1
|
Voisin A, Pénaguin A, Gaillard A, Leveziel N. Stem cell therapy in retinal diseases. Neural Regen Res 2023; 18:1478-1485. [PMID: 36571345 PMCID: PMC10075102 DOI: 10.4103/1673-5374.361537] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Alteration of the outer retina leads to various diseases such as age-related macular degeneration or retinitis pigmentosa characterized by decreased visual acuity and ultimately blindness. Despite intensive research in the field of retinal disorders, there is currently no curative treatment. Several therapeutic approaches such as cell-based replacement and gene therapies are currently in development. In the context of cell-based therapies, different cell sources such as embryonic stem cells, induced pluripotent stem cells, or multipotent stem cells can be used for transplantation. In the vast majority of human clinical trials, retinal pigment epithelial cells and photoreceptors are the cell types considered for replacement cell therapies. In this review, we summarize the progress made in stem cell therapies ranging from the pre-clinical studies to clinical trials for retinal disease.
Collapse
Affiliation(s)
- Audrey Voisin
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM 1084; Department of Ophthalmology, CHU Poitiers, Poitiers, France
| | - Amaury Pénaguin
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM 1084, Poitiers; Laboratoires Thea, Clermont-Ferrand, France
| | - Afsaneh Gaillard
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM 1084, Poitiers, France
| | - Nicolas Leveziel
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM 1084; Department of Ophthalmology, CHU Poitiers, Poitiers, France
| |
Collapse
|
2
|
Lingam S, Liu Z, Yang B, Wong W, Parikh BH, Ong JY, Goh D, Wong DSL, Tan QSW, Tan GSW, Holder GE, Regha K, Barathi VA, Hunziker W, Lingam G, Zeng X, Su X. cGMP-grade human iPSC-derived retinal photoreceptor precursor cells rescue cone photoreceptor damage in non-human primates. Stem Cell Res Ther 2021; 12:464. [PMID: 34412697 PMCID: PMC8375124 DOI: 10.1186/s13287-021-02539-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/31/2021] [Indexed: 12/21/2022] Open
Abstract
Background Retinal regenerative therapies hold great promise for the treatment of inherited retinal degenerations (IRDs). Studies in preclinical lower mammal models of IRDs have suggested visual improvement following retinal photoreceptor precursors transplantation, but there is limited evidence on the ability of these transplants to rescue retinal damage in higher mammals. The purpose of this study was to evaluate the therapeutic potential of photoreceptor precursors derived from clinically compliant induced pluripotent stem cells (iPSCs). Methods Photoreceptor precursors were sub-retinally transplanted into non-human primates (Macaca fascicularis). The cells were transplanted both in naïve and cobalt chloride-induced retinal degeneration models who had been receiving systemic immunosuppression for one week prior to the procedure. Optical coherence tomography, fundus autofluorescence imaging, electroretinography, ex vivo histology and immunofluorescence staining were used to evaluate retinal structure, function and survival of transplanted cells. Results There were no adverse effects of iPSC-derived photoreceptor precursors on retinal structure or function in naïve NHP models, indicating good biocompatibility. In addition, photoreceptor precursors injected into cobalt chloride-induced retinal degeneration NHP models demonstrated an ability both to survive and to mature into cone photoreceptors at 3 months post-transplant. Optical coherence tomography showed restoration of retinal ellipsoid zone post-transplantation. Conclusions These findings demonstrate the safety and therapeutic potential of clinically compliant iPSC-derived photoreceptor precursors as a cell replacement source for future clinical trials. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02539-8.
Collapse
Affiliation(s)
- Swathi Lingam
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Zengping Liu
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.,Singapore Eye Research Institute (SERI), Singapore, 169856, Singapore
| | - Binxia Yang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Wendy Wong
- Department of Ophthalmology, National University Hospital, Singapore, 119074, Singapore
| | - Bhav Harshad Parikh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Jun Yi Ong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Debbie Goh
- Department of Ophthalmology, National University Hospital, Singapore, 119074, Singapore
| | - Daniel Soo Lin Wong
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Queenie Shu Woon Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Gavin S W Tan
- Singapore Eye Research Institute (SERI), Singapore, 169856, Singapore.,Academic Clinical Program in Ophthalmology, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Graham E Holder
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.,Department of Ophthalmology, National University Hospital, Singapore, 119074, Singapore.,UCL Institute of Ophthalmology, London, WC1E 6BT, UK
| | - Kakkad Regha
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Veluchamy Amutha Barathi
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.,Singapore Eye Research Institute (SERI), Singapore, 169856, Singapore.,Academic Clinical Program in Ophthalmology, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Walter Hunziker
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Gopal Lingam
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.,Singapore Eye Research Institute (SERI), Singapore, 169856, Singapore.,Department of Ophthalmology, National University Hospital, Singapore, 119074, Singapore
| | - Xianmin Zeng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore.,RxCell Inc, Novato, CA, 94949, USA
| | - Xinyi Su
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore. .,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore. .,Singapore Eye Research Institute (SERI), Singapore, 169856, Singapore. .,Department of Ophthalmology, National University Hospital, Singapore, 119074, Singapore.
