1
|
Chen Z, Xia X, Yao M, Yang Y, Ao X, Zhang Z, Guo L, Xu X. The dual role of mesenchymal stem cells in apoptosis regulation. Cell Death Dis 2024; 15:250. [PMID: 38582754 PMCID: PMC10998921 DOI: 10.1038/s41419-024-06620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/08/2024]
Abstract
Mesenchymal stem cells (MSCs) are widely distributed pluripotent stem cells with powerful immunomodulatory capacity. MSCs transplantation therapy (MSCT) is widely used in the fields of tissue regeneration and repair, and treatment of inflammatory diseases. Apoptosis is an important way for tissues to maintain cell renewal, but it also plays an important role in various diseases. And many studies have shown that MSCs improves the diseases by regulating cell apoptosis. The regulation of MSCs on apoptosis is double-sided. On the one hand, MSCs significantly inhibit the apoptosis of diseased cells. On the other hand, MSCs also promote the apoptosis of tumor cells and excessive immune cells. Furthermore, MSCs regulate apoptosis through multiple molecules and pathways, including three classical apoptotic signaling pathways and other pathways. In this review, we summarize the current evidence on the regulation of apoptosis by MSCs.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Department of General Surgery, The 906th Hospital of PLA, Ningbo, 315040, Zhejiang, China
| | - Xuewei Xia
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400042, China
| | - Mengwei Yao
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yi Yang
- Department of Rheumatology and Immunology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiang Ao
- Department of orthopedics, The 953th Hospital of PLA, Shigatse Branch of Xinqiao Hospital, Army Medical University, Shigatse, 857000, China
| | - Zhaoqi Zhang
- Department of Neurosurgery, The 906th Hospital of PLA, Ningbo, 315040, Zhejiang, China
| | - Li Guo
- Endocrinology Department, First Affiliated Hospital, Army Medical University, Chongqing, 400038, China.
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China.
| |
Collapse
|
2
|
Kholodenko IV, Kholodenko RV, Yarygin KN. The Crosstalk between Mesenchymal Stromal/Stem Cells and Hepatocytes in Homeostasis and under Stress. Int J Mol Sci 2023; 24:15212. [PMID: 37894893 PMCID: PMC10607347 DOI: 10.3390/ijms242015212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Liver diseases, characterized by high morbidity and mortality, represent a substantial medical problem globally. The current therapeutic approaches are mainly aimed at reducing symptoms and slowing down the progression of the diseases. Organ transplantation remains the only effective treatment method in cases of severe liver pathology. In this regard, the development of new effective approaches aimed at stimulating liver regeneration, both by activation of the organ's own resources or by different therapeutic agents that trigger regeneration, does not cease to be relevant. To date, many systematic reviews and meta-analyses have been published confirming the effectiveness of mesenchymal stromal cell (MSC) transplantation in the treatment of liver diseases of various severities and etiologies. However, despite the successful use of MSCs in clinical practice and the promising therapeutic results in animal models of liver diseases, the mechanisms of their protective and regenerative action remain poorly understood. Specifically, data about the molecular agents produced by these cells and mediating their therapeutic action are fragmentary and often contradictory. Since MSCs or MSC-like cells are found in all tissues and organs, it is likely that many key intercellular interactions within the tissue niches are dependent on MSCs. In this context, it is essential to understand the mechanisms underlying communication between MSCs and differentiated parenchymal cells of each particular tissue. This is important both from the perspective of basic science and for the development of therapeutic approaches involving the modulation of the activity of resident MSCs. With regard to the liver, the research is concentrated on the intercommunication between MSCs and hepatocytes under normal conditions and during the development of the pathological process. The goals of this review were to identify the key factors mediating the crosstalk between MSCs and hepatocytes and determine the possible mechanisms of interaction of the two cell types under normal and stressful conditions. The analysis of the hepatocyte-MSC interaction showed that MSCs carry out chaperone-like functions, including the synthesis of the supportive extracellular matrix proteins; prevention of apoptosis, pyroptosis, and ferroptosis; support of regeneration; elimination of lipotoxicity and ER stress; promotion of antioxidant effects; and donation of mitochondria. The underlying mechanisms suggest very close interdependence, including even direct cytoplasm and organelle exchange.
Collapse
Affiliation(s)
- Irina V. Kholodenko
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Roman V. Kholodenko
- Laboratory of Molecular Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Konstantin N. Yarygin
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| |
Collapse
|
3
|
Lagneau N, Tournier P, Nativel F, Maugars Y, Guicheux J, Le Visage C, Delplace V. Harnessing cell-material interactions to control stem cell secretion for osteoarthritis treatment. Biomaterials 2023; 296:122091. [PMID: 36947892 DOI: 10.1016/j.biomaterials.2023.122091] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/16/2023]
Abstract
Osteoarthritis (OA) is the most common debilitating joint disease, yet there is no curative treatment for OA to date. Delivering mesenchymal stromal cells (MSCs) as therapeutic cells to mitigate the inflammatory symptoms associated with OA is attracting increasing attention. In principle, MSCs could respond to the pro-inflammatory microenvironment of an OA joint by the secretion of anti-inflammatory, anti-apoptotic, immunomodulatory and pro-regenerative factors, therefore limiting pain, as well as the disease development. However, the microenvironment of MSCs is known to greatly affect their survival and bioactivity, and using tailored biomaterial scaffolds could be key to the success of intra-articular MSC-based therapies. The aim of this review is to identify and discuss essential characteristics of biomaterial scaffolds to best promote MSC secretory functions in the context of OA. First, a brief introduction to the OA physiopathology is provided, followed by an overview of the MSC secretory functions, as well as the current limitations of MSC-based therapy. Then, we review the current knowledge on the effects of cell-material interactions on MSC secretion. These considerations allow us to define rational guidelines for next-generation biomaterial design to improve the MSC-based therapy of OA.
Collapse
Affiliation(s)
- Nathan Lagneau
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, France
| | - Pierre Tournier
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, France
| | - Fabien Nativel
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, France; Nantes Université, UFR Sciences Biologiques et Pharmaceutiques, Nantes, F-44035, France
| | - Yves Maugars
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, France
| | - Jérôme Guicheux
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, France.
| | - Catherine Le Visage
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, France
| | - Vianney Delplace
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, France
| |
Collapse
|
4
|
Yan K, Zheng J, Kluth MA, Li L, Ganss C, Yard B, Magdeburg R, Frank MH, Pallavi P, Keese M. ABCB5 + mesenchymal stromal cells therapy protects from hypoxia by restoring Ca 2+ homeostasis in vitro and in vivo. Stem Cell Res Ther 2023; 14:24. [PMID: 36759868 PMCID: PMC9912525 DOI: 10.1186/s13287-022-03228-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 12/21/2022] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Hypoxia in ischemic disease impairs Ca2+ homeostasis and may promote angiogenesis. The therapeutic efficacy of mesenchymal stromal cells (MSCs) in peripheral arterial occlusive disease is well established, yet its influence on cellular Ca2+ homeostasis remains to be elucidated. We addressed the influence of ATP-binding cassette subfamily B member 5 positive mesenchymal stromal cells (ABCB5+ MSCs) on Ca2+ homeostasis in hypoxic human umbilical vein endothelial cells (HUVECs) in vitro and in vivo. METHODS Hypoxia was induced in HUVECs by Cobalt (II) chloride (CoCl2) or Deferoxamine (DFO). Dynamic changes in the cytosolic- and endoplasmic reticulum (ER) Ca2+ and changes in reactive oxygen species were assessed by appropriate fluorescence-based sensors. Metabolic activity, cell migration, and tube formation were assessed by standard assays. Acute-on-chronic ischemia in Apolipoprotein E knock-out (ApoE-/-) mice was performed by double ligation of the right femoral artery (DFLA). ABCB5+ MSC cells were injected into the ischemic limb. Functional recovery after DFLA and histology of gastrocnemius and aorta were assessed. RESULTS Hypoxia-induced impairment of cytosolic and ER Ca2+ were restored by ABCB5+ MSCs or their conditioned medium. Similar was found for changes in intracellular ROS production, metabolic activity, migratory ability and tube formation. The restoration was paralleled by an increased expression of the Ca2+ transporter Sarco-/endoplasmic reticulum ATPase 2a (SERCA2a) and the phosphorylation of Phospholamban (PLN). In acute-on-chronic ischemia, ABCB5+ MSCs treated mice showed a higher microvascular density, increased SERCA2a expression and PLN phosphorylation relative to untreated controls. CONCLUSIONS ABCB5+ MSCs therapy can restore cellular Ca2+ homeostasis, which may beneficially affect the angiogenic function of endothelial cells under hypoxia in vitro and in vivo.
