1
|
Larionov A, Hammer CM, Fiedler K, Filgueira L. Dynamics of Endothelial Cell Diversity and Plasticity in Health and Disease. Cells 2024; 13:1276. [PMID: 39120307 PMCID: PMC11312403 DOI: 10.3390/cells13151276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
Endothelial cells (ECs) are vital structural units of the cardiovascular system possessing two principal distinctive properties: heterogeneity and plasticity. Endothelial heterogeneity is defined by differences in tissue-specific endothelial phenotypes and their high predisposition to modification along the length of the vascular bed. This aspect of heterogeneity is closely associated with plasticity, the ability of ECs to adapt to environmental cues through the mobilization of genetic, molecular, and structural alterations. The specific endothelial cytoarchitectonics facilitate a quick structural cell reorganization and, furthermore, easy adaptation to the extrinsic and intrinsic environmental stimuli, known as the epigenetic landscape. ECs, as universally distributed and ubiquitous cells of the human body, play a role that extends far beyond their structural function in the cardiovascular system. They play a crucial role in terms of barrier function, cell-to-cell communication, and a myriad of physiological and pathologic processes. These include development, ontogenesis, disease initiation, and progression, as well as growth, regeneration, and repair. Despite substantial progress in the understanding of endothelial cell biology, the role of ECs in healthy conditions and pathologies remains a fascinating area of exploration. This review aims to summarize knowledge and concepts in endothelial biology. It focuses on the development and functional characteristics of endothelial cells in health and pathological conditions, with a particular emphasis on endothelial phenotypic and functional heterogeneity.
Collapse
Affiliation(s)
- Alexey Larionov
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Christian Manfred Hammer
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Klaus Fiedler
- Independent Researcher, CH-1700 Fribourg, Switzerland;
| | - Luis Filgueira
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| |
Collapse
|
2
|
Grath A, Dai G. SOX17/ETV2 improves the direct reprogramming of adult fibroblasts to endothelial cells. CELL REPORTS METHODS 2024; 4:100732. [PMID: 38503291 PMCID: PMC10985233 DOI: 10.1016/j.crmeth.2024.100732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/07/2023] [Accepted: 02/23/2024] [Indexed: 03/21/2024]
Abstract
An autologous source of vascular endothelial cells (ECs) is valuable for vascular regeneration and tissue engineering without the concern of immune rejection. The transcription factor ETS variant 2 (ETV2) has been shown to directly convert patient fibroblasts into vascular EC-like cells. However, reprogramming efficiency is low and there are limitations in EC functions, such as eNOS expression. In this study, we directly reprogram adult human dermal fibroblasts into reprogrammed ECs (rECs) by overexpressing SOX17 in conjunction with ETV2. We find several advantages to rEC generation using this approach, including improved reprogramming efficiency, increased enrichment of EC genes, formation of large blood vessels carrying blood from the host, and, most importantly, expression of eNOS in vivo. From these results, we present an improved method to reprogram adult fibroblasts into functional ECs and posit ideas for the future that could potentially further improve the reprogramming process.
Collapse
Affiliation(s)
- Alexander Grath
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Guohao Dai
- Department of Bioengineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
3
|
Li Y, Song D, Yu Z, Zhang Y, Liu Z, Yan T. Effect and mechanism of hypoxia on differentiation of porcine-induced pluripotent stem cells into vascular endothelial cells. In Vitro Cell Dev Biol Anim 2024; 60:9-22. [PMID: 38148354 DOI: 10.1007/s11626-023-00833-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/14/2023] [Indexed: 12/28/2023]
Abstract
Pigs are similar to humans in organ size and physiological function, and are considered as good models for studying cardiovascular diseases. The study of porcine-induced pluripotent stem cells (piPSC) differentiating into vascular endothelial cells (EC) is expected to open up a new way of obtaining high-quality seed cells. Given that the hypoxic environment has an important role in the differentiation process of vascular EC, this work intends to establish a hypoxia-induced differentiation system of piPSC into vascular EC. There is evidence that the hypoxia microenvironment in the initial stage could significantly improve differentiation efficiency. Further study suggests that the hypoxia culture system supports a combined effect of hypoxia inducible factors and their associated regulatory molecules, such as HIF-1α, VEGFA, FGF2, LDH-A, and PDK1, which can efficiently promote the lineage-specific differentiation of piPSC into EC. Most notably, the high level of ETV2 after 4 d of hypoxic treatment indicates that it possibly plays an important role in the promoting process of EC differentiation. The research is expected to help the establishment of new platforms for piPSC directional induction research, so as to obtain adequate seed cells with ideal phenotype and functionality.