| |
Collapse
|
3
|
Ke Y, Fan X, Hao R, Dong L, Xue M, Tan L, Yang C, Li X, Ren X. Human embryonic stem cell-derived extracellular vesicles alleviate retinal degeneration by upregulating Oct4 to promote retinal Müller cell retrodifferentiation via HSP90. Stem Cell Res Ther 2021; 12:21. [PMID: 33413616 PMCID: PMC7792097 DOI: 10.1186/s13287-020-02034-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/17/2020] [Indexed: 12/27/2022] Open
Abstract
Objective Retinal degenerative diseases remain the dominant causes of blindness worldwide, and cell replacement is viewed as a promising therapeutic direction. However, the resources of seed cells are hard to obtain. To further explore this therapeutic approach, human embryonic stem extracellular vesicles (hESEVs) were extracted from human embryonic stem cells (hESCs) to inspect its effect and the possible mechanism on retinal Müller cells and retinal function. Methods hESEVs were extracted by multi-step differential centrifugation, whose morphologies and specific biomarkers (TSG101, CD9, CD63, and CD81) were observed and measured. After hESEVs were injected into the vitreous cavity of RCS rats, the retinal tissues and retinal functions of rats were assessed. The alteration of Müller cells and retinal progenitor cells was also recorded. Microvesicles (MVs) or exosomes (EXOs) were extracted from hESCs transfected with sh-HSP90 or pcDNA3.1-HSP9, and then incubated with Müller cells to measure the uptake of EVs, MVs, or EXOs in Müller cells by immunofluorescence. The retrodifferentiation of Müller cells was determined by measuring Vimentin and CHX10. qRT-PCR and western blot were used to detect HSP90 expression in MVs and evaluate Oct4 level in Müller cells, and Co-IP to inspect the interaction of HSP90 and Oct4. Results RCS rats at the postnatal 30 days had increased retinal progenitor cells which were dedifferentiated from Müller cells. hESEVs were successfully extracted from hESCs, evidenced by morphology observation and positive expressions of specific biomarkers (TSG101, CD9, CD63, and CD81). hESEVs promoted Müller cells dedifferentiated and retrodifferentiated into retinal progenitor cells evidenced by the existence of a large amount of CHX10-positive cells in the retinal inner layer of RCS rats in response to hESEV injection. The promotive role of hESEVs was exerted by MVs demonstrated by elevated fluorescence intensity of CHX10 and suppressed Vimentin fluorescence intensity in MVs rather than in EXOs. HSP90 in MVs inhibited the retrodifferentiation of Müller cells and suppressed the expression level of Oct4 in Müller cells. Co-IP revealed that HSP90 can target Oct4 in Müller cells. Conclusion hESEVs could promote the retrodifferentiation of Müller cells into retinal progenitor cells by regulating the expression of Oct4 in Müller cells by HSP90 mediation in MVs.
Collapse
Affiliation(s)
- Yifeng Ke
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No 251, Fukang Road, Nankai District, Tianjin, 300384, People's Republic of China
| | - Xiaoe Fan
- Jincheng People's Hospital, Jincheng, 048000, Shanxi, People's Republic of China
| | - Rui Hao
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Vision Science, Nankai University Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, People's Republic of China
| | - Lijie Dong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No 251, Fukang Road, Nankai District, Tianjin, 300384, People's Republic of China
| | - Min Xue
- Department of Ophthalmology, Anhui No.2 Provincial People's Hospital, Hefei, 230000, Anhui, People's Republic of China
| | - Liangzhang Tan
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No 251, Fukang Road, Nankai District, Tianjin, 300384, People's Republic of China
| | - Chunbo Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No 251, Fukang Road, Nankai District, Tianjin, 300384, People's Republic of China.,Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3 BZ, UK
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No 251, Fukang Road, Nankai District, Tianjin, 300384, People's Republic of China.
| | - Xinjun Ren
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No 251, Fukang Road, Nankai District, Tianjin, 300384, People's Republic of China.
| |
Collapse
|
4
|
Pan T, Shen H, Yuan S, Lu G, Zhang Y, Wang H, Zhao Y, Sun X, Liu Q. Combined Transplantation With Human Mesenchymal Stem Cells Improves Retinal Rescue Effect of Human Fetal RPE Cells in Retinal Degeneration Mouse Model. Invest Ophthalmol Vis Sci 2021; 61:9. [PMID: 32639552 PMCID: PMC7425709 DOI: 10.1167/iovs.61.8.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Purpose We verified whether fetal RPE (fRPE) cells and mesenchymal stem cells (MSCs) cotransplantation can combine the features of these two cell types and alleviate retinal degeneration in a retinal degenerative disease mouse model. Methods Tail vein injection of sodium iodate (NaIO3) was conducted to establish the retinal degenerative disease mouse model. MSCs and fRPE cells were transplanted either separately or combined in the subretinal space of retinal degenerative disease animals. ERG, optical coherence tomography, histologic, and immunofluorescence analyses were performed. Furthermore, the expression level of Crx, rhodopsin, Iba1, F4/80, Caspase 3, nerve growth factor, and brain-derived neurotrophic factor were assessed to investigate the mechanisms involved in cell transplantation effects. Results Cotransplantation of fRPE and MSC cells promoted significant improvements in ERG results and in the survival rate of transplanted cells. In addition, MSC and fRPE cell cotransplantation resulted in an increase in the thickness of the total retina, as well as in the outer and inner nuclear layers. Combined transplantation also upregulated the expression level of Crx and rhodopsin and downregulated caspase 3 expression, highlighting its better photoreceptor rescue effect in relation to the single cell type transplantation. Finally, combined transplantation suppressed the expression of Iba1 and F4/80 factors while increasing the endogenous expression of nerve growth factor and brain-derived nerve growth factor neurotrophic factors. These data suggest that MSC and fRPE cell cotransplantation is able to suppress immunoreactions and promote neurotrophic factor excretion. Conclusions Combined transplantation of MSCs and fRPE cells results in a better retinal rescue effect than single cell type transplantation in NaIO3-induced retinopathy.
