotes osteogenesis, while suppressing adipogenesis, by selectively removing osteogenesis-deterring factors, especially master transcriptional factors, such as adipogenic TLE3, ZNF423, and chondrogenic SOX9. The activity of the CMA-committed lysosomes in MSCs are controlled by Van-Gogh-like 2 (Vangl2) at lysosomes. Vangl2 directly binds to lysosome-associated membrane protein 2A (LAMP-2A) and targets it for degradation. MSC-specific Vangl2 ablation in mice increases LAMP-2A expression and CMA-lysosome numbers, promoting bone formation while reducing marrow fat. The Vangl2:LAMP-2A ratio in MSCs correlates inversely with the capacity of the cells for osteoblastic differentiation in humans and mice. These findings demonstrate a critical role for lysosomes in MSC lineage acquisition and establish Vangl2-LAMP-2A signaling as a critical control mechanism.
Collapse
Affiliation(s)
- Yan Gong
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ziqi Li
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shitian Zou
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Daizhao Deng
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Pinglin Lai
- State Key Laboratory of Organ Failure Research, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, China
| | - Hongling Hu
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yongzhou Yao
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Le Hu
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Sheng Zhang
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Kai Li
- State Key Laboratory of Organ Failure Research, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, China
| | - Tiantian Wei
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaoyang Zhao
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| | - Guozhi Xiao
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zifeng Chen
- Department of Orthopedic Trauma, Panyu District Central Hospital of Guangzhou, Guangzhou 511400, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Xiaochun Bai
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; State Key Laboratory of Organ Failure Research, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China.
| | - Zhipeng Zou
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
12
|
Combination of optimized tissue engineering bone implantation with heel-strike like mechanical loading to repair segmental bone defect in New Zealand rabbits. Cell Tissue Res 2021; 385:639-658. [PMID: 33966092 DOI: 10.1007/s00441-021-03458-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
In this study, effects of combining optimized tissue engineering bone (TEB) implantation with heel-strike like mechanical loading to repair segmental bone defect in New Zealand rabbits were investigated. Physiological characteristics of bone marrow mesenchymal stem cells (BMMSCs), compact bone cells (CBCs), and bone marrow and compact bone coculture cells (BMMSC-CBCs) were compared to select the optimal seed cells for optimized TEB construction. Rabbits with segmental bone defects were treated in different ways (cancellous bone scaffold for group A, cancellous bone scaffold and mechanical loading for group B, optimized TEB for group C, optimized TEB and mechanical loading for group D, n = 4), and the bone repair were compared. BMMSC-CBCs showed better proliferation capacity than CBCs (p < 0.01) and stronger osteogenic differentiation ability than BMMSCs (p < 0.05). Heel-strike like mechanical loading improved proliferation and osteogenic differentiation ability and expression levels of TGFβ1 as well as BMP2 of seed cells in vitro (p < 0.05). At week 12 post-operation, group D showed the best bone repair, followed by groups B and C, while group A finished last (p < 0.05). During week 4 to 12 post-operation, group D peaked in terms of expression levels of TGFβ1, BMP2, and OCN, followed by groups B and C, while group A finished last (p < 0.05). Thus, BMMSC-CBCs showed good proliferation and osteogenic differentiation ability, and they were thought to be better as seed cells than BMMSCs and CBCs. The optimized TEB implantation combined with heel-strike like mechanical loading had a synergistic effect on bone defect healing, and enhanced expression of TGFβ1 and BMP2 played an important role in this process.
Collapse
|
13
|
Comparative analysis of human bone marrow mesenchymal stem cells, articular cartilage derived chondroprogenitors and chondrocytes to determine cell superiority for cartilage regeneration. Acta Histochem 2021; 123:151713. [PMID: 33894479 DOI: 10.1016/j.acthis.2021.151713] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Chondroprogenitors, a promising therapeutic modality in cell-based therapy, are routinely isolated from articular cartilage by fibronectin differential adhesion assay. However, there is paucity of information regarding their biological profile and the lack of a marker that can reliably distinguish them from cultured chondrocytes due to possible dedifferentiation. Since chondroprogenitors have been classified as mesenchymal stem cells(MSCs), the aim of our study was to compare bone marrow-MSCs, chondroprogenitors and chondrocytes, and assess superiority for cartilage repair. An additional objective was to also compare CD49b as a differentiating marker for isolating chondroprogenitors as a recent report demonstrated significantly high expression in the surfaceome of migratory articular chondroprogenitors. METHODS Bone marrow aspirate and articular cartilage was obtained from three osteoarthritic knee joints. Study arms included a) bone marrow-MSCs, b) chondroprogenitors, c) cultured chondrocytes, d) chondrocytes cultured with additional growth factors and e) CD49b + sorted chondroprogenitors. Assessment parameters included population doubling, surface expression for positive, negative MSC markers and potential markers of chondrogenesis (CD29, CD49e, CD49b, CD166 and CD146), RT-PCR for markers of chondrogenesis and hypertrophy and trilineage differentiation. RESULTS AND CONCLUSION Chondroprogenitors exhibited efficient chondrogenesis (SOX-9 and COL2A1) and significantly lower tendency for hypertrophy (RUNX2), which was also reflected in trilineage differentiation where progenitors displayed minimal calcified matrix, efficient glycosaminoglycan deposition and high collagen type II uptake. CD49b did not serve as a marker for isolation as sorted chondroprogenitors performed significantly poorer when compared to fibronectin assay derived cells. Emphasis on preclinical studies utilizing progenitors of higher purity is the future direction.
Collapse
|
14
|
Vinod E, Padmaja K, Kachroo U. Effect of human articular chondroprogenitor derived conditioned media on chondrogenic potential of bone marrow derived mesenchymal stromal cells. JOURNAL OF ORTHOPAEDICS, TRAUMA AND REHABILITATION 2021. [DOI: 10.1177/22104917211006885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Current research in cartilage repair is focusing on the use of soluble factors released by cells during expansion, either as stand-alone therapy or as conditioned media (CM) supplements to optimize cellular phenotype for in-vivo transplantation. The present study aimed at utilizing spent media from cultured human articular cartilage derived chondroprogenitors and assessing their influence on bone marrow mesenchymal stem cell (BM-MSC) growth and phenotype. Methodology: CM was collected from passage 2 chondroprogenitors and evaluated for latent TGFβ1 levels. Passage 3 BM-MSCs were divided into two groups and cultured with either a) standard expansion medium (EM-group) or b) EM supplemented with 50% CM (CCM-group). At sub-confluence both groups were assessed for population doubling, migration assay, cell surface markers, gene expression for chondrogenic and hypertrophy markers. Additionally, pellet cultures were subjected to chondrogenic differentiation and analyzed by Alcian blue stain. Results: On analysis of proliferation and migration, CCM-group showed comparable results to EM in terms of population doubling and cell movement toward scratched area. Similarly, use of spent medium did not affect the surface protein or gene expression profile of BM-MSCs with similar flow cytometric and mRNA results seen in both groups. Glycosaminoglycan deposition (Alcian blue) was seen in the CCM-group, comparable to the EM-group. Conclusion: This preliminary report provided valuable information on the influence of unfractionated CCM on BM-MSC characteristics which may be further optimized for cartilage regeneration by the use of purified components such as exosomes, micro-vesicles, and concentrated trophic factors in future.