Collapse
Affiliation(s)
- Yimei Li
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Danyang Song
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Zhuoran Yu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yu Zhang
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Tingsheng Yan
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China.
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
4
|
Kim TM, Lee RH, Kim MS, Lewis CA, Park C. ETV2/ER71, the key factor leading the paths to vascular regeneration and angiogenic reprogramming. Stem Cell Res Ther 2023; 14:41. [PMID: 36927793 PMCID: PMC10019431 DOI: 10.1186/s13287-023-03267-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Extensive efforts have been made to achieve vascular regeneration accompanying tissue repair for treating vascular dysfunction-associated diseases. Recent advancements in stem cell biology and cell reprogramming have opened unforeseen opportunities to promote angiogenesis in vivo and generate autologous endothelial cells (ECs) for clinical use. We have, for the first time, identified a unique endothelial-specific transcription factor, ETV2/ER71, and revealed its essential role in regulating endothelial cell generation and function, along with vascular regeneration and tissue repair. Furthermore, we and other groups have demonstrated its ability to directly reprogram terminally differentiated non-ECs into functional ECs, proposing ETV2/ER71 as an effective therapeutic target for vascular diseases. In this review, we discuss the up-to-date status of studies on ETV2/ER71, spanning from its molecular mechanism to vasculo-angiogenic role and direct cell reprogramming toward ECs. Furthermore, we discuss future directions to deploy the clinical potential of ETV2/ER71 as a novel and potent target for vascular disorders such as cardiovascular disease, neurovascular impairment and cancer.
Collapse
Affiliation(s)
- Tae Min Kim
- Graduate School of International Agricultural Technology and Institutes of Green-Bio Science and Technology, Seoul National University, 1447 Pyeongchang-daero, Pyeongchang, Gangwon-do, 25354, Republic of Korea.
| | - Ra Ham Lee
- Department of Molecular and Cellular Physiology, Louisiana State University Health Science Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Min Seong Kim
- Department of Molecular and Cellular Physiology, Louisiana State University Health Science Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Chloe A Lewis
- Department of Molecular and Cellular Physiology, Louisiana State University Health Science Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Changwon Park
- Department of Molecular and Cellular Physiology, Louisiana State University Health Science Center, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| |
Collapse
|
5
|
Sellahewa SG, Li JY, Xiao Q. Updated Perspectives on Direct Vascular Cellular Reprogramming and Their Potential Applications in Tissue Engineered Vascular Grafts. J Funct Biomater 2022; 14:21. [PMID: 36662068 PMCID: PMC9866165 DOI: 10.3390/jfb14010021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Cardiovascular disease is a globally prevalent disease with far-reaching medical and socio-economic consequences. Although improvements in treatment pathways and revascularisation therapies have slowed disease progression, contemporary management fails to modulate the underlying atherosclerotic process and sustainably replace damaged arterial tissue. Direct cellular reprogramming is a rapidly evolving and innovative tissue regenerative approach that holds promise to restore functional vasculature and restore blood perfusion. The approach utilises cell plasticity to directly convert somatic cells to another cell fate without a pluripotent stage. In this narrative literature review, we comprehensively analyse and compare direct reprogramming protocols to generate endothelial cells, vascular smooth muscle cells and vascular progenitors. Specifically, we carefully examine the reprogramming factors, their molecular mechanisms, conversion efficacies and therapeutic benefits for each induced vascular cell. Attention is given to the application of these novel approaches with tissue engineered vascular grafts as a therapeutic and disease-modelling platform for cardiovascular diseases. We conclude with a discussion on the ethics of direct reprogramming, its current challenges, and future perspectives.