Collapse
|
5
|
Zhang CJ, Ma Y, Jin ZB. The road to restore vision with photoreceptor regeneration. Exp Eye Res 2020; 202:108283. [PMID: 33010290 DOI: 10.1016/j.exer.2020.108283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 09/13/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
Abstract
Neuroretinal diseases are the predominant cause of irreversible blindness worldwide, mainly due to photoreceptor loss. Currently, there are no radical treatments to fully reverse the degeneration or even stop the disease progression. Thus, it is urgent to develop new biological therapeutics for these diseases on the clinical side. Stem cell-based treatments have become a promising therapeutic for neuroretinal diseases through the replacement of damaged cells with photoreceptors and some allied cells. To date, considerable efforts have been made to regenerate the diseased retina based on stem cell technology. In this review, we overview the current status of stem cell-based treatments for photoreceptor regeneration, including the major cell sources derived from different stem cells in pre-clinical or clinical trial stages. Additionally, we discuss herein the major challenges ahead for and potential new strategy toward photoreceptor regeneration.
Collapse
Affiliation(s)
- Chang-Jun Zhang
- Laboratory for Stem Cell & Retinal Regeneration, The Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ya Ma
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China.
| |
Collapse
|
6
|
Bian B, Zhao C, He X, Gong Y, Ren C, Ge L, Zeng Y, Li Q, Chen M, Weng C, He J, Fang Y, Xu H, Yin ZQ. Exosomes derived from neural progenitor cells preserve photoreceptors during retinal degeneration by inactivating microglia. J Extracell Vesicles 2020; 9:1748931. [PMID: 32373289 PMCID: PMC7191912 DOI: 10.1080/20013078.2020.1748931] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/12/2020] [Accepted: 03/01/2020] [Indexed: 02/06/2023] Open
Abstract
Retinal degeneration (RD) is one of the most common causes of visual impairment and blindness and is characterized by progressive degeneration of photoreceptors. Transplantation of neural stem/progenitor cells (NPCs) is a promising treatment for RD, although the mechanisms underlying the efficacy remain unclear. Accumulated evidence supports the notion that paracrine effects of transplanted stem cells is likely the major approach to rescuing early degeneration, rather than cell replacement. NPC-derived exosomes (NPC-exos), a type of extracellular vesicles (EVs) released from NPCs, are thought to carry functional molecules to recipient cells and play therapeutic roles. In present study, we found that grafted human NPCs (hNPCs) secreted EVs and exosomes in the subretinal space (SRS) of RCS rats, an RD model. And direct administration of mouse neural progenitor cell-derived exosomes (mNPC-exos) delayed photoreceptor degeneration, preserved visual function, prevented thinning of the outer nuclear layer (ONL), and decreased apoptosis of photoreceptors in RCS rats. Mechanistically, mNPC-exos were specifically internalized by retinal microglia and suppressed their activation in vitro and in vivo. RNA sequencing and miRNA profiling revealed a set of 17 miRNAs contained in mNPC-exos that markedly inhibited inflammatory signal pathways by targeting TNF-α, IL-1β, and COX-2 in activated microglia. The exosomes derived from hNPC (hNPC-exos) contained similar miRNAs to mNPC-exos that inhibited microglial activation. We demonstrated that NPC-exos markedly suppressed microglial activation to protect photoreceptors from apoptosis, suggesting that NPC-exos and their contents may be the mechanism of stem cell therapy for treating RD.
Collapse
Affiliation(s)
- Baishijiao Bian
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P.R. China
| | - Congjian Zhao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P.R. China
| | - Xiangyu He
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P.R. China
| | - Yu Gong
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P.R. China
| | - Chunge Ren
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P.R. China
| | - Lingling Ge
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P.R. China
| | - Yuxiao Zeng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P.R. China
| | - Qiyou Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P.R. China
| | - Min Chen
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P.R. China
| | - Chuanhuang Weng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P.R. China
| | - Juncai He
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P.R. China
| | - Yajie Fang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P.R. China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P.R. China
| | - Zheng Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P.R. China
| |
Collapse
|
7
|
Stem Cell Transplantation Therapy for Retinal Degenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1266:127-139. [PMID: 33105499 DOI: 10.1007/978-981-15-4370-8_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the past decade, progress in the research on human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) has provided the solid basis to derive retinal pigment epithelium, photoreceptors, and ganglion cells from hESCs/iPSCs for transplantation therapy of retinal degenerative diseases (RDD). Recently, the iPSC-derived retinal pigment epithelium cells have achieved efficacy in treating patients with age-related macular degeneration (AMD). However, there is still much work to be done about the differentiation of hESCs/iPSCs into clinically required retinal cells and improvement in the methods to deliver the cells into the retina of patients. Here we will review the research advances in stem cell transplantation in animal studies and clinical trials as well as propose the challenges for improving the clinical efficacy and safety of hESCs/iPSCs-derived retinal neural cells in treating retinal degenerative diseases.