Collapse
Affiliation(s)
- Kaixuan Yan
- grid.7700.00000 0001 2190 4373Department of Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany ,grid.7700.00000 0001 2190 4373European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jiaxing Zheng
- grid.7700.00000 0001 2190 4373Department of Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany ,grid.7700.00000 0001 2190 4373European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Lin Li
- grid.7700.00000 0001 2190 4373Department of Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany ,grid.7700.00000 0001 2190 4373European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christoph Ganss
- TICEBA GmbH, Heidelberg, Germany ,grid.476673.7RHEACELL GmbH & Co. KG, Heidelberg, Germany
| | - Benito Yard
- grid.7700.00000 0001 2190 4373V Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Richard Magdeburg
- grid.411778.c0000 0001 2162 1728Department of Surgery, University Hospital Mannheim, Theodor-Kutzer-Ufer 1-3, 68161 Mannheim, Germany
| | - Markus H. Frank
- grid.38142.3c000000041936754XDepartment of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA ,grid.38142.3c000000041936754XTransplant Research Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA ,grid.38142.3c000000041936754XHarvard Stem Cell Institute, Harvard University, Cambridge, MA USA ,grid.1038.a0000 0004 0389 4302School of Medical and Health Sciences, Edith Cowan University, Perth, WA Australia
| | - Prama Pallavi
- Department of Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany. .,European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany. .,Department of Surgery, University Hospital Mannheim, Theodor-Kutzer-Ufer 1-3, 68161, Mannheim, Germany.
| | - Michael Keese
- Department of Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany. .,European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany. .,Department for General and Visceral Surgery, Theresienkrankenhaus Mannheim, Mannheim, Germany. .,Department of Surgery, University Hospital Mannheim, Theodor-Kutzer-Ufer 1-3, 68161, Mannheim, Germany.
| |
Collapse
|
5
|
Krawczenko A, Klimczak A. Adipose Tissue-Derived Mesenchymal Stem/Stromal Cells and Their Contribution to Angiogenic Processes in Tissue Regeneration. Int J Mol Sci 2022; 23:ijms23052425. [PMID: 35269568 PMCID: PMC8910401 DOI: 10.3390/ijms23052425] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are widely described in the context of their regenerative and immunomodulatory activity. MSCs are isolated from various tissues and organs. The most frequently described sources are bone marrow and adipose tissue. As stem cells, MSCs are able to differentiate into other cell lineages, but they are usually reported with respect to their paracrine potential. In this review, we focus on MSCs derived from adipose tissue (AT-MSCs) and their secretome in regeneration processes. Special attention is given to the contribution of AT-MSCs and their derivatives to angiogenic processes described mainly in the context of angiogenic dysfunction. Finally, we present clinical trials registered to date that concern the application of AT-MSCs and their secretome in various medical conditions.
Collapse
|
6
|
Safitri E, Purnobasuki H. Effectiveness of mesenchymal stem cells cultured under hypoxia to increase the fertility rate in rats ( Rattus norvegicus). Vet World 2021; 14:3056-3064. [PMID: 35017856 PMCID: PMC8743767 DOI: 10.14202/vetworld.2021.3056-3064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/20/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND AND AIM Mesenchymal stem cells (MSCs) transplanted into the testes of rats with testicular failure can help rescue fertility. However, the low viability of transplanted MSCs limits the success of this treatment. This study aimed to determine the effectiveness of MSCs cultured under hypoxia to increase the fertility rate in rats (Rattus norvegicus). MATERIALS AND METHODS Bone marrow-derived MSCs (200 million cells/rat) were transplanted into male rat models with induced infertility (10 rats/treatment group) after 4 days of culture in 21% O2 (normoxia) and 1% O2 (hypoxia). Ten fertile and 10 untreated infertile rats served as controls. In the infertile male rats that had been fasted from food for 5 days, the fasting condition induced malnutrition and then resulted in testicular failure. RESULTS The results indicated that the MSCs cultured under hypoxic conditions were more effective than those cultured in normoxic conditions as a treatment for testicular failure in infertile male rats based on the increased number of cells expressing p63 as a quiescent cell marker and ETV5 as a transcription factor expressed in Sertoli and germ cells. Furthermore, the structure of the seminiferous tubules, which contain spermatogonia, primary and secondary spermatocytes, and spermatid, Sertoli, and Leydig cells, was improved in infertile male rats treated with the MSCs cultured under hypoxic conditions. CONCLUSION The testicular transplantation of MSCs cultured under hypoxic conditions was an effective treatment for testicular failure in rats.
Collapse
Affiliation(s)
- Erma Safitri
- Department of Veterinary Science, Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Hery Purnobasuki
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
7
|
Hu XM, Zhang Q, Zhou RX, Wu YL, Li ZX, Zhang DY, Yang YC, Yang RH, Hu YJ, Xiong K. Programmed cell death in stem cell-based therapy: Mechanisms and clinical applications. World J Stem Cells 2021; 13:386-415. [PMID: 34136072 PMCID: PMC8176847 DOI: 10.4252/wjsc.v13.i5.386] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/26/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
Stem cell-based therapy raises hopes for a better approach to promoting tissue repair and functional recovery. However, transplanted stem cells show a high death percentage, creating challenges to successful transplantation and prognosis. Thus, it is necessary to investigate the mechanisms underlying stem cell death, such as apoptotic cascade activation, excessive autophagy, inflammatory response, reactive oxygen species, excitotoxicity, and ischemia/hypoxia. Targeting the molecular pathways involved may be an efficient strategy to enhance stem cell viability and maximize transplantation success. Notably, a more complex network of cell death receives more attention than one crucial pathway in determining stem cell fate, highlighting the challenges in exploring mechanisms and therapeutic targets. In this review, we focus on programmed cell death in transplanted stem cells. We also discuss some promising strategies and challenges in promoting survival for further study.
Collapse
Affiliation(s)
- Xi-Min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| | - Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China
| | - Rui-Xin Zhou
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China
| | - Yan-Lin Wu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China
| | - Zhi-Xin Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China
| | - Dan-Yi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China
| | - Yi-Chao Yang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China
| | - Rong-Hua Yang
- Department of Burns, Fo Shan Hospital of Sun Yat-Sen University, Foshan 528000, Guangdong Province, China
| | - Yong-Jun Hu
- Department of Cardiovascular Medicine, Hunan People's Hospital (the First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
8
|
Samal JRK, Rangasami VK, Samanta S, Varghese OP, Oommen OP. Discrepancies on the Role of Oxygen Gradient and Culture Condition on Mesenchymal Stem Cell Fate. Adv Healthc Mater 2021; 10:e2002058. [PMID: 33533187 PMCID: PMC11469238 DOI: 10.1002/adhm.202002058] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/19/2021] [Indexed: 12/11/2022]
Abstract
Over the past few years, mesenchymal stem (or stromal) cells (MSCs) have garnered enormous interest due to their therapeutic value especially for their multilineage differentiation potential leading to regenerative medicine applications. MSCs undergo physiological changes upon in vitro expansion resulting in expression of different receptors, thereby inducing high variabilities in therapeutic efficacy. Therefore, understanding the biochemical cues that influence the native local signals on differentiation or proliferation of these cells is very important. There have been several reports that in vitro culture of MSCs in low oxygen gradient (or hypoxic conditions) upregulates the stemness markers and promotes cell proliferation in an undifferentiated state, as hypoxia mimics the conditions the progenitor cells experience within the tissue. However, different studies report different oxygen gradients and culture conditions causing ambiguity in their interpretation of the results. In this progress report, it is aimed to summarize recent studies in the field with specific focus on conflicting results reported during the application of hypoxic conditions for improving the proliferation or differentiation of MSCs. Further, it is tried to decipher the factors that can affect characteristics of MSC under hypoxia and suggest a few techniques that could be combined with hypoxic cell culture to better recapitulate the MSC tissue niche.