Collapse
Affiliation(s)
- Elizabeth Vinod
- Department of Physiology, Christian Medical College, Vellore, India
- Centre for Stem Cell Research, Christian Medical College, Vellore, India
| | - Kawin Padmaja
- Department of Physiology, Christian Medical College, Vellore, India
| | - Upasana Kachroo
- Department of Physiology, Christian Medical College, Vellore, India
| |
Collapse
|
15
|
Zhang Y, Li X, Chihara T, Dong H, Kagami H. Effect of TNF-α and IL-6 on Compact Bone-Derived Cells. Tissue Eng Regen Med 2021; 18:441-451. [PMID: 33847914 DOI: 10.1007/s13770-021-00336-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Although bone tissue engineering has already been applied clinically, its regeneration efficacy is not always sufficient. Local inflammatory cytokines are considered as the major factors that induce apoptosis of transplanted cells, thus leading to insufficient new bone formation. In this study, we focused on the effects of interleukin (IL)-6 and tumor necrosis factor-alpha (TNF-α) on differentiation and apoptosis of compact bone-derived cells (CBDCs). METHODS CBDCs were obtained from mouse legs and cultured. The effects of TNF-α and/or IL-6 on the osteogenic differentiation and apoptosis of CBDCs were analyzed in vitro. To confirm the expression of local inflammatory cytokines in vivo, CBDCs were transplanted to the back of immunocompetent mice. RESULTS IL-6 exerted inconsistent effects on the expression of the different osteogenic markers tested, while significantly upregulating Fas. By contrast, the addition of TNF-α dramatically reduced the expression of all tested osteogenic markers and increased Fas expression. The highest dose of IL-6 could partially reverse the repressive effect of TNF-α, while the addition of IL-6 further increased Fas expression in CBDCs compared to TNF-α alone. The results from in vivo experiments showed the presence of transplants with and without new bone formation. The transplants without bone formation were characterized by higher IL-6 and lower IL-10 expression than those with bone formation, while the expression of TNF-α did not show notable difference. CONCLUSION The results of this study suggest an important role for IL-6 in modulating the efficacy of bone tissue engineering, which can affect osteogenic cells both positively and negatively.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China. .,Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan.
| | - Xianqi Li
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan.,Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan.,Institute for Oral Science, Matsumoto Dental University, 1780 Hirooka Gobara, Shiojiri, Nagano, 399-0781, Japan
| | - Takahiro Chihara
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan
| | - Hongwei Dong
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan
| | - Hideaki Kagami
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan. .,Institute for Oral Science, Matsumoto Dental University, 1780 Hirooka Gobara, Shiojiri, Nagano, 399-0781, Japan. .,Department of General Medicine, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
16
|
Dong H, Li X, Chen K, Li N, Kagami H. Cryopreserved Spontaneous Spheroids from Compact Bone-Derived Mesenchymal Stromal Cells for Bone Tissue Engineering. Tissue Eng Part C Methods 2021; 27:253-263. [PMID: 33798009 PMCID: PMC8064946 DOI: 10.1089/ten.tec.2021.0001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spontaneously formed spheroids from mouse compact bone-derived mesenchymal stromal cells (CB-MSCs) possess enhanced stemness and superior plasticity. In this study, the effect of cryopreservation on viability, stemness, and osteogenic differentiation capability of spontaneous CB-MSC spheroids were investigated. CB-MSCs were isolated from mouse femur and tibia. Spheroids were cryopreserved with various concentrations of dimethyl sulfoxide (DMSO). After thawing, the number of living and dead cells was measured. The expression levels of stem cell markers and osteogenic marker genes were analyzed. The cryopreserved and noncryopreserved spheroids were transplanted in mice with a beta-tricalcium phosphate as a scaffold to evaluate the in vivo bone-forming capability. The percentage of living cells was highest when 5% DMSO was used as a cryoprotectant, confirmed by the number of dead cells. The expression of stem cell marker genes and osteogenic differentiation capability were maintained after cryopreservation with 5% DMSO. The cryopreserved spontaneous CB-MSC spheroids showed remarkable new bone formation in vivo, identical to that of the noncryopreserved spheroids even without osteogenic induction. The cryopreserved spontaneous CB-MSC spheroids retained stemness and osteogenic differentiation capability and highlight the utility of spontaneous CB-MSC spheroids as ready-to-use tissue-engineered products for bone tissue engineering.
Collapse
Affiliation(s)
- Hongwei Dong
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan
| | - Xianqi Li
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan.,Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan.,Institute for Oral Science, Matsumoto Dental University, Shiojiri, Japan
| | - Kai Chen
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan.,Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ni Li
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan
| | - Hideaki Kagami
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan.,Institute for Oral Science, Matsumoto Dental University, Shiojiri, Japan.,Department of General Medicine, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Anastasio A, Gergues M, Lebhar MS, Rameshwar P, Fernandez-Moure J. Isolation and characterization of mesenchymal stem cells in orthopaedics and the emergence of compact bone mesenchymal stem cells as a promising surgical adjunct. World J Stem Cells 2020; 12:1341-1353. [PMID: 33312402 PMCID: PMC7705465 DOI: 10.4252/wjsc.v12.i11.1341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/26/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
The potential clinical and economic impact of mesenchymal stem cell (MSC) therapy is immense. MSCs act through multiple pathways: (1) as “trophic” cells, secreting various factors that are immunomodulatory, anti-inflammatory, anti-apoptotic, proangiogenic, proliferative, and chemoattractive; (2) in conjunction with cells native to the tissue they reside in to enhance differentiation of surrounding cells to facilitate tissue regrowth. Researchers have developed methods for the extraction and expansion of MSCs from animal and human tissues. While many sources of MSCs exist, including adipose tissue and iliac crest bone graft, compact bone (CB) MSCs have shown great potential for use in orthopaedic surgery. CB MSCs exert powerful immunomodulatory effects in addition to demonstrating excellent regenerative capacity for use in filling boney defects. CB MSCs have been shown to have enhanced response to hypoxic conditions when compared with other forms of MSCs. More work is needed to continue to characterize the potential applications for CB MSCs in orthopaedic trauma.