Collapse
|
8
|
Zou T, Gao L, Zeng Y, Li Q, Li Y, Chen S, Hu X, Chen X, Fu C, Xu H, Yin ZQ. Organoid-derived C-Kit +/SSEA4 - human retinal progenitor cells promote a protective retinal microenvironment during transplantation in rodents. Nat Commun 2019; 10:1205. [PMID: 30872578 PMCID: PMC6418223 DOI: 10.1038/s41467-019-08961-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 02/11/2019] [Indexed: 12/22/2022] Open
Abstract
Stem cell therapy may replace lost photoreceptors and preserve residual photoreceptors during retinal degeneration (RD). Unfortunately, the degenerative microenvironment compromises the fate of grafted cells, demanding supplementary strategies for microenvironment regulation. Donor cells with both proper regeneration capability and intrinsic ability to improve microenvironment are highly desired. Here, we use cell surface markers (C-Kit+/SSEA4−) to effectively eliminate tumorigenic embryonic cells and enrich retinal progenitor cells (RPCs) from human embryonic stem cell (hESC)-derived retinal organoids, which, following subretinal transplantation into RD models of rats and mice, significantly improve vision and preserve the retinal structure. We characterize the pattern of integration and materials transfer following transplantation, which likely contribute to the rescued photoreceptors. Moreover, C-Kit+/SSEA4− cells suppress microglial activation, gliosis and the production of inflammatory mediators, thereby providing a healthier host microenvironment for the grafted cells and delaying RD. Therefore, C-Kit+/SSEA4− cells from hESC-derived retinal organoids are a promising therapeutic cell source. Stem cell transplantation to treat retinal degeneration could be limited by the degenerative microenvironment. Here, the authors show that C-Kit+/SSEA4– progenitor cells enriched from human embryonic stem cell derived retinal organoids protect retinal structure, suppress microglial activation, gliosis and inflammation.
Collapse
Affiliation(s)
- Ting Zou
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Lixiong Gao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Yuxiao Zeng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Qiyou Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Yijian Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Siyu Chen
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Xisu Hu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Xi Chen
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Caiyun Fu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. .,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| | - Zheng Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. .,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| |
Collapse
|
9
|
Abstract
Stem-cell therapy is a promising method for treating patients with a wide range of diseases and injuries. Increasing government funding of scientific research has promoted rapid developments in stem-cell research in China, as evidenced by the substantial increase in the number and quality of publications in the past 5 years. Multiple high-quality studies have been performed in China that concern cell reprogramming, stem-cell homeostasis, gene modifications, and immunomodulation. The number of translation studies, including basic and preclinical investigations, has also increased. Around 100 stem-cell banks have been established in China, 10 stem-cell drugs are currently in the approval process, and >400 stem cell-based clinical trials are currently registered in China. With continued state funding, advanced biotechnical support, and the development of regulatory standards for the clinical application of stem cells, further innovations are expected that will lead to a boom in stem-cell therapies. This review highlights recent achievements in stem-cell research in China and discusses future prospects.
Collapse
Affiliation(s)
- Lei Hu
- 1 Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology , Beijing, China
| | - Bin Zhao
- 1 Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology , Beijing, China
| | - Songlin Wang
- 1 Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology , Beijing, China.,2 Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences , Beijing, China
| |
Collapse
|
10
|
Wu H, Li J, Mao X, Li G, Xie L, You Z. Transplantation of rat embryonic stem cell-derived retinal cells restores visual function in the Royal College of Surgeons rats. Doc Ophthalmol 2018; 137:71-78. [DOI: 10.1007/s10633-018-9648-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/13/2018] [Indexed: 11/24/2022]
|
11
|
Koh S, Chen WJ, Dejneka NS, Harris IR, Lu B, Girman S, Saylor J, Wang S, Eroglu C. Subretinal Human Umbilical Tissue-Derived Cell Transplantation Preserves Retinal Synaptic Connectivity and Attenuates Müller Glial Reactivity. J Neurosci 2018; 38:2923-2943. [PMID: 29431645 PMCID: PMC5864147 DOI: 10.1523/jneurosci.1532-17.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 01/22/2018] [Accepted: 01/26/2018] [Indexed: 12/16/2022] Open
Abstract
Human umbilical tissue-derived cells (hUTC or palucorcel) are currently under clinical investigation for the treatment of geographic atrophy, a late stage of macular degeneration, but how hUTC transplantation mediates vision recovery is not fully elucidated. Subretinal administration of hUTC preserves visual function in the Royal College of Surgeons (RCS) rat, a genetic model of retinal degeneration caused by Mertk loss of function. hUTC secrete synaptogenic and neurotrophic factors that improve the health and connectivity of the neural retina. Therefore, we investigated the progression of synapse and photoreceptor loss and whether hUTC treatment preserves photoreceptors and synaptic connectivity in the RCS rats of both sexes. We found that RCS retinas display significant deficits in synaptic development already by postnatal day 21 (P21), before the onset of photoreceptor degeneration. Subretinal transplantation of hUTC at P21 is necessary to rescue visual function in RCS rats, and the therapeutic effect is enhanced with repeated injections. Synaptic development defects occurred concurrently with morphological changes in Müller glia, the major perisynaptic glia in the retina. hUTC transplantation strongly diminished Müller glia reactivity and specifically protected the α2δ-1-containing retinal synapses, which are responsive to thrombospondin family synaptogenic proteins secreted by Müller glia. Müller glial reactivity and reduced synaptogenesis observed in RCS retinas could be recapitulated by CRISPR/Cas9-mediated loss-of-Mertk in Müller glia in wild-type rats. Together, our results show that hUTC transplantation supports the health of retina at least in part by preserving the functions of Müller glial cells, revealing a previously unknown aspect of hUTC transplantation-based therapy.SIGNIFICANCE STATEMENT Despite the promising effects observed in clinical trials and preclinical studies, how subretinal human umbilical tissue-derived cell (hUTC) transplantation mediates vision improvements is not fully known. Using a rat model of retinal degeneration, the RCS rat (lacking Mertk), here we provide evidence that hUTC transplantation protects visual function and health by protecting photoreceptors and preserving retinal synaptic connectivity. Furthermore, we find that loss of Mertk function only in Müller glia is sufficient to impair synaptic development and cause activation of Müller glia. hUTC transplantation strongly attenuates the reactivity of Müller glia in RCS rats. These findings highlight novel cellular and molecular mechanisms within the neural retina, which underlie disease mechanisms and pinpoint Müller glia as a novel cellular target for hUTC transplantation.