Collapse
Affiliation(s)
- Jay R. K. Samal
- Department of Instructive Biomaterial EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Vignesh K. Rangasami
- Bioengineering and Nanomedicine GroupFaculty of Medicine and Health TechnologiesTampere UniversityTampere33720Finland
| | - Sumanta Samanta
- Bioengineering and Nanomedicine GroupFaculty of Medicine and Health TechnologiesTampere UniversityTampere33720Finland
| | - Oommen P. Varghese
- Translational Chemical Biology LaboratoryDepartment of Chemistry, Polymer ChemistryÅngström LaboratoryUppsala UniversityUppsala751 21Sweden
| | - Oommen P. Oommen
- Bioengineering and Nanomedicine GroupFaculty of Medicine and Health TechnologiesTampere UniversityTampere33720Finland
| |
Collapse
|
9
|
Hypoxia-Preconditioned Wharton's Jelly-Derived Mesenchymal Stem Cells Mitigate Stress-Induced Apoptosis and Ameliorate Human Islet Survival and Function in Direct Contact Coculture System. Stem Cells Int 2021; 2020:8857457. [PMID: 33381188 PMCID: PMC7759420 DOI: 10.1155/2020/8857457] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/08/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022] Open
Abstract
Protection of isolated pancreatic islets against hypoxic and oxidative damage-induced apoptosis is essential during a pretransplantation culture period. A beneficial approach to maintain viable and functional islets is the coculture period with mesenchymal stem cells (MSCs). Hypoxia preconditioning of MSCs (Hpc-MSCs) for a short time stimulates the expression and secretion of antiapoptotic, antioxidant, and prosurvival factors. The aim of the present study was to evaluate the survival and function of human islets cocultured with Hpc-MSCs. Wharton's jelly-derived MSCs were subjected to hypoxia (5% O2: Hpc) or normoxia (20% O2: Nc) for 24 hours and then cocultured with isolated human islets in direct and indirect systems. Assays of viability and apoptosis, along with the production of reactive oxygen species (ROS), hypoxia-inducible factor 1-alpha (HIF-1α), apoptotic pathway markers, and vascular endothelial growth factor (VEGF) in the islets, were performed. Insulin and C-peptide secretions as islet function were also evaluated. Hpc-MSCs and Nc-MSCs significantly reduced the ROS production and HIF-1α protein aggregation, as well as downregulation of proapoptotic proteins and upregulation of antiapoptotic marker along with increment of VEGF secretion in the cocultured islet. However, the Hpc-MSCs groups were better than Nc-MSCs cocultured islets. Hpc-MSCs in both direct and indirect coculture systems improved the islet survival, while promotion of function was only significant in the direct cocultured cells. Hpc potentiated the cytoprotective and insulinotropic effects of MSCs on human islets through reducing stressful markers, inhibiting apoptosis pathway, enhancing prosurvival factors, and promoting insulin secretion, especially in direct coculture system, suggesting the effective strategy to ameliorate the islet quality for better transplantation outcomes.
Collapse
|
10
|
Chen S, He Z, Xu J. Application of adipose-derived stem cells in photoaging: basic science and literature review. Stem Cell Res Ther 2020; 11:491. [PMID: 33225962 PMCID: PMC7682102 DOI: 10.1186/s13287-020-01994-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022] Open
Abstract
Photoaging is mainly induced by continuous exposure to sun light, causing multiple unwanted skin characters and accelerating skin aging. Adipose-derived stem cells(ADSCs) are promising in supporting skin repair because of their significant antioxidant capacity and strong proliferation, differentiation, and migration ability, as well as their enriched secretome containing various growth factors and cytokines. The identification of the mechanisms by which ADSCs perform these functions for photoaging has great potential to explore therapeutic applications and combat skin aging. We also review the basic mechanisms of UV-induced skin aging and recent improvement in pre-clinical applications of ADSCs associated with photoaging. Results showed that ADSCs are potential to address photoaging problem and might treat skin cancer. Compared with ADSCs alone, the secretome-based approaches and different preconditionings of ADSCs are more promising to overcome the current limitations and enhance the anti-photoaging capacity.
Collapse
Affiliation(s)
- Shidie Chen
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China
| | - Zhigang He
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China.
| | - Jinghong Xu
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China.
| |
Collapse
|
11
|
Kong D, Xu H, Chen M, Yu Y, Qian Y, Qin T, Tong Y, Xia Q, Hang H. Co-encapsulation of HNF4α overexpressing UMSCs and human primary hepatocytes ameliorates mouse acute liver failure. Stem Cell Res Ther 2020; 11:449. [PMID: 33097090 PMCID: PMC7583302 DOI: 10.1186/s13287-020-01962-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Acute liver failure (ALF) is a complicated condition that is characterized by global hepatocyte death and often requires immediate liver transplantation. However, this therapy is limited by shortage of donor organs. Mesenchymal stem cells (MSCs) and hepatocytes are two attractive sources of cell-based therapies to treat ALF. The combined transplantation of hepatocytes and MSCs is considered to be more effective for the treatment of ALF than single-cell transplantation. We have previously demonstrated that HNF4α-overexpressing human umbilical cord MSCs (HNF4α-UMSCs) promoted the expression of hepatic-specific genes. In addition, microencapsulation allows exchange of nutrients, forming a protective barrier to the transplanted cells. Moreover, encapsulation of hepatocytes improves the viability and synthetic ability of hepatocytes and circumvents immune rejection. This study aimed to investigate the therapeutic effect of microencapsulation of hepatocytes and HNF4α-UMSCs in ALF mice. METHODS Human hepatocytes and UMSCs were obtained separately from liver and umbilical cord, followed by co-encapsulation and transplantation into mice by intraperitoneal injection. LPS/D-gal was used to induce ALF by intraperitoneal injection 24 h after transplantation. In addition, Raw 264.7 cells (a macrophage cell line) were used to elucidate the effect of HNF4α-UMSCs-hepatocyte microcapsules on polarization of macrophages. The protein chip was used to define the important paracrine factors in the conditioned mediums (CMs) of UMSCs and HNF4α-UMSCs and investigate the possible mechanism of HNF4α-UMSCs for the treatment of ALF in mice. RESULTS HNF4α-UMSCs can enhance the function of primary hepatocytes in alginate-poly-L-lysine-alginate (APA) microcapsules. The co-encapsulation of both HNF4α-UMSCs and hepatocytes achieved better therapeutic effects in ALF mice by promoting M2 macrophage polarization and reducing inflammatory response mainly mediated by the paracrine factor HB-EGF secreted by HNF4α-UMSCs. CONCLUSIONS The present study confirms that the co-encapsulation of HNF4α-UMSC and hepatocytes could exert therapeutic effect on ALF mainly by HB-EGF secreted by HNF4α-UMSCs and provides a novel strategy for the treatment of ALF.
Collapse
Affiliation(s)
- Defu Kong
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Huiming Xu
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mo Chen
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Yeping Yu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Yongbing Qian
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Tian Qin
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Ying Tong
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Hualian Hang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
12
|
Stavely R, Nurgali K. The emerging antioxidant paradigm of mesenchymal stem cell therapy. Stem Cells Transl Med 2020; 9:985-1006. [PMID: 32497410 PMCID: PMC7445024 DOI: 10.1002/sctm.19-0446] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/05/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (multipotent stromal cells; MSCs) have been under investigation for the treatment of diverse diseases, with many promising outcomes achieved in animal models and clinical trials. The biological activity of MSC therapies has not been fully resolved which is critical to rationalizing their use and developing strategies to enhance treatment efficacy. Different paradigms have been constructed to explain their mechanism of action, including tissue regeneration, trophic/anti-inflammatory secretion, and immunomodulation. MSCs rarely engraft and differentiate into other cell types after in vivo administration. Furthermore, it is equivocal whether MSCs function via the secretion of many peptide/protein ligands as their therapeutic properties are observed across xenogeneic barriers, which is suggestive of mechanisms involving mediators conserved between species. Oxidative stress is concomitant with cellular injury, inflammation, and dysregulated metabolism which are involved in many pathologies. Growing evidence supports that MSCs exert antioxidant properties in a variety of animal models of disease, which may explain their cytoprotective and anti-inflammatory properties. In this review, evidence of the antioxidant effects of MSCs in in vivo and in vitro models is explored and potential mechanisms of these effects are discussed. These include direct scavenging of free radicals, promoting endogenous antioxidant defenses, immunomodulation via reactive oxygen species suppression, altering mitochondrial bioenergetics, and donating functional mitochondria to damaged cells. Modulation of the redox environment and oxidative stress by MSCs can mediate their anti-inflammatory and cytoprotective properties and may offer an explanation to the diversity in disease models treatable by MSCs and how these mechanisms may be conserved between species.