Collapse
Affiliation(s)
- Albert Anastasio
- Department of Orthopedic Surgery, Duke University Health System, Durham, NC 27710, United States
| | - Marina Gergues
- Department of Medicine, Hematology/Oncology, Rutgers University, New Jersey Medical School, Newark, NJ 07103, United States
| | - Michael S Lebhar
- School of Medicine, Duke University School of Medicine, Durham, NC 27710, United States
| | - Pranela Rameshwar
- Department of Medicine-Hematology/Oncology, Rutgers School of Biomedical Health Science, Newark, NJ 07103, United States
| | - Joseph Fernandez-Moure
- Department of Surgery, Division of Trauma, Acute, and Critical Care Surgery, Duke University School of Medicine, Durham, NC 27710, United States
| |
Collapse
|
18
|
Vinod E, Kachroo U, Rebekah G, Yadav BK, Ramasamy B. Characterization of human articular chondrocytes and chondroprogenitors derived from non-diseased and osteoarthritic knee joints to assess superiority for cell-based therapy. Acta Histochem 2020; 122:151588. [PMID: 32778244 DOI: 10.1016/j.acthis.2020.151588] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/27/2020] [Accepted: 06/27/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE Cell based therapy is constantly underway since regeneration of genuine hyaline cartilage is under par. Much attention has been afforded to chondroprogenitors recently, as an alternative cell substitute for cartilage repair. Although single source derivation of chondrocytes and chondroprogenitors is advantageous, lack of a characteristic differentiating marker obscures clear identification, which is essential to create a biological profile and is also required to assess cell type superiority for cartilage repair. METHODS Cells obtained from three non-diseased/osteoarthritic human knee joints each, were expanded in culture up to passage 10. Characterization studies were performed using flow cytometry; gene expression was studied using RT-PCR; growth kinetics and tri-lineage differentiation was also studied to construct a better profile of chondroprogenitors as well as chondrocytes. RESULTS AND CONCLUSION Our results showed that both cell populations exhibited similar cell surface characteristics except for non-diseased chondroprogenitors, which showed markedly low expression of CD34 and high expression of CD166. Trilineage data was suggestive of multilineage potential for both cell types with chondroprogenitors showing notably higher glycosaminoglycan and lower calcified matrix deposition. Data acquired from this study aided in describing cellular behavior of human articular cartilage derived chondroprogenitors in conditions not reported earlier. Our comparative analysis suggests that sorting based on a combination of markers (CD34- and CD166+) would yield a population of cells with minimal contamination by chondrocytes, which may provide translatable results in terms of enhanced chondrogenesis and reduced hypertrophy; both indispensable for the field of cartilage regeneration.
Collapse
Affiliation(s)
- Elizabeth Vinod
- Department of Physiology, Christian Medical College, Vellore, 632002, India; Centre for Stem Cell Research, Christian Medical College, Vellore, 632002, India.
| | - Upasana Kachroo
- Department of Physiology, Christian Medical College, Vellore, 632002, India.
| | - Grace Rebekah
- Department of Biostatistics, Christian Medical College, Vellore, 632002, India.
| | - Bijesh Kumar Yadav
- Department of Biostatistics, Christian Medical College, Vellore, 632002, India.
| | - Boopalan Ramasamy
- Centre for Stem Cell Research, Christian Medical College, Vellore, 632002, India; Department of Orthopaedics, Christian Medical College, Vellore, 632004, India.
| |
Collapse
|
19
|
Lee H, Min SK, Park YH, Park JB. The Role of Insulin-Like Growth Factor-2 on the Cellular Viability and Differentiation to the Osteogenic Lineage and Mineralization of Stem Cells Cultured on Deproteinized Bovine Bone Mineral. APPLIED SCIENCES 2020; 10:5471. [DOI: 10.3390/app10165471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
Insulin-like growth factors (IGFs) plays various roles, including differentiation and mitogenesis, and IGFs are reported to regulate the bone growth and maintenance. This study was performed to analyze the enhancing effects of IGF-2 on osteogenic differentiation and the mineralization of stem cells cultured on deproteinized bovine bone mineral. Stem cell loaded bone graft material was cultured in the presence of the IGF-2 at final concentrations of 10 and 100 ng/mL and the morphology of the cells was observed on Days 1, 3, and 7. The commercially available, two-color assay based on plasma membrane integrity and esterase activity was also used for qualitative analyses on Days 1, 3, and 7. The level of alkaline phosphatase activity and anthraquinone dye assay were used to evaluate osteogenic differentiation on Days 7 and 14. Real-time polymerase chain reaction was applied in order to identify the mRNA expression of BGLAP, Runx2, and β-catenin. The stem cells were well-attached with fibroblast morphology and most of the stem cells produced a high intensity of green fluorescence, indicating that there were live cells on Day 1. The relative cellular viability assay values for IGF-2 groups at 0, 10, and 100 ng/mL on Day 1 were 0.419 ± 0.015, 0.427 ± 0.013, and 0.500 ± 0.030, respectively (p < 0.05). The absorbance values at 405 nm for alkaline phosphatase activity on Day 7 for IGF-2 at 0, 10, and 100 ng/mL were 2.112 ± 0.152, 1.897 ± 0.144, and 2.067 ± 0.128, respectively (p > 0.05). The mineralization assay results at Day 7 showed significantly higher values for IGF-2 groups at 10 and 100 ng/mL concentration when compared to the control (p < 0.05). The application of IGF-2 groups of 10 and 100 ng/mL produced a significant increase of BGLAP. Conclusively, this study indicates that the use of IGF-2 on stem cell loaded bone graft increased cellular viability, Alizarin red staining, and BGLAP expression of stem cells. This report suggests the combined approach of stem cells and IGF-2 with scaffold may have synergistic effects on osteogenesis.
Collapse
Affiliation(s)
- Hyunjin Lee
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Sae Kyung Min
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | | | - Jun-Beom Park
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
20
|
Chihara T, Zhang Y, Li X, Shinohara A, Kagami H. Effect of short-term betamethasone administration on the regeneration process of tissue-engineered bone. Histol Histopathol 2019; 35:709-717. [PMID: 31854454 DOI: 10.14670/hh-18-193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Local inflammation at the transplanted site of tissue-engineered bone may cause apoptosis of the transplanted cells, thus negatively affecting bone regeneration. To maximize the efficacy of bone tissue engineering, the local effect of short-term corticosteroid administration at the transplanted site of tissue-engineered bone was studied with respect to the expression of inflammatory cytokines. Compact bone-derived cells from mouse leg bones were isolated, cultured and seeded onto β-tricalcium phosphate granules. The constructs were transplanted to the back of syngeneic mice. Betamethasone sodium phosphate was administered intraperitoneally to an experimental (betamethasone) group, whereas the same amount of saline was administered to a control group. When betamethasone was administered three times (immediately after operation and 12 hours and 24 hours after transplantation), the number of SP7/osterix-positive osteoblasts was larger in the betamethasone group. Three times of betamethasone administration (immediately after operation and 12 hours and 24 hours after transplantation) did not change the number of apoptotic cells and osteoclasts, but showed a slight upregulation of IL-4 and a downregulation of IL-6. However, 7 doses of betamethasone administration (over 7 consecutive days) increased the number of apoptotic cells and osteoclasts, which was correlated with a downregulation of IL-4 and an upregulation of IL-6. TNF-α expression levels showed no significant differences between the two groups. The results showed beneficial effects of 3 betamethasone administrations for bone regeneration therapy but contrary effects when betamethasone was administered 7 times due to the downregulation of anti-inflammatory cytokines (IL-4) and the upregulation of inflammatory cytokines (IL-6). As a conclusion, our results suggested the importance of the cautious usage of corticosteroids to control local inflammation at transplanted sites in bone tissue engineering.