Collapse
Affiliation(s)
- Sehwon Koh
- Department of Cell Biology
- Regeneration Next, Duke University Medical Center, Durham, North Carolina 27710, and
| | - William J Chen
- Department of Cell Biology
- Duke Institute for Brain Sciences
| | - Nadine S Dejneka
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477
| | - Ian R Harris
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477
| | - Bin Lu
- Department of Biomedical Sciences, Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Sergey Girman
- Department of Biomedical Sciences, Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Joshua Saylor
- Department of Biomedical Sciences, Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Shaomei Wang
- Department of Biomedical Sciences, Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Cagla Eroglu
- Department of Cell Biology,
- Department of Neurobiology
- Duke Institute for Brain Sciences
- Regeneration Next, Duke University Medical Center, Durham, North Carolina 27710, and
| |
Collapse
|
12
|
Song CG, Zhang YZ, Wu HN, Cao XL, Guo CJ, Li YQ, Zheng MH, Han H. Stem cells: a promising candidate to treat neurological disorders. Neural Regen Res 2018; 13:1294-1304. [PMID: 30028342 PMCID: PMC6065243 DOI: 10.4103/1673-5374.235085] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Neurologic impairments are usually irreversible as a result of limited regeneration in the central nervous system. Therefore, based on the regenerative capacity of stem cells, transplantation therapies of various stem cells have been tested in basic research and preclinical trials, and some have shown great prospects. This manuscript overviews the cellular and molecular characteristics of embryonic stem cells, induced pluripotent stem cells, neural stem cells, retinal stem/progenitor cells, mesenchymal stem/stromal cells, and their derivatives in vivo and in vitro as sources for regenerative therapy. These cells have all been considered as candidates to treat several major neurological disorders and diseases, owing to their self-renewal capacity, multi-directional differentiation, neurotrophic properties, and immune modulation effects. We also review representative basic research and recent clinical trials using stem cells for neurodegenerative diseases, including Parkinson’s disease, Alzheimer’s disease, and age-related macular degeneration, as well as traumatic brain injury and glioblastoma. In spite of a few unsuccessful cases, risks of tumorigenicity, and ethical concerns, most results of animal experiments and clinical trials demonstrate efficacious therapeutic effects of stem cells in the treatment of nervous system disease. In summary, these emerging findings in regenerative medicine are likely to contribute to breakthroughs in the treatment of neurological disorders. Thus, stem cells are a promising candidate for the treatment of nervous system diseases.
Collapse
Affiliation(s)
- Chang-Geng Song
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yi-Zhe Zhang
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Hai-Ning Wu
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xiu-Li Cao
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Chen-Jun Guo
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yong-Qiang Li
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Min-Hua Zheng
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Hua Han
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University; Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
13
|
Divya MS, Rasheed VA, Schmidt T, Lalitha S, Hattar S, James J. Intraocular Injection of ES Cell-Derived Neural Progenitors Improve Visual Function in Retinal Ganglion Cell-Depleted Mouse Models. Front Cell Neurosci 2017; 11:295. [PMID: 28979193 PMCID: PMC5611488 DOI: 10.3389/fncel.2017.00295] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 09/05/2017] [Indexed: 12/16/2022] Open
Abstract
Retinal ganglion cell (RGC) transplantation is a promising strategy to restore visual function resulting from irreversible RGC degeneration occurring in glaucoma or inherited optic neuropathies. We previously demonstrated FGF2 induced differentiation of mouse embryonic stem cells (ESC) to RGC lineage, capable of retinal ganglion cell layer (GCL) integration upon transplantation. Here, we evaluated possible improvement of visual function by transplantation of ES cell derived neural progenitors in RGC depleted glaucoma mice models. ESC derived neural progenitors (ES-NP) were transplanted into N-Methyl-D-Aspartate (NMDA) injected, RGC-ablated mouse models and a pre-clinical glaucoma mouse model (DBA/2J) having sustained higher intra ocular pressure (IOP). Visual acuity and functional integration was evaluated by behavioral experiments and immunohistochemistry, respectively. GFP-expressing ES-NPs transplanted in NMDA-injected RGC-depleted mice differentiated into RGC lineage and possibly integrating into GCL. An improvement in visual acuity was observed after 2 months of transplantation, when compared to the pre-transplantation values. Expression of c-Fos in the transplanted cells, upon light induction, further suggests functional integration into the host retinal circuitry. However, the transplanted cells did not send axonal projections into optic nerve. Transplantation experiments in DBA/2J mouse showed no significant improvement in visual functions, possibly due to both host and transplanted retinal cell death which could be due to an inherent high IOP. We showed that, ES NPs transplanted into the retina of RGC-ablated mouse models could survive, differentiate to RGC lineage, and possibly integrate into GCL to improve visual function. However, for the survival of transplanted cells in glaucoma, strategies to control the IOP are warranted.