Collapse
Affiliation(s)
- Rhian Stavely
- Institute for Health and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia.,Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia.,Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia.,Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Cuthbert RJ, Jones E, Sanjurjo-Rodríguez C, Lotfy A, Ganguly P, Churchman SM, Kastana P, Tan HB, McGonagle D, Papadimitriou E, Giannoudis PV. Regulation of Angiogenesis Discriminates Tissue Resident MSCs from Effective and Defective Osteogenic Environments. J Clin Med 2020; 9:jcm9061628. [PMID: 32481579 PMCID: PMC7355658 DOI: 10.3390/jcm9061628] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
Background: The biological mechanisms that contribute to atrophic long bone non-union are poorly understood. Multipotential mesenchymal stromal cells (MSCs) are key contributors to bone formation and are recognised as important mediators of blood vessel formation. This study examines the role of MSCs in tissue formation at the site of atrophic non-union. Materials and Methods: Tissue and MSCs from non-union sites (n = 20) and induced periosteal (IP) membrane formed following the Masquelet bone reconstruction technique (n = 15) or bone marrow (n = 8) were compared. MSC content, differentiation, and influence on angiogenesis were measured in vitro. Cell content and vasculature measurements were performed by flow cytometry and histology, and gene expression was measured by quantitative polymerase chain reaction (qPCR). Results: MSCs from non-union sites had comparable differentiation potential to bone marrow MSCs. Compared with induced periosteum, non-union tissue contained similar proportion of colony-forming cells, but a greater proportion of pericytes (p = 0.036), and endothelial cells (p = 0.016) and blood vessels were more numerous (p = 0.001) with smaller luminal diameter (p = 0.046). MSCs showed marked differences in angiogenic transcripts depending on the source, and those from induced periosteum, but not non-union tissue, inhibited early stages of in vitro angiogenesis. Conclusions: In vitro, non-union site derived MSCs have no impairment of differentiation capacity, but they differ from IP-derived MSCs in mediating angiogenesis. Local MSCs may thus be strongly implicated in the formation of the immature vascular network at the non-union site. Attention should be given to their angiogenic support profile when selecting MSCs for regenerative therapy.
Collapse
Affiliation(s)
- R. J. Cuthbert
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
| | - E. Jones
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
| | - C. Sanjurjo-Rodríguez
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
- Department of Biomedical Sciences, Medicine and Physiotherapy, University of A Coruña, CIBER-BBN-Institute of Biomedical Research of A Coruña (INIBIC), A Coruña 15001, Spain
| | - A. Lotfy
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt;
| | - P. Ganguly
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
| | - S. M. Churchman
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
| | - P. Kastana
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras 265 04, Greece; (P.K.); (E.P.)
| | - H. B. Tan
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
| | - D. McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
| | - E. Papadimitriou
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras 265 04, Greece; (P.K.); (E.P.)
| | - P. V. Giannoudis
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
- NIHR Leeds Biomedical Research Center, Chapel Allerton Hospital, Leeds LS7 4SA, UK
- Correspondence: ; Tel.: +44-113-392-2750; Fax: +44-113-392-3290
| |
Collapse
|
14
|
Kang YB(A, Eo J, Bulutoglu B, Yarmush ML, Usta OB. Progressive hypoxia-on-a-chip: An in vitro oxygen gradient model for capturing the effects of hypoxia on primary hepatocytes in health and disease. Biotechnol Bioeng 2020; 117:763-775. [PMID: 31736056 PMCID: PMC7015781 DOI: 10.1002/bit.27225] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/07/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022]
Abstract
Oxygen is vital to the function of all tissues including the liver and lack of oxygen, that is, hypoxia can result in both acute and chronic injuries to the liver in vivo and ex vivo. Furthermore, a permanent oxygen gradient is naturally present along the liver sinusoid, which plays a role in the metabolic zonation and the pathophysiology of liver diseases. Accordingly, here, we introduce an in vitro microfluidic platform capable of actively creating a series of oxygen concentrations on a single continuous microtissue, ranging from normoxia to severe hypoxia. This range approximately captures both the physiologically relevant oxygen gradient generated from the portal vein to the central vein in the liver, and the severe hypoxia occurring in ischemia and liver diseases. Primary rat hepatocytes cultured in this microfluidic platform were exposed to an oxygen gradient of 0.3-6.9%. The establishment of an ascending hypoxia gradient in hepatocytes was confirmed in response to the decreasing oxygen supply. The hepatocyte viability in this platform decreased to approximately 80% along the hypoxia gradient. Simultaneously, a progressive increase in accumulation of reactive oxygen species and expression of hypoxia-inducible factor 1α was observed with increasing hypoxia. These results demonstrate the induction of distinct metabolic and genetic responses in hepatocytes upon exposure to an oxygen (/hypoxia) gradient. This progressive hypoxia-on-a-chip platform can be used to study the role of oxygen and hypoxia-associated molecules in modeling healthy and injured liver tissues. Its use can be further expanded to the study of other hypoxic tissues such as tumors as well as the investigation of drug toxicity and efficacy under oxygen-limited conditions.
Collapse
Affiliation(s)
- Young Bok (Abraham) Kang
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospitals for Children-Boston, Boston, MA, USA
- College of Engineering, George Fox University, Newberg, OR, USA
| | - Jinsu Eo
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospitals for Children-Boston, Boston, MA, USA
| | - Beyza Bulutoglu
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospitals for Children-Boston, Boston, MA, USA
| | - Martin L. Yarmush
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospitals for Children-Boston, Boston, MA, USA
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - O. Berk Usta
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospitals for Children-Boston, Boston, MA, USA
| |
Collapse
|
15
|
Gao C, Yang Y, Zhang Y, Qian M, Yang J. HGF Gene Delivering Alginate/Galactosylated Chitosan Sponge Scaffold for Three-Dimensional Coculture of Hepatocytes/3T3 Cells. DNA Cell Biol 2020; 39:451-458. [PMID: 31910350 DOI: 10.1089/dna.2019.5136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gene delivery from tissue engineering scaffold is a novel strategy in regulating long-term growth and function of cells in vitro culture. In this study, a hepatocyte growth factor plasmid/polyetherimide (pHGF/PEI) polyplex delivering alginate (AL)/galactosylated chitosan (GC) (pHGF/PEI-AL/GC) sponge scaffold was prepared for the in vitro coculture of hepatocytes/3T3 cells. The pHGF/PEI polyplex released for 6 days in the sponge scaffold with weight ratio of AL/GC being 3:1 and fixed amount of pHGF being 40 μg (24-well scaffold). In addition, the 3T3 cells culturing in the pHGF/PEI-AL/GC sponge scaffold could be continually transfected and expressed the exogenous HGF for 6 days. Furthermore, the albumin secretion and urea synthesis of hepatocytes were significantly enhanced when cocultured with 3T3 cells in the pHGF/PEI-AL/GC sponge scaffold compared with that in the AL/GC sponge without pHGF. In summary, the preparation of AL/GC sponge scaffold delivering pHGF/PEI polyplex is a critical significance for maintaining the long-term survival and function of primary hepatocytes in vitro.