Collapse
Affiliation(s)
- Takahiro Chihara
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan.,Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan
| | - Yiming Zhang
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan.,Tenth People's Hospital, Tongji University, Shanghai, China
| | - Xianqi Li
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan.,Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan.,Institute for Oral Science, Matsumoto Dental University, Shiojiri, Japan
| | - Atsushi Shinohara
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan.,Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan.,Midorigaoka Dental Clinic, Toyota, Japan
| | - Hideaki Kagami
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan.,Institute for Oral Science, Matsumoto Dental University, Shiojiri, Japan.,Department of General Medicine, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
21
|
Zhu C, Sha M, Jiang H, Lin J, Lin W, Li W, Chen X, Huang G, Ding Z. Co-culture of the bone and bone marrow: a novel way to obtain mesenchymal stem cells with enhanced osteogenic ability for fracture healing in SD rats. J Orthop Surg Res 2019; 14:293. [PMID: 31481070 PMCID: PMC6724266 DOI: 10.1186/s13018-019-1346-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 08/23/2019] [Indexed: 01/07/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) have great potential for the repair and regeneration of bone fracture, but their optimal origins remain controversial. Methods Bone marrow-MSCs (BM-MSCs) and bone-bone marrow-MSCs (B-BM-MSCs) were isolated from 12 SD rats, and the morphology, MSC-associated markers, and proliferative capacity of these cells were compared using an inverted microscope, flow cytometry, and CCK-8 assays, respectively. After 14 days of osteoblastic induction, osteoblast phenotypes were detected by ALP and calcium nodule staining, and the expression of BMP-2 and TGF-β1 was observed by western blotting. Then, the rat tibia fracture model was established with 3 groups (n = 6 per group), the control, BM-MSC, and B-BM-MSC groups. Computed tomography (CT) imaging was performed to evaluate fracture healing at weeks 2, 4, and 6. Finally, the fractured bones were removed at weeks 4 and 6, and HE staining was performed to evaluate fracture healing. Results Although the 2 types of MSCs shared the same cellular morphology and MSC-associated markers, B-BM-MSCs had a higher proliferative rate than BM-MSCs from day 9 to day 12 (p < 0.05), and the expression levels of ALP and calcium were obviously higher in B-BM-MSCs than in BM-MSCs after osteogenic induction (p < 0.01 and p < 0.001, respectively). Western blot results showed that the expression levels of BMP-2 and TGF-β1 in B-BM-MSCs were higher than in BM-MSCs before and after osteogenic induction (p < 0.01). In the animal experiments, CT imaging and gross observation showed that B-BM-MSCs had a greater capacity than BM-MSCs to promote fracture healing, as the Lane-Sandhu scores of B-BM-MSCs at weeks 4 and 6 after operation (3.00 ± 0.81 and 9.67 ± 0.94, respectively) were higher than those of BM-MSCs (1.33 ± 0.47 and 6.67 ± 1.25, respectively; both p < 0.05). The HE staining results further supported this conclusion. Conclusions Taken together, our study results proved that MSCs obtained by co-culturing the bone and bone marrow from SD rats had better proliferative, osteogenic differentiation, and fracture healing capacities than BM-MSCs, perhaps suggesting a novel way to obtain MSCs for bone tissue repair.
Collapse
Affiliation(s)
- Cong Zhu
- Center for Orthopedics, Affiliated Southeast Hospital of Xiamen University/909th Hospital of People's Liberation Army, 269 Zhanghua Middle Road, Zhangzhou, 363000, Fujian Province, China
| | - Mo Sha
- Center for Orthopedics, Affiliated Southeast Hospital of Xiamen University/909th Hospital of People's Liberation Army, 269 Zhanghua Middle Road, Zhangzhou, 363000, Fujian Province, China
| | - Huixiang Jiang
- Xiamen University Medical College, Xiang'an South Road, Xiang'an District, Xiamen, 361102, Fujian Province, China
| | - Jianbiao Lin
- Center for Orthopedics, Affiliated Southeast Hospital of Xiamen University/909th Hospital of People's Liberation Army, 269 Zhanghua Middle Road, Zhangzhou, 363000, Fujian Province, China
| | - Weibin Lin
- Center for Orthopedics, Affiliated Southeast Hospital of Xiamen University/909th Hospital of People's Liberation Army, 269 Zhanghua Middle Road, Zhangzhou, 363000, Fujian Province, China
| | - Wenchang Li
- Xiamen University Medical College, Xiang'an South Road, Xiang'an District, Xiamen, 361102, Fujian Province, China
| | - Xiaoshan Chen
- Center for Orthopedics, Affiliated Southeast Hospital of Xiamen University/909th Hospital of People's Liberation Army, 269 Zhanghua Middle Road, Zhangzhou, 363000, Fujian Province, China
| | - Guofeng Huang
- Center for Orthopedics, Affiliated Southeast Hospital of Xiamen University/909th Hospital of People's Liberation Army, 269 Zhanghua Middle Road, Zhangzhou, 363000, Fujian Province, China.
| | - Zhenqi Ding
- Center for Orthopedics, Affiliated Southeast Hospital of Xiamen University/909th Hospital of People's Liberation Army, 269 Zhanghua Middle Road, Zhangzhou, 363000, Fujian Province, China.
| |
Collapse
|
22
|
Aslankoohi N, Mondal D, Rizkalla AS, Mequanint K. Bone Repair and Regenerative Biomaterials: Towards Recapitulating the Microenvironment. Polymers (Basel) 2019; 11:E1437. [PMID: 31480693 PMCID: PMC6780693 DOI: 10.3390/polym11091437] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/24/2019] [Accepted: 08/25/2019] [Indexed: 02/07/2023] Open
Abstract
Biomaterials and tissue engineering scaffolds play a central role to repair bone defects. Although ceramic derivatives have been historically used to repair bone, hybrid materials have emerged as viable alternatives. The rationale for hybrid bone biomaterials is to recapitulate the native bone composition to which these materials are intended to replace. In addition to the mechanical and dimensional stability, bone repair scaffolds are needed to provide suitable microenvironments for cells. Therefore, scaffolds serve more than a mere structural template suggesting a need for better and interactive biomaterials. In this review article, we aim to provide a summary of the current materials used in bone tissue engineering. Due to the ever-increasing scientific publications on this topic, this review cannot be exhaustive; however, we attempted to provide readers with the latest advance without being redundant. Furthermore, every attempt is made to ensure that seminal works and significant research findings are included, with minimal bias. After a concise review of crystalline calcium phosphates and non-crystalline bioactive glasses, the remaining sections of the manuscript are focused on organic-inorganic hybrid materials.
Collapse
Affiliation(s)
- Neda Aslankoohi
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada.
| | - Dibakar Mondal
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada.
| | - Amin S Rizkalla
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada.
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada.
- Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5B9, Canada.
| | - Kibret Mequanint
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada.