Collapse
Affiliation(s)
- Mundackal S Divya
- Neuro-Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for BiotechnologyThiruvananthapuram, India
| | - Vazhanthodi A Rasheed
- Neuro-Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for BiotechnologyThiruvananthapuram, India
| | - Tiffany Schmidt
- Department of Biology, Johns Hopkins UniversityBaltimore, MD, United States
| | - Soundararajan Lalitha
- Neuro-Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for BiotechnologyThiruvananthapuram, India
| | - Samer Hattar
- Department of Biology, Johns Hopkins UniversityBaltimore, MD, United States
| | - Jackson James
- Neuro-Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for BiotechnologyThiruvananthapuram, India
| |
Collapse
|
14
|
Sun S, Li Z, Glencer P, Cai B, Zhang X, Yang J, Li X. Bringing the age-related macular degeneration high-risk allele age-related maculopathy susceptibility 2 into focus with stem cell technology. Stem Cell Res Ther 2017; 8:135. [PMID: 28583181 PMCID: PMC5460466 DOI: 10.1186/s13287-017-0584-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Age-related macular degeneration (AMD) is a major cause of blindness in older adults in developed countries. It is a multifactorial disease triggered by both environmental and genetic factors. High-temperature requirement A serine peptidase 1 (HTRA1) and age-related maculopathy susceptibility 2 (ARMS2) are two genes that are strongly associated with AMD. Because ARMS2 is an evolutionarily recent primate-specific gene and because the ARMS2/HTRA1 genes are positioned at a locus on chromosome 10q26 in a region with strong linkage disequilibrium, it is difficult to distinguish the functions of the individual genes. Therefore, it is necessary to bring these genes into focus. Patient-specific induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) provides direct access to a patient's genetics and allows for the possibility of identifying the initiating events of RPE-associated degenerative diseases. In this paper, a review of recent epidemiological studies of AMD is offered. An argument for a definite correlation between the ARMS2 gene and AMD is presented. A summary of the use of ARMS2 genotyping for medical treatment is provided. Several ARMS2-related genetic models based on such stem cells as iPSCs are introduced. The possibility of applying gene-editing techniques and stem-cell techniques to better explore the mechanisms of the ARMS2 high-risk allele, which will lead to important guidance for treatment, is also discussed.
Collapse
Affiliation(s)
- Shuo Sun
- Tianjin Medical University Eye Hospital, Tianjin, 300384 China
| | - ZhiQing Li
- Tianjin Medical University Eye Hospital, Tianjin, 300384 China
| | - Patrick Glencer
- Nova Southeastern College of Optometry, Fort Lauderdale, FL 33314 USA
| | - BinCui Cai
- Tianjin Medical University Eye Hospital, Tianjin, 300384 China
| | - XiaoMin Zhang
- Tianjin Medical University Eye Hospital, Tianjin, 300384 China
| | - Jin Yang
- Tianjin Medical University Eye Hospital, Tianjin, 300384 China
| | - XiaoRong Li
- Tianjin Medical University Eye Hospital, Tianjin, 300384 China
| |
Collapse
|
15
|
Wang Q, Gao S, Luo Y, Kang QY. Compound anisodine affects the proliferation and calcium overload of hypoxia-induced rat retinal progenitor cells and brain neural stem cells via the p-ERK1/2/HIF-1α/VEGF pathway. Exp Ther Med 2017; 14:600-608. [PMID: 28672973 PMCID: PMC5488403 DOI: 10.3892/etm.2017.4528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 01/06/2017] [Indexed: 12/26/2022] Open
Abstract
As a Traditional Chinese Medicine, compound anisodine (CA) has previously been shown to regulate the vegetative nervous system, improve microcirculation and scavenge reactive oxygen species, and has been commonly utilized as a neuroprotective agent to treat ischemic optic neuropathy and choroidoretinopathy. The present study aimed to investigate the neuroprotective effects of CA on the proliferation and calcium overload of hypoxia-induced rat retinal progenitor cells (RPCs) and brain neural stem cells (BNSCs) harvested from neonatal Sprague-Dawley rats. Cells were treated with CA at 0.126, 0.252, 0.505 or 1.010 g/l for four hours prior to or after hypoxia (<1% oxygen) for four h, followed by re-oxygenation for four hours; a normal control group and a CA-untreated hypoxia model group were also included. An MTT assay demonstrated that the cell viability was markedly improved following treatment with 0.126–1.010 g/l CA, compared with that in the hypoxia model group (P<0.05). Bromodeoxyuridine (BrdU) immunocytochemical staining and flow cytometry indicated that after culture in hypoxia for 4 h, the number of BrdU+ RPCs and BNSCs was significant decreased, as well as the cell population in S+G2 phase of the cell cycle, which was significantly attenuated by treatment with 1.010 g/l CA for 4 h prior to hypoxia (P<0.05). Furthermore, laser scanning confocal microscopy showed that the intracellular calcium concentration in hypoxia-cultured RPCs and BNSCs was markedly increased, which was attenuated by 0.126–1.010 g/l CA in a concentration-dependent manner (P<0.05). Furthermore, western blot analysis demonstrated that after hypoxia, the protein levels of hypoxia-inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF) were upregulated in RPCs and BNSCs, whereas phosphorylated extracellular signal-regulated kinase (phospho-ERK 1/2Thr202/Tyr204) and Cyclin D1 were downregulated; of note, treatment with 1.010 g/l CA significantly attenuated these changes (P<0.05). The results of the present study suggested that CA may improve the proliferation and inhibit calcium overload in hypoxia-induced RPCs and BNSCs by altering the protein levels of Cyclin D1 as well as signaling through the p-ERK1/2/HIF-1α/VEGF pathway.