Collapse
Affiliation(s)
- Chao Gao
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Ying Yang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Yan Zhang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Mengyuan Qian
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Jun Yang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| |
Collapse
|
16
|
Han KH, Kim MH, Jeong GJ, Kim AK, Chang JW, Kim DI. FGF-17 from Hypoxic Human Wharton's Jelly-Derived Mesenchymal Stem Cells Is Responsible for Maintenance of Cell Proliferation at Late Passages. Int J Stem Cells 2019; 12:279-290. [PMID: 31022995 PMCID: PMC6657939 DOI: 10.15283/ijsc18042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 02/27/2019] [Accepted: 03/04/2019] [Indexed: 11/09/2022] Open
Abstract
Background and Objectives Although it is well known that hypoxic culture conditions enhance proliferation of human mesenchymal stem cells, the exact mechanism is not fully understood. In this study, we investigated the effect of fibroblast growth factor (FGF)-17 from hypoxic human Wharton's Jelly-derived mesenchymal stem cells (hWJ-MSCs) on cell proliferation at late passages. Methods and Results hWJ-MSCs were cultured in α-MEM medium supplemented with 10% fetal bovine serum (FBS) in normoxic (21% O2) and hypoxic (1% O2) conditions. Protein antibody array was performed to analyze secretory proteins in conditioned medium from normoxic and hypoxic hWJ-MSCs at passage 10. Cell proliferation of hypoxic hWJ-MSCs was increased compared with normoxic hWJ-MSCs from passage 7 to 10, and expression of secretory FGF-17 was highly increased in conditioned medium from hypoxic hWJ-MSCs at passage 10. Knockdown of FGF-17 in hypoxic and normoxic hWJ-MSCs decreased cell proliferation, whereas treatment of hypoxic and normoxic hWJ-MSCs with recombinant protein FGF-17 increased their proliferation. Signal transduction of FGF-17 in hypoxic and normoxic hWJ-MSCs involved the ERK1/2 pathway. Cell phenotypes were not changed under either condition. Differentiation-related genes adiponectin, Runx2, and chondroadherin were downregulated in normoxic hWJ-MSCs treated with rFGF-17, and upregulated by siFGF-17. Expression of alkaline phosphatase (ALP), Runx2, and chondroadherin was upregulated in hypoxic hWJ-MSCs, and this effect was rescued by transfection with siFGF-17. Only chondroadherin was upregulated in hypoxic hWJ-MSCs with rFGF-17. Conclusions In hypoxic culture conditions, FGF-17 from hypoxic hWJ-MSCs contributes to the maintenance of high proliferation at late passages through the ERK1/2 pathway.
Collapse
Affiliation(s)
- Kyu-Hyun Han
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Min-Hee Kim
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Gun-Jae Jeong
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ae-Kyeong Kim
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jong Wook Chang
- Stem Cell & Regenerative Medicine Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Dong-Ik Kim
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
17
|
Safitri E, Hariadi M. Comparison of biotechnological culture of hypoxia-conditioned rat mesenchymal stem cells with conventional in vitroculture of normoxia-conditioned rat mesenchymal stem cells for testicular failure therapy with low libido in rats. Vet World 2019; 12:916-924. [PMID: 31440014 PMCID: PMC6661500 DOI: 10.14202/vetworld.2019.916-924] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/15/2019] [Indexed: 12/17/2022] Open
Abstract
Aim: Biotechnological culture of hypoxia-conditioned (CH) rat mesenchymal stem cells (rMSC-CH) for testicular failure therapy with low libido improves the functional outcome of the testicle for producing spermatogenic cells and repairs Leydig cells in rats (Rattus norvegicus). Materials and Methods: In the first group (T1), rats with testicular failure and low libido were injected with normoxia-conditioned (CN) rMSCs (21% oxygen); in the second group (T2), rats with testicular failure and low libido were injected with rMSC-CH (1% oxygen); in the negative control group (T−), rats with normal testis were injected with 0.1 mL phosphate-buffered saline (PBS); and in the sham group (TS), rats with testicular failure and low libido were injected with 0.1 mL of PBS. Results: Vascular endothelial growth factor expression, as the homing signal, in the groups T2, T−, T1, and TS was 2.00±0.5%, 2.95±0.4%, 0.33±0.48%, and 0±0%, respectively. The number of cluster of differentiation (CD)34+ and CD45+ cells in the groups T− and TS was <20%, whereas that in T1 and T2 groups was >30% and >80%, respectively, showing the mobilization of hematopoietic stem cells (HSCs). The number of spermatogenic cells (spermatogonia, primary spermatocytes, secondary spermatocytes, and spermatid) decreased significantly (p<0.05) in TS compared with that in T−, T1, and T2, whereas that in T2 did not show a significant (p>0.05) decrease compared to that in T−. The improvement in libido, based on the number of Leydig cells producing the hormone testosterone for libido expression, did not increase in T1, whereas T2 was able to maintain the number of Leydig cells significantly compared to that between TS and T1. Conclusion: rMSC-CH culture for testicular failure with low libido showed improvement in the functional outcome of the testicle and in repairing Leydig cells.
Collapse
Affiliation(s)
- Erma Safitri
- Department of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia.,Stem Cells Research Division, Institute Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Mas'ud Hariadi
- Department of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
18
|
Exposing immature hippocampal neurons to excitotoxins reveals distinct transcriptome and protein regulation with induction of common survival signaling pathways. Mol Cell Neurosci 2019; 98:54-69. [PMID: 31085233 DOI: 10.1016/j.mcn.2019.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/25/2019] [Accepted: 05/08/2019] [Indexed: 11/22/2022] Open
Abstract
Early life traumas lead to neuroprotection by preconditioning mechanisms. To determine which genes and pathways are most likely involved in specific adaptive effects, immature hippocampal cultures were exposed to a single high dose of glutamate (250 μM), NMDA (100 μM), or KA (300 μM) for 48 h (5-7 DIV) based on our prior "two hit" in vitro model of preconditioning. Transcriptome profiling and immunocytochemistry of gene candidates were performed 7 days later when cultured neurons mature (14 DIV). Many genes were up- and down- regulated involving distinct Ca2+-binding protein families, G-coupled proteins, various growth factors, synaptic vesicle docking factors, certain neurotransmitter receptors, heat shock, oxidative stress, and certain anti-apoptotic Bcl-2 gene members that influence neuronal survival. Immunohistochemistry showed a marked decrease in the number of Calb1 and Calm2 positive neurons following NMDA but not after glutamate exposure whereas ryanodine and Cav1.2 voltage gated channel expression was less affected. Survivors had marked increases in Calm2 immunostaining; however, high-density neural clusters observed in controls, were depleted after NMDA and partly diminished after glutamate. While NR1 mRNA expression was decreased in the microarray, specific antibodies revealed selective loss of the NR1C1 splice variant. Calm2 which can inactivate NMDA receptors by binding to C1 but not C2 regions of its NR1 subunit suggests that loss of the C1 splice variant will reduce co-regulation with Calm2 and alter NR1 trafficking, phosphorylation, and NMDA currents following early life NMDA exposure. A dramatic reduction in the density of GABAAα5 and GABAB receptor expressing neurons was observed after NMDA exposure but immunodensity measurements were unchanged as was the expression of the GABA synthesizing enzyme, GAD, suggesting that fast inhibitory neurotransmission and response to benzodiazepines and GABAB-mediated IPSPs may be preserved in matured survivors. Selective upregulation of Chat and CNRIP was detected after glutamate treatment suggesting this condition would decrease cholinergic and excitatory neurotransmission by decreasing Ach content and CB1 interacting protein function. This decrease likely contributes to memory and attention tasks deficits that follow a single early neurological insult. Diverse changes that follow overactivation of excitatory networks of immature neurons appear long-lasting or permanent and are expected to have profound effects on network function and adaptive responses to further insult.