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada.
| |
Collapse
|
23
|
Zhang M, Shi X, Wu J, Wang Y, Lin J, Zhao Y, Li H, Ren M, Hu R, Liu F, Deng H. CoCl 2 induced hypoxia enhances osteogenesis of rat bone marrow mesenchymal stem cells through cannabinoid receptor 2. Arch Oral Biol 2019; 108:104525. [PMID: 31472278 DOI: 10.1016/j.archoralbio.2019.104525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/02/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVES This study aims to investigate the role of Cannabinoid receptor 2 (CB2) on osteogenesis of bone marrow-derived mesenchymal stem cells (BMSCs) under hypoxia. MATERIALS AND METHODS BMSCs were isolated from Sprague-Dawley rats and cultured in the presence of cobalt chloride (CoCl2) to induce intracellular hypoxia. Cell proliferation was measured with MTT assay. Quantitative real-time PCR and western blot were applied to evaluate the mRNA and protein expressions of CB2 and osteogenic indicators including osteocalcin, RUNX2, collagen-1 and osterix (SP7). The osteogenic differentiation of BMSCs was further examined by ALP assay and alizarin red S (ARS) staining. Moreover, the activation of MAPKs signaling pathways was analyzed by western blot. RESULTS CoCl2 dose-dependently increased hypoxia inducible factor while higher concentrations (200 and 400 μM) of CoCl2 markedly inhibited cell proliferation. CoCl2 induced hypoxia significantly increased the protein and mRNA expressions of osteocalcin, RUNX2, collagen-1 and osterix, along with enhanced ALP and ARS staining. Interestingly, such effects can be inhibited by the addition of CB2 inhibitor AM630. Moreover, AM630 partially inhibited hypoxia-induced p38 and ERK pathways, which may lead to a decrease in the osteogenic transcripts of RUNX2, collagen-1 and osterix. CONCLUSIONS CoCl2 induced hypoxia could promote osteogenesis of rat BMSCs possibly through CB2.
Collapse
Affiliation(s)
- Menghan Zhang
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinlian Shi
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingxiang Wu
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Wang
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian Lin
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ya Zhao
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huimin Li
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Manman Ren
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rongdang Hu
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Fen Liu
- Department of Histology and Embryology, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Hui Deng
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
24
|
Spontaneously Formed Spheroids from Mouse Compact Bone-Derived Cells Retain Highly Potent Stem Cells with Enhanced Differentiation Capability. Stem Cells Int 2019; 2019:8469012. [PMID: 31191686 PMCID: PMC6525826 DOI: 10.1155/2019/8469012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/26/2019] [Accepted: 03/10/2019] [Indexed: 02/07/2023] Open
Abstract
The results from our recent study showed the presence of two distinct spheroid-forming mechanisms, i.e., spontaneous and mechanical. In this study, we focused on the spontaneously formed spheroids, and the character of spontaneously formed spheroids from mouse compact bone-derived cells (CBDCs) was explored. Cells from (C57BL/6J) mouse leg bones were isolated, and compact bone-derived cells were cultured after enzymatic digestion. Spontaneous spheroid formation was achieved on a culture plate with specific water contact angle as reported. The expression levels of embryonic stem cell markers were analyzed using immunofluorescence and quantitative reverse transcription polymerase chain reaction. Then, the cells from spheroids were induced into osteogenic and neurogenic lineages. The spontaneously formed spheroids from CBDCs were positive for ES cell markers such as SSEA1, Sox2, Oct4, and Nanog. Additionally, the expressions of fucosyltransferase 4/FUT4 (SSEA1), Sox2, and Nanog were significantly higher than those in monolayer cultured cells. The gene expression of mesenchymal stem cell markers was almost identical in both spheroids and monolayer-cultured cells, but the expression of Sca-1 was higher in spheroids. Spheroid-derived cells showed significantly higher osteogenic and neurogenic marker expression than monolayer-cultured cells after induction. Spontaneously formed spheroids expressed stem cell markers and showed enhanced osteogenic and neurogenic differentiation capabilities than cells from the conventional monolayer culture, which supports the superior stemness.
Collapse
|
25
|
Čamernik K, Barlič A, Drobnič M, Marc J, Jeras M, Zupan J. Mesenchymal Stem Cells in the Musculoskeletal System: From Animal Models to Human Tissue Regeneration? Stem Cell Rev Rep 2018; 14:346-369. [DOI: 10.1007/s12015-018-9800-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Fernandez-Moure J, Moore CA, Kim K, Karim A, Smith K, Barbosa Z, Van Eps J, Rameshwar P, Weiner B. Novel therapeutic strategies for degenerative disc disease: Review of cell biology and intervertebral disc cell therapy. SAGE Open Med 2018; 6:2050312118761674. [PMID: 29568524 PMCID: PMC5858682 DOI: 10.1177/2050312118761674] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 02/05/2018] [Indexed: 12/17/2022] Open
Abstract
Intervertebral disc degeneration is a disease of the discs connecting adjoining vertebrae in which structural damage leads to loss of disc integrity. Degeneration of the disc can be a normal process of ageing, but can also be precipitated by other factors. Literature has made substantial progress in understanding the biological basis of intervertebral disc, which is reviewed here. Current medical and surgical management strategies have shortcomings that do not lend promise to be effective solutions in the coming years. With advances in understanding the cell biology and characteristics of the intervertebral disc at the molecular and cellular level that have been made, alternative strategies for addressing disc pathology can be discovered. A brief overview of the anatomic, cellular, and molecular structure of the intervertebral disc is provided as well as cellular and molecular pathophysiology surrounding intervertebral disc degeneration. Potential therapeutic strategies involving stem cell, protein, and genetic therapy for intervertebral disc degeneration are further discussed.
Collapse
Affiliation(s)
- Joseph Fernandez-Moure
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA.,Department of Regenerative and Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Caitlyn A Moore
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | | | - Azim Karim
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Kevin Smith
- Department of Orthopedic Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Zonia Barbosa
- Department of Regenerative and Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Jeffrey Van Eps
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA.,Department of Regenerative and Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Pranela Rameshwar
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Bradley Weiner
- Department of Regenerative and Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, USA.,Department of Orthopedic Surgery, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
27
|
Rameshwar P, Moore CA, Shah NN, Smith CP. An Update on the Therapeutic Potential of Stem Cells. Methods Mol Biol 2018; 1842:3-27. [PMID: 30196398 DOI: 10.1007/978-1-4939-8697-2_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The seeming setbacks noted for stem cells underscore the need for experimental studies for safe and efficacious application to patients. Both clinical and experimental researchers have gained valuable knowledge on the characteristics of stem cells, and their behavior in different microenvironment. This introductory chapter focuses on adult mesenchymal stem cells (MSCs) based on the predominance in the clinic. MSCs can be influenced by inflammatory mediators to exert immune suppressive properties, commonly referred to as "licensing." Interestingly, while there are questions if other stem cells can be delivered across allogeneic barrier, there is no question on the ability of MSCs to provide this benefit. This property has been a great advantage since MSCs could be available for immediate application as "off-the-shelf" stem cells for several disorders, tissue repair and gene/drug delivery. Despite the benefit of MSCs, it is imperative that research continues with the various types of stem cells. The method needed to isolate these cells is outlined in this book. In parallel, safety studies are needed; particularly links to oncogenic event. In summary, this introductory chapter discusses several potential areas that need to be addressed for safe and efficient delivery of stem cells, and argue for the incorporation of microenvironmental factors in the studies. The method described in this chapter could be extrapolated to the field of chimeric antigen receptor T-cells (CAR-T). This will require application to stem cell hierarchy of memory T-cells.