Collapse
Affiliation(s)
- Qun Wang
- Department of Ophthalmology, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shan Gao
- Department of Ophthalmology, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yu Luo
- Environment and Genes Related to Diseases Key Laboratory of Education Ministry, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Qian-Yan Kang
- Department of Ophthalmology, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
16
|
Jones MK, Lu B, Girman S, Wang S. Cell-based therapeutic strategies for replacement and preservation in retinal degenerative diseases. Prog Retin Eye Res 2017; 58:1-27. [PMID: 28111323 PMCID: PMC5441967 DOI: 10.1016/j.preteyeres.2017.01.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/08/2017] [Accepted: 01/17/2017] [Indexed: 12/13/2022]
Abstract
Cell-based therapeutics offer diverse options for treating retinal degenerative diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP). AMD is characterized by both genetic and environmental risks factors, whereas RP is mainly a monogenic disorder. Though treatments exist for some patients with neovascular AMD, a majority of retinal degenerative patients have no effective therapeutics, thus indicating a need for universal therapies to target diverse patient populations. Two main cell-based mechanistic approaches are being tested in clinical trials. Replacement therapies utilize cell-derived retinal pigment epithelial (RPE) cells to supplant lost or defective host RPE cells. These cells are similar in morphology and function to native RPE cells and can potentially supplant the responsibilities of RPE in vivo. Preservation therapies utilize supportive cells to aid in visual function and photoreceptor preservation partially by neurotrophic mechanisms. The goal of preservation strategies is to halt or slow the progression of disease and maintain remaining visual function. A number of clinical trials are testing the safety of replacement and preservation cell therapies in patients; however, measures of efficacy will need to be further evaluated. In addition, a number of prevailing concerns with regards to the immune-related response, longevity, and functionality of the grafted cells will need to be addressed in future trials. This review will summarize the current status of cell-based preclinical and clinical studies with a focus on replacement and preservation strategies and the obstacles that remain regarding these types of treatments.
Collapse
Affiliation(s)
- Melissa K Jones
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Bin Lu
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Sergey Girman
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Shaomei Wang
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave., Los Angeles, CA 90095, USA.
| |
Collapse
|
17
|
Experimental Study of the Biological Properties of Human Embryonic Stem Cell-Derived Retinal Progenitor Cells. Sci Rep 2017; 7:42363. [PMID: 28205557 PMCID: PMC5304228 DOI: 10.1038/srep42363] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 01/09/2017] [Indexed: 01/16/2023] Open
Abstract
Retinal degenerative diseases are among the leading causes of blindness worldwide, and cell replacement is considered as a promising therapeutic. However, the resources of seed cells are scarce. To further explore this type of therapy, we adopted a culture system that could harvest a substantial quantity of retinal progenitor cells (RPCs) from human embryonic stem cells (hESCs) within a relatively short period of time. Furthermore, we transplanted these RPCs into the subretinal spaces of Royal College of Surgeons (RCS) rats. We quantified the thickness of the treated rats' outer nuclear layers (ONLs) and explored the visual function via electroretinography (ERG). It was found that the differentiated cells expressed RPC markers and photoreceptor progenitor markers. The transplanted RPCs survived for at least 12 weeks, resulting in beneficial effects on the morphology of the host retina, and led to a significant improvement in the visual function of the treated animals. These therapeutic effects suggest that the hESCs-derived RPCs could delay degeneration of the retina and partially restore visual function.