Collapse
|
19
|
Ho CM, Chen YH, Ho SL, Chen HY, Chien CS, Chen JC, Hsiao CC, Chen HL, Hu RH, Shih DTB, Lee PH. Therapeutic efficacy of adipose-derived stromal vascular fraction cells is associated with CD34 positivity in acute-on-chronic liver failure. Cytotherapy 2019; 21:561-565. [PMID: 30922555 DOI: 10.1016/j.jcyt.2019.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 10/27/2022]
Affiliation(s)
- Cheng-Maw Ho
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan; College of Medicine, National Taiwan University, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Ya-Hui Chen
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Shu-Li Ho
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan; College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Anatomy and Cell Biology, National Yang-Ming University, Taipei, Taiwan
| | - Hung-Yen Chen
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan; College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chin-Sung Chien
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Jung-Cheu Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Chiang Hsiao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hui-Ling Chen
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan.
| | - Rey-Heng Hu
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan; College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Daniel Tzu-Bi Shih
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Huang Lee
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan; College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Surgery, E-Da Hospital, I-Shou University, Taiwan
| |
Collapse
|
20
|
Matsunaga K, Fujisawa K, Takami T, Burganova G, Sasai N, Matsumoto T, Yamamoto N, Sakaida I. NUPR1 acts as a pro-survival factor in human bone marrow-derived mesenchymal stem cells and is induced by the hypoxia mimetic reagent deferoxamine. J Clin Biochem Nutr 2019; 64:209-216. [PMID: 31138954 PMCID: PMC6529697 DOI: 10.3164/jcbn.18-112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 12/25/2018] [Indexed: 12/21/2022] Open
Abstract
Differences in the culturing conditions of mesenchymal stem cells used in regenerative medicine may affect their differentiation ability, genome instability, and therapeutic effects. In particular, bone marrow-derived mesenchymal stem cells cultured under hypoxia are known to proliferate while maintaining an undifferentiated state and the use of deferoxamine, a hypoxia mimetic reagent, has proven to be a suitable strategy to maintain the cells under hypoxic metabolic state. Here, the deferoxamine effects were investigated in mesenchymal stem cells to gain insights into the mechanisms regulating stem cell survival. A 12-h deferoxamine treatment reduced proliferation, oxygen consumption, mitochondrial activity, and ATP production. Microarray analysis revealed that deferoxamine enhanced the transcription of genes involved in glycolysis and the HIF1α pathway. Among the earliest changes, transcriptional variations were observed in HIF1α, NUPR1, and EGLN, in line with previous reports showing that short deferoxamine treatments induce substantial changes in mesenchymal stem cells glycolysis pathway. NUPR1, which is induced by stress and involved in autophagy-mediated survival, was upregulated by deferoxamine in a concentration-dependent manner. Consistently, NUPR1 knockdown was found to reduce cell proliferation and increase the proapoptotic effect of staurosporine, suggesting that deferoxamine-induced NUPR1 promotes mesenchymal stem cell survival and cytoprotective autophagy. Our findings may substantially contribute to improve the effectiveness of mesenchymal stem cell-based regenerative medicine.
Collapse
Affiliation(s)
- Kazuhito Matsunaga
- Department of Gastroenterology and Hepatology, Yamaguchi University School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan
| | - Koichi Fujisawa
- Department of Gastroenterology and Hepatology, Yamaguchi University School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan.,Center for Regenerative Medicine, Yamaguchi University School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan
| | - Taro Takami
- Department of Gastroenterology and Hepatology, Yamaguchi University School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan
| | - Guzel Burganova
- Department of Gastroenterology and Hepatology, Yamaguchi University School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan.,Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Nanami Sasai
- Department of Gastroenterology and Hepatology, Yamaguchi University School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan.,Department of Laboratory Science, Yamaguchi University School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan
| | - Toshihiko Matsumoto
- Department of Gastroenterology and Hepatology, Yamaguchi University School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan.,Department of Oncology and Laboratory Medicine, Yamaguchi University School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan
| | - Naoki Yamamoto
- Department of Gastroenterology and Hepatology, Yamaguchi University School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan
| | - Isao Sakaida
- Department of Gastroenterology and Hepatology, Yamaguchi University School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan.,Center for Regenerative Medicine, Yamaguchi University School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan
| |
Collapse
|
21
|
Salerno S, Curcio E, Bader A, Giorno L, Drioli E, De Bartolo L. Gas permeable membrane bioreactor for the co-culture of human skin derived mesenchymal stem cells with hepatocytes and endothelial cells. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.06.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
22
|
|
23
|
Iansante V, Dhawan A, Masmoudi F, Lee CA, Fernandez-Dacosta R, Walker S, Fitzpatrick E, Mitry RR, Filippi C. A New High Throughput Screening Platform for Cell Encapsulation in Alginate Hydrogel Shows Improved Hepatocyte Functions by Mesenchymal Stromal Cells Co-encapsulation. Front Med (Lausanne) 2018; 5:216. [PMID: 30140676 PMCID: PMC6095031 DOI: 10.3389/fmed.2018.00216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/16/2018] [Indexed: 12/31/2022] Open
Abstract
Hepatocyte transplantation has emerged as an alternative to liver transplant for liver disease. Hepatocytes encapsulated in alginate microbeads have been proposed for the treatment of acute liver failure, as they are able to provide hepatic functions while the liver regenerates. Furthermore, they do not require immunosuppression, as the alginate protects the hepatocytes from the recipient's immune cells. Mesenchymal stromal cells are very attractive candidates for regenerative medicine, being able to differentiate into cells of the mesenchymal lineages and having extensive proliferative ability. When co-cultured with hepatocytes in two-dimensional cultures, they exert a trophic role, drastically improving hepatocytes survival and functions. In this study we aimed to (i) devise a high throughput system (HTS) to allow testing of a variety of different parameters for cell encapsulation and (ii) using this HTS, investigate whether mesenchymal stromal cells could have beneficial effects on the hepatocytes when co-encapsulated in alginate microbeads. Using our HTS platform, we observed some improvement of hepatocyte behavior with MSCs, subsequently confirmed in the low throughput analysis of cell function in alginate microbeads. Therefore, our study shows that mesenchymal stromal cells may be a good option to improve the function of hepatocytes microbeads. Furthermore, the platform developed may be used for HTS studies on cell encapsulation, in which several conditions (e.g., number of cells, combinations of cells, alginate modifications) could be easily compared at the same time.
Collapse
Affiliation(s)
- Valeria Iansante
- Dhawan Lab at Mowat Labs, Institute of Liver Studies, King's College London, King's College Hospital, London, United Kingdom
| | - Anil Dhawan
- Paediatric Liver, GI and Nutrition Centre, King's College London, King's College Hospital, London, United Kingdom
| | - Fatma Masmoudi
- Dhawan Lab at Mowat Labs, Institute of Liver Studies, King's College London, King's College Hospital, London, United Kingdom
| | - Charlotte A Lee
- Dhawan Lab at Mowat Labs, Institute of Liver Studies, King's College London, King's College Hospital, London, United Kingdom
| | - Raquel Fernandez-Dacosta
- Dhawan Lab at Mowat Labs, Institute of Liver Studies, King's College London, King's College Hospital, London, United Kingdom
| | - Simon Walker
- Dhawan Lab at Mowat Labs, Institute of Liver Studies, King's College London, King's College Hospital, London, United Kingdom
| | - Emer Fitzpatrick
- Paediatric Liver, GI and Nutrition Centre, King's College London, King's College Hospital, London, United Kingdom
| | - Ragai R Mitry
- Dhawan Lab at Mowat Labs, Institute of Liver Studies, King's College London, King's College Hospital, London, United Kingdom
| | - Céline Filippi
- Dhawan Lab at Mowat Labs, Institute of Liver Studies, King's College London, King's College Hospital, London, United Kingdom
| |
Collapse
|
24
|
Chen C, Tang Q, Zhang Y, Yu M, Jing W, Tian W. Physioxia: a more effective approach for culturing human adipose-derived stem cells for cell transplantation. Stem Cell Res Ther 2018; 9:148. [PMID: 29793517 PMCID: PMC5968705 DOI: 10.1186/s13287-018-0891-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/18/2018] [Accepted: 05/01/2018] [Indexed: 02/05/2023] Open
Abstract
Background Although typically cultured at an atmospheric oxygen concentration (20–21%), adipose-derived stem cells (ASCs) reside under considerable low oxygen tension (physioxia) in vivo. In the present study, we explored whether and how physioxia could be a more effective strategy for culturing ASCs for transplantation. Methods After isolation, human ASCs were cultured under physioxia (2% O2) and hyperoxia (20% O2) until assayed. WST-8, Transwell, tube formation, β-galactosidase staining, and annexin V-FITC/PI assays were used to evaluate cell proliferation, migration, angiogenesis, senescence, and apoptosis, respectively. Survivability was determined by an ischemia model in vitro and nude mouse model in vivo, and the underlying metabolic alterations were investigated by fluorescence staining, flow cytometry, and real-time polymerase chain reaction. Results Compared with those in the hyperoxia group, cells in the physioxia group exhibited increased proliferation, migration, and angiogenesis, and decreased senescence and apoptosis. The increased survival rate of ASCs cultured in physioxia was found both in ischemia model in vitro and in vivo. The underlying metabolic reprogramming was also monitored and showed decreased mitochondrial mass, alkalized intracellular pH, and increased glucose uptake and glycogen synthesis. Conclusions These results suggest that physioxia is a more effective environment in which to culture ASCs for transplantation owing to the maintenance of native bioactivities without injury by hyperoxia.