Collapse
Affiliation(s)
- Pranela Rameshwar
- Department of Medicine-Hematology/Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA.
| | - Caitlyn A Moore
- Division of Hematology/Oncology, Department of Medicine, University of Medicine and Dentistry of New Jersey-Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Niloy N Shah
- Division of Hematology/Oncology, Department of Medicine, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ, USA
| | - Caroline P Smith
- Division of Hematology/Oncology, Department of Medicine, University of Medicine and Dentistry of New Jersey-Rutgers-New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
28
|
Bai M, Zhang L, Fu B, Bai J, Zhang Y, Cai G, Bai X, Feng Z, Sun S, Chen X. IL-17A improves the efficacy of mesenchymal stem cells in ischemic-reperfusion renal injury by increasing Treg percentages by the COX-2/PGE2 pathway. Kidney Int 2017; 93:814-825. [PMID: 29132705 DOI: 10.1016/j.kint.2017.08.030] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/11/2017] [Accepted: 08/17/2017] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) are effective for the management of experimental ischemia-reperfusion acute kidney injury (IRI-AKI). Immune modulation is one of the important mechanisms of MSCs treatment. Interleukin-17A (IL-17A) pretreated MSCs are more immunosuppressive with minimal changes in immunogenicity in vitro. Here, we demonstrated that administration of IL-17A-pretreated MSCs resulted in significantly lower acute tubular necrosis scores, serum creatinine, and BUN of mice with IRI-AKI, compared with the administration of MSCs. Of the co-cultured splenocytes, IL-17A-pretreated MSCs significantly increased the percentages of CD4+Foxp3+ Tregs and decreased concanavalin A-induced T cell proliferation. Furthermore, mice with IRI-AKI that underwent IL-17A-pretreated MSC therapy had significantly lower serum IL-6, TNF-α, and IFN-γ levels, a higher serum IL-10 level, and higher spleen and kidney Treg percentages than the mice that underwent MSCs treatment. Additionally, the depletion of Tregs by PC61 (anti-CD25 antibody) reversed the enhanced treatment efficacy of the IL-17A-pretreatedMSCs on mice with IRI-AKI. Additionally, IL-17A upregulated COX-2 expression and increased PGE2 production. The blockage of COX-2 by celecoxib reversed the benefit of IL-pretreated 17A-MSCs on the serum PGE2 concentration, spleen and kidney Tregs percentages, serum creatinine and BUN levels, renal acute tubular necrosis scores, and serum IL-6, TNF-α, IFN-γ, and IL-10 levels of IRI-pretreated mice with AKI, compared with MSCs. Thus, our results suggest that IL-17A pretreatment enhances the efficacy of MSCs on mice with IRI-AKI by increasing the Treg percentages through the COX-2/PGE2 pathway.
Collapse
Affiliation(s)
- Ming Bai
- State Key Laboratory of Kidney Disease, Department of Nephrology, Chinese PLA General Hospital and Military Medical Postgraduate College, Beijing, China; Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Li Zhang
- State Key Laboratory of Kidney Disease, Department of Nephrology, Chinese PLA General Hospital and Military Medical Postgraduate College, Beijing, China
| | - Bo Fu
- State Key Laboratory of Kidney Disease, Department of Nephrology, Chinese PLA General Hospital and Military Medical Postgraduate College, Beijing, China
| | - Jiuxu Bai
- State Key Laboratory of Kidney Disease, Department of Nephrology, Chinese PLA General Hospital and Military Medical Postgraduate College, Beijing, China
| | - Yingjie Zhang
- State Key Laboratory of Kidney Disease, Department of Nephrology, Chinese PLA General Hospital and Military Medical Postgraduate College, Beijing, China
| | - Guangyan Cai
- State Key Laboratory of Kidney Disease, Department of Nephrology, Chinese PLA General Hospital and Military Medical Postgraduate College, Beijing, China
| | - Xueyuan Bai
- State Key Laboratory of Kidney Disease, Department of Nephrology, Chinese PLA General Hospital and Military Medical Postgraduate College, Beijing, China
| | - Zhe Feng
- State Key Laboratory of Kidney Disease, Department of Nephrology, Chinese PLA General Hospital and Military Medical Postgraduate College, Beijing, China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China.
| | - Xiangmei Chen
- State Key Laboratory of Kidney Disease, Department of Nephrology, Chinese PLA General Hospital and Military Medical Postgraduate College, Beijing, China.
| |
Collapse
|
29
|
MGF E peptide pretreatment improves the proliferation and osteogenic differentiation of BMSCs via MEK-ERK1/2 and PI3K-Akt pathway under severe hypoxia. Life Sci 2017; 189:52-62. [DOI: 10.1016/j.lfs.2017.09.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/29/2017] [Accepted: 09/15/2017] [Indexed: 12/15/2022]
|
30
|
Taraballi F, Bauza G, McCulloch P, Harris J, Tasciotti E. Concise Review: Biomimetic Functionalization of Biomaterials to Stimulate the Endogenous Healing Process of Cartilage and Bone Tissue. Stem Cells Transl Med 2017; 6:2186-2196. [PMID: 29080279 PMCID: PMC5702525 DOI: 10.1002/sctm.17-0181] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/04/2017] [Indexed: 12/13/2022] Open
Abstract
Musculoskeletal reconstruction is an ongoing challenge for surgeons as it is required for one out of five patients undergoing surgery. In the past three decades, through the close collaboration between clinicians and basic scientists, several regenerative strategies have been proposed. These have emerged from interdisciplinary approaches that bridge tissue engineering with material science, physiology, and cell biology. The paradigm behind tissue engineering is to achieve regeneration and functional recovery using stem cells, bioactive molecules, or supporting materials. Although plenty of preclinical solutions for bone and cartilage have been presented, only a few platforms have been able to move from the bench to the bedside. In this review, we highlight the limitations of musculoskeletal regeneration and summarize the most relevant acellular tissue engineering approaches. We focus on the strategies that could be most effectively translate in clinical practice and reflect on contemporary and cutting‐edge regenerative strategies in surgery. Stem Cells Translational Medicine2017;6:2186–2196
Collapse
Affiliation(s)
- Francesca Taraballi
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, Texas, USA.,Department of Orthopedic & Sports Medicine, The Houston Methodist Hospital, Houston, Texas, USA
| | - Guillermo Bauza
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, Texas, USA.,Center for NanoHealth, Swansea University Medical School, Swansea University Bay, Singleton Park, Wales, United Kingdom
| | - Patrick McCulloch
- Department of Orthopedic & Sports Medicine, The Houston Methodist Hospital, Houston, Texas, USA
| | - Josh Harris
- Department of Orthopedic & Sports Medicine, The Houston Methodist Hospital, Houston, Texas, USA
| | - Ennio Tasciotti
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, Texas, USA.,Department of Orthopedic & Sports Medicine, The Houston Methodist Hospital, Houston, Texas, USA.,Center for NanoHealth, Swansea University Medical School, Swansea University Bay, Singleton Park, Wales, United Kingdom
| |
Collapse
|
31
|
Corradetti B, Taraballi F, Giretti I, Bauza G, Pistillo RS, Banche Niclot F, Pandolfi L, Demarchi D, Tasciotti E. Heparan Sulfate: A Potential Candidate for the Development of Biomimetic Immunomodulatory Membranes. Front Bioeng Biotechnol 2017; 5:54. [PMID: 28983481 PMCID: PMC5613095 DOI: 10.3389/fbioe.2017.00054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/30/2017] [Indexed: 12/16/2022] Open
Abstract
Clinical trials have demonstrated that heparan sulfate (HS) could be used as a therapeutic agent for the treatment of inflammatory diseases. Its anti-inflammatory effect makes it suitable for the development of biomimetic innovative strategies aiming at modulating stem cells behavior toward a pro-regenerative phenotype in case of injury or inflammation. Here, we propose collagen type I meshes fabricated by solvent casting and further crosslinked with HS (HS-Col) to create a biomimetic environment resembling the extracellular matrix of soft tissue. HS-Col meshes were tested for their capability to provide physical support to stem cells’ growth, maintain their phenotypes and immunosuppressive potential following inflammation. HS-Col effect on stem cells was investigated in standard conditions as well as in an inflammatory environment recapitulated in vitro through a mix of pro-inflammatory cytokines (tumor necrosis factor-α and interferon-gamma; 20 ng/ml). A significant increase in the production of molecules associated with immunosuppression was demonstrated in response to the material and when cells were grown in presence of pro-inflammatory stimuli, compared to bare collagen membranes (Col), leading to a greater inhibitory potential when mesenchymal stem cells were exposed to stimulated peripheral blood mononuclear cells. Our data suggest that the presence of HS is able to activate the molecular machinery responsible for the release of anti-inflammatory cytokines, potentially leading to a faster resolution of inflammation.