Collapse
|
18
|
Seiler MJ, Lin RE, McLelland BT, Mathur A, Lin B, Sigman J, De Guzman AT, Kitzes LM, Aramant RB, Thomas BB. Vision Recovery and Connectivity by Fetal Retinal Sheet Transplantation in an Immunodeficient Retinal Degenerate Rat Model. Invest Ophthalmol Vis Sci 2017; 58:614-630. [PMID: 28129425 PMCID: PMC6020716 DOI: 10.1167/iovs.15-19028] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 11/29/2016] [Indexed: 01/28/2023] Open
Abstract
Purpose To characterize a recently developed model, the retinal degenerate immunodeficient S334ter line-3 rat (SD-Foxn1 Tg(S334ter)3Lav) (RD nude rat), and to test whether transplanted rat fetal retinal sheets can elicit lost responses to light. Methods National Institutes of Health nude rats (SD-Foxn1 Tg) with normal retina were compared to RD nude rats with and without transplant for morphology and visual function. Retinal sheets from transgenic rats expressing human placental alkaline phosphatase (hPAP) were transplanted into the subretinal space of RD nude rats between postnatal day (P) 26 and P38. Transplant morphology was examined in vivo using optical coherence tomography (OCT). Visual function was assessed by optokinetic (OKN) testing, electroretinogram (ERG), and superior colliculus (SC) electrophysiology. Cryostat sections were analyzed for various retinal/synaptic markers and for the expression of donor hPAP. Results Optical coherence tomography scans showed the placement and laminar development of retinal sheet transplants in the subretinal space. Optokinetic testing demonstrated a deficit in visual acuity in RD nude rats that was improved after retinal sheet transplantation. No ERG responses were detected in the RD nude rats with or without transplantation. Superior colliculus responses were absent in age-matched control and sham surgery RD nude rats; however, robust light-evoked responses were observed in a specific location in the SC of transplanted RD nude rats. Responsive regions corresponded to the area of transplant placement in the eye. The quality of visual responses correlated with transplant organization and placement. Conclusions The data suggest that retinal sheet transplants integrate into the host retina of RD nude rats and recover significant visual function.
Collapse
Affiliation(s)
- Magdalene J. Seiler
- Stem Cell Research Center, University of California-Irvine, Irvine, California, United States
- Department of Physical Medicine & Rehabilitation, University of California-Irvine, Irvine, California, United States
| | - Robert E. Lin
- Stem Cell Research Center, University of California-Irvine, Irvine, California, United States
| | - Bryce T. McLelland
- Stem Cell Research Center, University of California-Irvine, Irvine, California, United States
| | - Anuradha Mathur
- Stem Cell Research Center, University of California-Irvine, Irvine, California, United States
| | - Bin Lin
- Stem Cell Research Center, University of California-Irvine, Irvine, California, United States
| | - Jaclyn Sigman
- Stem Cell Research Center, University of California-Irvine, Irvine, California, United States
| | - Alexander T. De Guzman
- Stem Cell Research Center, University of California-Irvine, Irvine, California, United States
- Department of Physical Medicine & Rehabilitation, University of California-Irvine, Irvine, California, United States
| | - Leonard M. Kitzes
- Stem Cell Research Center, University of California-Irvine, Irvine, California, United States
- Department of Anatomy & Neurobiology, University of California-Irvine, Irvine, California, United States
| | - Robert B. Aramant
- Stem Cell Research Center, University of California-Irvine, Irvine, California, United States
| | - Biju B. Thomas
- USC Roski Eye Institute, Department of Ophthalmology, University of Southern California, Los Angeles, California, United States
| |
Collapse
|
19
|
Ouyang H, Goldberg JL, Chen S, Li W, Xu GT, Li W, Zhang K, Nussenblatt RB, Liu Y, Xie T, Chan CC, Zack DJ. Ocular Stem Cell Research from Basic Science to Clinical Application: A Report from Zhongshan Ophthalmic Center Ocular Stem Cell Symposium. Int J Mol Sci 2016; 17:415. [PMID: 27102165 PMCID: PMC4813266 DOI: 10.3390/ijms17030415] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 03/17/2016] [Accepted: 03/17/2016] [Indexed: 12/16/2022] Open
Abstract
Stem cells hold promise for treating a wide variety of diseases, including degenerative disorders of the eye. The eye is an ideal organ for stem cell therapy because of its relative immunological privilege, surgical accessibility, and its being a self-contained system. The eye also has many potential target diseases amenable to stem cell-based treatment, such as corneal limbal stem cell deficiency, glaucoma, age-related macular degeneration (AMD), and retinitis pigmentosa (RP). Among them, AMD and glaucoma are the two most common diseases, affecting over 200 million people worldwide. Recent results on the clinical trial of retinal pigment epithelial (RPE) cells from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) in treating dry AMD and Stargardt’s disease in the US, Japan, England, and China have generated great excitement and hope. This marks the beginning of the ocular stem cell therapy era. The recent Zhongshan Ophthalmic Center Ocular Stem Cell Symposium discussed the potential applications of various stem cell types in stem cell-based therapies, drug discoveries and tissue engineering for treating ocular diseases.
Collapse
Affiliation(s)
- Hong Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Jeffrey L Goldberg
- Department of Ophthalmology, Stanford University, Palo Alto, CA 94303, USA.
| | - Shuyi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Wei Li
- Unit on Retinal Neurophysiology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Guo-Tong Xu
- Department of Ophthalmology, Tongji University, Shanghai 200092, China.
| | - Wei Li
- Department of Ophthalmology, Xiamen University, Xiamen 361005, China.
| | - Kang Zhang
- Department of Ophthalmology, University of California San Diego, San Diego, CA 92093, USA.
| | - Robert B Nussenblatt
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Ting Xie
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
| | - Chi-Chao Chan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Donald J Zack
- Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, MD 21231, USA.
| |
Collapse
|