Collapse
Affiliation(s)
- Chang Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Qi Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Yan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Mei Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Wei Jing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China. .,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China. .,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
25
|
Lv J, Liang Y, Tu Y, Chen J, Xie Y. Hypoxic preconditioning reduces propofol-induced neuroapoptosis via regulation of Bcl-2 and Bax and downregulation of activated caspase-3 in the hippocampus of neonatal rats. Neurol Res 2018; 40:767-773. [PMID: 29790425 DOI: 10.1080/01616412.2018.1477545] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Evidence has shown that propofol may cause widespread apoptotic neurodegeneration. Hypoxic preconditioning (HPC) was previously demonstrated to provide neuroprotection and brain recovery from either acute or chronic neurodegeneration in several cellular and animal models. Therefore, the present study was designed to investigate the protective effects of hypoxic preconditioning on apoptosis caused by propofol in neonatal rats. METHODS Propofol (100 mg/kg) was given to 7-day-old (P7) Sprague Dawley pups. Before the propofol injection, hypoxic preconditioning was administered by subjecting rats to five cycles of 10 min of hypoxia (8% O2) and 10 min of normoxia (21% O2), then 2 h of room air. We detected neuronal structure changes and apoptosis by hematoxylin and eosin (HE) staining and TUNEL assay, respectively. Bcl-2, Bax and cleaved-caspase-3 levels were quantified using Western blotting and immunohistochemistry. RESULT After treatment with propofol, Bcl-2 levels decreased and Bax and cleaved-caspase-3 levels increased. However, our results suggest that hypoxic preconditioning could reverse this change. Conclusion: Our results indicate that pretreatment with hypoxic preconditioning prevents propofol-induced neuroapoptosis by increasing the levels of Bcl-2 and decreasing the levels of Bax and cleaved-caspase-3.
Collapse
Affiliation(s)
- Jing Lv
- a Department of Anesthesiology , The First Affiliated Hospital of Guangxi Medical University , Nanning , China
| | - Yubing Liang
- b Department of Anesthesiology , The Affiliated tumor hospital of Guangxi Medical University , Nanning , China
| | - Youbing Tu
- a Department of Anesthesiology , The First Affiliated Hospital of Guangxi Medical University , Nanning , China
| | - Jing Chen
- a Department of Anesthesiology , The First Affiliated Hospital of Guangxi Medical University , Nanning , China
| | - Yubo Xie
- a Department of Anesthesiology , The First Affiliated Hospital of Guangxi Medical University , Nanning , China
| |
Collapse
|
26
|
Fiori A, Terlizzi V, Kremer H, Gebauer J, Hammes HP, Harmsen MC, Bieback K. Mesenchymal stromal/stem cells as potential therapy in diabetic retinopathy. Immunobiology 2018; 223:729-743. [PMID: 29402461 DOI: 10.1016/j.imbio.2018.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/13/2017] [Accepted: 01/15/2018] [Indexed: 02/06/2023]
Abstract
Diabetic retinopathy (DR) is a multifactorial microvascular disease induced by hyperglycemia and subsequent metabolic abnormalities. The resulting cell stress causes a sequela of events that ultimately can lead to severe vision impairment and blindness. The early stages are characterized by activation of glia and loss of pericytes, endothelial cells (EC) and neuronal cells. The integrity of the retinal microvasculature becomes affected, and, as a possible late response, macular edema may develop as a common reason for vision loss in patients with non-proliferative DR. Moreover, the local ischemia can trigger vasoproliferation leading to vision-threating proliferative DR (PDR) in humans. Available treatment options include control of metabolic and hemodynamic factors. Timely intervention of advanced DR stages with laser photocoagulation, intraocular anti-vascular endothelial growth factor (VEGF) or glucocorticoid drugs can reduce vision loss. As the pathology involves cell loss of both the vascular and neuroglial compartments, cell replacement strategies by stem and progenitor cells have gained considerable interest in the past years. Compared to other disease entities, so far little is known about the efficacy and potential mode of action of cell therapy in treatment of DR. In preclinical models of DR different cell types have been applied ranging from embryonic or induced pluripotent stem cells, hematopoietic stem cells, and endothelial progenitor cells to mesenchymal stromal cells (MSC). The latter cell population can combine various modes of action (MoA), thus they are among the most intensely tested cell types in cell therapy. The aim of this review is to discuss the rationale for using MSC as potential cell therapy to treat DR. Accordingly, we will revise identified MoA of MSCs and speculate how these may support the repair of the damaged retina.
Collapse
Affiliation(s)
- Agnese Fiori
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg - Hessen, Germany
| | - Vincenzo Terlizzi
- Dept. Endocrinology, 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Germany; University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Lab for Cardiovascular Regenerative Medicine (CAVAREM), Groningen, The Netherlands
| | - Heiner Kremer
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg - Hessen, Germany
| | - Julian Gebauer
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg - Hessen, Germany
| | - Hans-Peter Hammes
- Dept. Endocrinology, 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Martin C Harmsen
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Lab for Cardiovascular Regenerative Medicine (CAVAREM), Groningen, The Netherlands
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg - Hessen, Germany.
| |
Collapse
|
27
|
Beneficial Effects of Human Mesenchymal Stromal Cells on Porcine Hepatocyte Viability and Albumin Secretion. J Immunol Res 2018; 2018:1078547. [PMID: 29577046 PMCID: PMC5822000 DOI: 10.1155/2018/1078547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/18/2017] [Accepted: 11/01/2017] [Indexed: 12/30/2022] Open
Abstract
Porcine hepatocytes transplanted during acute liver failure might support metabolic functions until the diseased liver recovers its function. Here, we isolated high numbers of viable pig hepatocytes and evaluated hepatocyte functionality after encapsulation. We further investigated whether coculture and coencapsulation of hepatocytes with human multipotent mesenchymal stromal cells (MSC) are beneficial on hepatocyte function. Livers from 10 kg pigs (n = 9) were harvested, and hepatocytes were isolated from liver suspensions for microencapsulation using alginate and poly(ethylene-glycol)- (PEG-) grafted alginate hydrogels, either alone or in combination with MSC. Viability, albumin secretion, and diazepam catabolism of hepatocytes were measured for one week. 9.2 ± 3.6 × 109 hepatocytes with 95.2 ± 3.1% viability were obtained after isolation. At day 3, free hepatocytes displayed 99% viability, whereas microencapsulation in alginate and PEG-grafted alginate decreased viability to 62% and 48%, respectively. Albumin secretion and diazepam catabolism occurred in free and microencapsulated hepatocytes. Coencapsulation of hepatocytes with MSC significantly improved viability and albumin secretion at days 4 and 8 (p < 0.05). Coculture with MSC significantly increased and prolonged albumin secretion. In conclusion, we established a protocol for isolation and microencapsulation of high numbers of viable pig hepatocytes and demonstrated that the presence of MSC is beneficial for the viability and function of porcine hepatocytes.