Collapse
Affiliation(s)
- Bruna Corradetti
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States.,Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Francesca Taraballi
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, United States.,Department of Orthopaedic & Sports Medicine, The Houston Methodist Hospital, Houston, TX, United States
| | - Ilaria Giretti
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Guillermo Bauza
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, United States.,Center for NanoHealth, Swansea University Medical School, Swansea University Bay, Swansea, United Kingdom
| | - Rossella S Pistillo
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Federica Banche Niclot
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Laura Pandolfi
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, United States
| | | | - Ennio Tasciotti
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, United States.,Department of Orthopaedic & Sports Medicine, The Houston Methodist Hospital, Houston, TX, United States.,Center for NanoHealth, Swansea University Medical School, Swansea University Bay, Swansea, United Kingdom
| |
Collapse
|
32
|
Sepulveda H, Aguilar R, Prieto CP, Bustos F, Aedo S, Lattus J, van Zundert B, Palma V, Montecino M. Epigenetic Signatures at the RUNX2-P1 and Sp7 Gene Promoters Control Osteogenic Lineage Commitment of Umbilical Cord-Derived Mesenchymal Stem Cells. J Cell Physiol 2017; 232:2519-2527. [PMID: 27689934 DOI: 10.1002/jcp.25627] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 09/29/2016] [Indexed: 12/16/2023]
Abstract
Wharton's Jelly mesenchymal stem cells (WJ-MSCs) are an attractive potential source of multipotent stem cells for bone tissue replacement therapies. However, the molecular mechanisms involved in their osteogenic conversion are poorly understood. Particularly, epigenetic control operating at the promoter regions of the two master regulators of the osteogenic program, RUNX2/P57 and SP7 has not yet been described in WJ-MSCs. Via quantitative PCR profiling and chromatin immunoprecipitation (ChIP) studies, here we analyze the ability of WJ-MSCs to engage osteoblast lineage. In undifferentiated WJ-MSCs, RUNX2/P57 P1, and SP7 promoters are found deprived of significant levels of the histone post-translational marks that are normally associated with transcriptionally active genes (H3ac, H3K27ac, and H3K4me3). Moreover, the RUNX2 P1 promoter lacks two relevant histone repressive marks (H3K9me3 and H3K27me3). Importantly, RUNX2 P1 promoter is found highly enriched in the H3K4me1 mark, which has been shown recently to mediate gene repression of key regulatory genes. Upon induction of WJ-MSCs osteogenic differentiation, we found that RUNX2/P57, but not SP7 gene expression is strongly activated, in a process that is accompanied by enrichment of activating histone marks (H3K4me3, H3ac, and H3K27ac) at the P1 promoter region. Histone mark analysis showed that SP7 gene promoter is robustly enriched in epigenetic repressive marks that may explain its poor transcriptional response to osteoblast differentiating media. Together, these results point to critical regulatory steps during epigenetic control of WJ-MSCs osteogenic lineage commitment that are relevant for future applications in regenerative medicine. J. Cell. Physiol. 232: 2519-2527, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hugo Sepulveda
- Center for Biomedical Research, Universidad Andres Bello, Santiago, Chile
- FONDAP Center for Genome Regulation, Santiago, Chile
| | - Rodrigo Aguilar
- Center for Biomedical Research, Universidad Andres Bello, Santiago, Chile
- FONDAP Center for Genome Regulation, Santiago, Chile
| | - Catalina P Prieto
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Santiago, Chile
| | - Francisco Bustos
- FONDAP Center for Genome Regulation, Santiago, Chile
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Santiago, Chile
| | - Sócrates Aedo
- Faculty of Medicine, Department of Obstetrics and Gynecology, Campus Oriente, University of Chile, Santiago, Chile
| | - José Lattus
- Faculty of Medicine, Department of Obstetrics and Gynecology, Campus Oriente, University of Chile, Santiago, Chile
| | | | - Veronica Palma
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Santiago, Chile
| | - Martin Montecino
- Center for Biomedical Research, Universidad Andres Bello, Santiago, Chile
- FONDAP Center for Genome Regulation, Santiago, Chile
| |
Collapse
|
33
|
Adipose Derived Stem Cells Conditioned Media in Combination with Bioceramic-Collagen Scaffolds Improved Calvarial Bone Healing in Hypothyroid Rats. IRANIAN RED CRESCENT MEDICAL JOURNAL 2017. [DOI: 10.5812/ircmj.45516] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
34
|
Non-coding RNA as mediators in microenvironment–breast cancer cell communication. Cancer Lett 2016; 380:289-95. [PMID: 26582656 DOI: 10.1016/j.canlet.2015.11.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 11/04/2015] [Accepted: 11/06/2015] [Indexed: 12/18/2022]
Abstract
The tumor microenvironment has a critical role in the survival and decision of the cancer cells. These include support by enhanced angiogenesis, and metastasis or adaptation of dormancy. This article discusses methods by which the microenvironment sustains the tumor. This process is important as it will identify avenues of drug targets. Non-coding RNAs (ncRNAs) are evolving as key mediators in the interaction between the cancer cells and the microenvironment. Thus, the question is how to develop methods to effectively block the effects of the ncRNA and/or to introduce them to prevent metastasis, dormancy or to reverse dormancy. We focused on the advantages of using mesenchymal stem cells (MSCs) for RNA delivery. MSCs can be available as "off-the-shelf" cells. Thus far, MSCs are shown to be safe when transplanted across allogeneic barriers. We discussed the various methods by which MSCs can interact with cancer cells to deliver ncRNA or antagomirs. We also include the advances and possible confounds of using these methods. Overall, this review article provides a potential method by which MSCs can be used for effective delivery of nucleic acid to treat cancer.