Collapse
|
28
|
Li JR, Qu TT. Into the eyes of bone marrow-derived mesenchymal stem cells therapy for myocardial infarction and other diseases. Stem Cell Investig 2017; 4:69. [PMID: 28920062 DOI: 10.21037/sci.2017.08.01] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/13/2017] [Indexed: 12/15/2022]
Abstract
Applications of bone marrow-derived mesenchymal stem cells (BM-MSCs) have been documented for diseases occur in the sports system, the central nervous system, the cardiovascular system etc. However, poor viability of donor stem cells after transplantation limits their therapeutic efficiency. Although the autophagy theory has been reported, the underlying mechanisms are still poorly understood. Isolation and culture methods of mesenchymal stem cells are currently concentrate on four ways. Overall, BM-MSCs have both important research significance and clinical application value in cell replacement therapy, gene therapy and reconstruction of tissues as well as organs especially for myocardial infarction (MI). In this article, we review the biological characteristics of BM-MSCs and its research progress especially in MI.
Collapse
Affiliation(s)
- Jian-Rui Li
- Department of Orthopedics, Dongfang Hospital Affiliated to Tongji University, Shanghai 200120, China
| | - Ting-Ting Qu
- Department of Orthopedics, Dongfang Hospital Affiliated to Tongji University, Shanghai 200120, China
| |
Collapse
|
29
|
Zhang Z, Yang C, Shen M, Yang M, Jin Z, Ding L, Jiang W, Yang J, Chen H, Cao F, Hu T. Autophagy mediates the beneficial effect of hypoxic preconditioning on bone marrow mesenchymal stem cells for the therapy of myocardial infarction. Stem Cell Res Ther 2017; 8:89. [PMID: 28420436 PMCID: PMC5395756 DOI: 10.1186/s13287-017-0543-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/04/2017] [Accepted: 03/23/2017] [Indexed: 12/12/2022] Open
Abstract
Background Stem cell therapy has emerged as a promising therapeutic strategy for myocardial infarction (MI). However, the poor viability of transplanted stem cells hampers their therapeutic efficacy. Hypoxic preconditioning (HPC) can effectively promote the survival of stem cells. The aim of this study was to investigate whether HPC improved the functional survival of bone marrow mesenchymal stem cells (BM-MSCs) and increased their cardiac protective effect. Methods BM-MSCs, isolated from Tg(Fluc-egfp) mice which constitutively express both firefly luciferase (Fluc) and enhanced green fluorescent protein (eGFP), were preconditioned with HPC (1% O2) for 12 h, 24 h, 36 h, and 48 h, respectively, followed by 24 h of hypoxia and serum deprivation (H/SD) injury. Results HPC dose-dependently increased the autophagy in BM-MSCs. However, the protective effects of HPC for 24 h are most pronounced. Moreover, hypoxic preconditioned BM-MSCs (HPCMSCs) and nonhypoxic preconditioned BM-MSCs (NPCMSCs) were transplanted into infarcted hearts. Longitudinal in vivo bioluminescence imaging (BLI) and immunofluorescent staining revealed that HPC enhanced the survival of engrafted BM-MSCs. Furthermore, HPCMSCs significantly reduced fibrosis, decreased apoptotic cardiomyocytes, and preserved heart function. However, the beneficial effect of HPC was abolished by autophagy inhibition with 3-methyladenine (3-MA) and Atg7siRNA. Conclusion This study demonstrates that HPC may improve the functional survival and the therapeutic efficiencies of engrafted BM-MSCs, at least in part through autophagy regulation. Hypoxic preconditioning may serve as a promising strategy for optimizing cell-based cardiac regenerative therapy. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0543-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Cardiology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Chao Yang
- Department of Blood Transfusion, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Mingzhi Shen
- Department of Cardiology, Hainan Branch of PLA General Hospital, Sanya, 572013, China
| | - Ming Yang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 201306, China.,School of Basic Medical Sciences, Taishan Medical University, Taian, Shandong, 271000, China
| | - Zhitao Jin
- Department of Cardiology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Liping Ding
- Department of Cardiology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Wei Jiang
- Department of Cardiology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Junke Yang
- Department of Cardiology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Haixu Chen
- Core Laboratory of Translational Medicine, Institute of Geriatrics, PLA general Hospital, Beijing, 100853, China
| | - Feng Cao
- Department of Cardiology, The General Hospital of Chinese People's Liberation Army, Beijing, 100853, China.
| | - Taohong Hu
- Department of Cardiology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China.
| |
Collapse
|
30
|
Parrilli A, Giavaresi G, Ferrari A, Salamanna F, Desando G, Grigolo B, Martini L, Fini M. Subchondral bone response to injected adipose-derived stromal cells for treating osteoarthritis using an experimental rabbit model. Biotech Histochem 2017; 92:201-211. [DOI: 10.1080/10520295.2017.1292366] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
31
|
Riis S, Stensballe A, Emmersen J, Pennisi CP, Birkelund S, Zachar V, Fink T. Mass spectrometry analysis of adipose-derived stem cells reveals a significant effect of hypoxia on pathways regulating extracellular matrix. Stem Cell Res Ther 2016; 7:52. [PMID: 27075204 PMCID: PMC4831147 DOI: 10.1186/s13287-016-0310-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/09/2016] [Accepted: 03/31/2016] [Indexed: 12/21/2022] Open
Abstract
Background Adipose-derived stem cells (ASCs) are being increasingly recognized for their potential to promote tissue regeneration and wound healing. These effects appear to be partly mediated by paracrine signaling pathways, and are enhanced during hypoxia. Mass spectrometry (MS) is a valuable tool for proteomic profiling of cultured ASCs, which may help to reveal the identity of the factors secreted by the cells under different conditions. However, serum starvation which is essentially required to obtain samples compatible with secretome analysis by MS can have a significant influence on ASCs. Here, we present a novel and optimized culturing approach based on the use of a clinically relevant serum-free formulation, which was used to assess the effects of hypoxia on the ASC proteomic profile. Methods Human ASCs from three human donors were expanded in StemPro® MSC SFM XenoFree medium. Cells were cultured for 24 h in serum- and albumin-free supplements in either normoxic (20 %) or hypoxic (1 %) atmospheres, after which the cells and conditioned medium were collected, subfractionated, and analyzed using MS. Prior to analysis, the secreted proteins were further subdivided into a secretome (>30 kDa) and a peptidome (3–30 kDa) fraction. Results MS analysis revealed the presence of 342, 98, and 3228 proteins in the normoxic ASC secretome, peptidome, and proteome, respectively. A relatively small fraction of the proteome (9.6 %) was significantly affected by hypoxia, and the most regulated proteins were those involved in extracellular matrix (ECM) synthesis and cell metabolism. No proteins were found to be significantly modulated by hypoxic treatment across all cultures for the secretome and peptidome samples. Conclusions This study highlights ECM remodeling as a significant mechanism contributing to the ASC regenerative effect after hypoxic preconditioning, and further underscores considerable inter-individual differences in ASC response to hypoxia. The novel culture paradigm provides a basis for future proteomic studies under conditions that do not induce a stress response, so that the best responders can be accurately identified for prospective therapeutic use. Data are available via ProteomeXchange with identifier PXD003550. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0310-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Simone Riis
- Department of Health Science and Technology, Laboratory for Stem Cell Research, Aalborg University, Fredrik Bajers Vej 3B, Aalborg, 9220, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Laboratory for Medical Mass Spectrometry, Aalborg University, Aalborg, Denmark
| | - Jeppe Emmersen
- Department of Health Science and Technology, Laboratory for Stem Cell Research, Aalborg University, Fredrik Bajers Vej 3B, Aalborg, 9220, Denmark
| | - Cristian Pablo Pennisi
- Department of Health Science and Technology, Laboratory for Stem Cell Research, Aalborg University, Fredrik Bajers Vej 3B, Aalborg, 9220, Denmark
| | - Svend Birkelund
- Department of Health Science and Technology, Laboratory for Medical Mass Spectrometry, Aalborg University, Aalborg, Denmark
| | - Vladimir Zachar
- Department of Health Science and Technology, Laboratory for Stem Cell Research, Aalborg University, Fredrik Bajers Vej 3B, Aalborg, 9220, Denmark
| | - Trine Fink
- Department of Health Science and Technology, Laboratory for Stem Cell Research, Aalborg University, Fredrik Bajers Vej 3B, Aalborg, 9220, Denmark.
| |
Collapse
|