Collapse
|
35
|
Akpancar S, Tatar O, Turgut H, Akyildiz F, Ekinci S. The Current Perspectives of Stem Cell Therapy in Orthopedic Surgery. ARCHIVES OF TRAUMA RESEARCH 2016; 5:e37976. [PMID: 28144608 PMCID: PMC5253188 DOI: 10.5812/atr.37976] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/16/2016] [Accepted: 06/23/2016] [Indexed: 12/26/2022]
Abstract
CONTEXT Musculoskeletal injuries may be painful, troublesome, life limiting and also one of the global health problems. There has been considerable amount of interest during the past two decades to stem cells and tissue engineering techniques in orthopedic surgery, especially to manage special and compulsive injuries within the musculoskeletal system. EVIDENCE ACQUISITION The aim of this study was to present a literature review regarding the most recent progress in stem cell procedures and current indications in orthopedics clinical care practice. The Medline and PubMed library databases were searched for the articles related with stem cell procedures in the field of orthopedic surgery and additionally the reference list of each article was also included to provide a comprehensive evaluation. RESULTS Various sources of stem cells have been studied for orthopedics clinical care practice. Stem cell therapy has successfully used for major orthopedic procedures in terms of bone-joint injuries (fractures-bone defects, nonunion, and spinal injuries), osteoarthritis-cartilage defects, ligament-tendon injuries, femoral head osteonecrosis and osteogenesis imperfecta. Stem cells have also used in bone tissue engineering in combining with the scaffolds and provided faster and better healing of tissues. CONCLUSIONS Large amounts of preclinical studies have been made of stem cells and there is an increasing interest to perform these studies within the human population but preclinical studies are insufficient; therefore, much more and efficient studies should be conducted to evaluate the efficacy and safety of stem cells.
Collapse
Affiliation(s)
- Serkan Akpancar
- Department of Orthopedic Surgery, Gulhane Military Hospital, Ankara, Turkey
- Corresponding author: Serkan Akpancar, Department of Orthopedic Surgery, Gulhane Military Medicine Academy, Ankara, Turkey. Tel: +90-5443229700, Fax: +90-3124045500, E-mail:
| | - Oner Tatar
- Department of Orthopedic Surgery, Air Force Academy Kasımpaşa Military Hospital, Istanbul, Turkey
| | - Hasan Turgut
- Department of Orthopedic Surgery, Bursa Military Hospital, Bursa, Turkey
| | - Faruk Akyildiz
- Department of Orthopedic Surgery, Gulhane Military Hospital, Ankara, Turkey
| | - Safak Ekinci
- Department of Orthopedic Surgery, Agri Military Hospital, Agri, Turkey
| |
Collapse
|
36
|
Ciapetti G, Granchi D, Fotia C, Savarino L, Dallari D, Del Piccolo N, Donati DM, Baldini N. Effects of hypoxia on osteogenic differentiation of mesenchymal stromal cells used as a cell therapy for avascular necrosis of the femoral head. Cytotherapy 2016; 18:1087-99. [PMID: 27421741 DOI: 10.1016/j.jcyt.2016.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 05/31/2016] [Accepted: 06/04/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND AIMS Avascular necrosis of the femoral head (AVN) occurs as common result of various conditions or develops as a primary entity, with a high freqency in young adults. Because of its tendency toward osteoarthritis requiring total hip arthroplasty, alternative treatments are being advocated, including cell therapy with mesenchymal stromal cells (MSCs). Because osteonecrotic bone is a severely hypoxic tissue, with a 1-3% oxygen tension, the survival and function of multipotent cells is questionable. METHODS In this study, the proliferative, immunophenotypic and osteogenic properties of bone marrow (BM)-derived MSCs from a clinical series of patients with AVN were evaluated under in vitro conditions mimicking the hypoxic milieu of AVN to verify the rationale for cell therapy. MSCs retrieved from the iliac crest (BM-MSC) were isolated, expanded and induced to osteogenic differentiation under a 2% pO2 atmosphere (hypoxia) in comparison with the standard 21% pO2 (normoxia) that is routinely used in cell culture assays. RESULTS Both proliferation and colony-forming ability were significantly enhanced in hypoxia-exposed BM-MSCs compared with BM-MSCs under normoxia. The expression of bone-related genes, including alkaline phosphatase, Type I collagen, and osteocalcin was significantly increased under hypoxia. Moreover, mineral deposition after osteogenic induction was not hampered, but in some cases even enhanced under low oxygen tension. CONCLUSIONS These findings support autologous cell therapy as an effective treatment to stimulate bone healing in the hypoxic microenvironment of AVN.
Collapse
Affiliation(s)
- Gabriela Ciapetti
- Orthopedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Donatella Granchi
- Orthopedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Caterina Fotia
- Orthopedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Lucia Savarino
- Orthopedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Dante Dallari
- Conservative Orthopaedic Surgery and Innovative Techniques, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nicola Del Piccolo
- Conservative Orthopaedic Surgery and Innovative Techniques, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Davide Maria Donati
- 3rd Orthopaedic and Traumatologic Clinic, Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Nicola Baldini
- Orthopedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| |
Collapse
|
37
|
Martino MM, Maruyama K, Kuhn GA, Satoh T, Takeuchi O, Müller R, Akira S. Inhibition of IL-1R1/MyD88 signalling promotes mesenchymal stem cell-driven tissue regeneration. Nat Commun 2016; 7:11051. [PMID: 27001940 PMCID: PMC4804175 DOI: 10.1038/ncomms11051] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 02/11/2016] [Indexed: 02/06/2023] Open
Abstract
Tissue injury and the healing response lead to the release of endogenous danger signals including Toll-like receptor (TLR) and interleukin-1 receptor, type 1 (IL-1R1) ligands, which modulate the immune microenvironment. Because TLRs and IL-1R1 have been shown to influence the repair process of various tissues, we explored their role during bone regeneration, seeking to design regenerative strategies integrating a control of their signalling. Here we show that IL-1R1/MyD88 signalling negatively regulates bone regeneration, in the mouse. Furthermore, IL-1β which is released at the bone injury site, inhibits the regenerative capacities of mesenchymal stem cells (MSCs). Mechanistically, IL-1R1/MyD88 signalling impairs MSC proliferation, migration and differentiation by inhibiting the Akt/GSK-3β/β-catenin pathway. Lastly, as a proof of concept, we engineer a MSC delivery system integrating inhibitors of IL-1R1/MyD88 signalling. Using this strategy, we considerably improve MSC-based bone regeneration in the mouse, demonstrating that this approach may be useful in regenerative medicine applications. TLR and IL-1R1 ligands are danger signals released following tissue injury and during the healing response. Here, the authors show that IL-1β signalling via IL-1R1/MyD88 inhibits the Akt/GSK-3β/β-catenin pathway in mesenchymal stem cells, which suppresses their mobilization, proliferation, and differentiation into osteoblasts, processes necessary for bone regeneration.
Collapse
Affiliation(s)
- Mikaël M Martino
- WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kenta Maruyama
- WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Gisela A Kuhn
- Institute for Biomechanics, Leopold-Ruzicka-Weg 4, ETH Zurich, Zurich 8093, Switzerland
| | - Takashi Satoh
- WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Osamu Takeuchi
- WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan.,Institute for Virus Research, Kyoto University, 53 Shogoin Kawara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Ralph Müller
- Institute for Biomechanics, Leopold-Ruzicka-Weg 4, ETH Zurich, Zurich 8093, Switzerland
| | - Shizuo Akira
- WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|