Collapse
Affiliation(s)
- Saneth Gavishka Sellahewa
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Jojo Yijiao Li
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Qingzhong Xiao
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
- Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
6
|
Cui X, Li X, He Y, Yu J, Dong N, Zhao RC. Slight up-regulation of Kir2.1 channel promotes endothelial progenitor cells to transdifferentiate into a pericyte phenotype by Akt/mTOR/Snail pathway. J Cell Mol Med 2021; 25:10088-10100. [PMID: 34592781 PMCID: PMC8572793 DOI: 10.1111/jcmm.16944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 08/22/2021] [Accepted: 09/19/2021] [Indexed: 12/27/2022] Open
Abstract
It was shown that endothelial progenitor cells (EPCs) have bidirectional differentiation potential and thus perform different biological functions. The purpose of this study was to investigate the effects of slight up‐regulation of the Kir2.1 channel on EPC transdifferentiation and the potential mechanism on cell function and transformed cell type. First, we found that the slight up‐regulation of Kir2.1 expression promoted the expression of the stem cell stemness factors ZFX and NS and inhibited the expression of senescence‐associated β‐galactosidase. Further studies showed the slightly increased expression of Kir2.1 could also improve the expression of pericyte molecular markers NG2, PDGFRβ and Desmin. Moreover, adenovirus‐mediated Kir2.1 overexpression had an enhanced contractile response to norepinephrine of EPCs. These results suggest that the up‐regulated expression of the Kir2.1 channel promotes EPC transdifferentiation into a pericyte phenotype. Furthermore, the mechanism of EPC transdifferentiation to mesenchymal cells (pericytes) was found to be closely related to the channel functional activity of Kir2.1 and revealed that this channel could promote EPC EndoMT by activating the Akt/mTOR/Snail signalling pathway. Overall, this study suggested that in the early stage of inflammatory response, regulating the Kir2.1 channel expression affects the biological function of EPCs, thereby determining the maturation and stability of neovascularization.
Collapse
Affiliation(s)
- Xiaodong Cui
- Department of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University Medical College, Qingdao University, Qingdao, China.,School of Basic Medicine Sciences, Weifang Medical University, Weifang, China
| | - Xiaoxia Li
- Department of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University Medical College, Qingdao University, Qingdao, China
| | - Yanting He
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, China
| | - Jie Yu
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, China
| | - Naijun Dong
- Department of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University Medical College, Qingdao University, Qingdao, China
| | - Robert Chunhua Zhao
- Department of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
7
|
HORISAWA K, SUZUKI A. Direct cell-fate conversion of somatic cells: Toward regenerative medicine and industries. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:131-158. [PMID: 32281550 PMCID: PMC7247973 DOI: 10.2183/pjab.96.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cells of multicellular organisms have diverse characteristics despite having the same genetic identity. The distinctive phenotype of each cell is determined by molecular mechanisms such as epigenetic changes that occur throughout the lifetime of an individual. Recently, technologies that enable modification of the fate of somatic cells have been developed, and the number of studies using these technologies has increased drastically in the last decade. Various cell types, including neuronal cells, cardiomyocytes, and hepatocytes, have been generated using these technologies. Although most direct reprogramming methods employ forced transduction of a defined sets of transcription factors to reprogram cells in a manner similar to induced pluripotent cell technology, many other strategies, such as methods utilizing chemical compounds and microRNAs to change the fate of somatic cells, have also been developed. In this review, we summarize transcription factor-based reprogramming and various other reprogramming methods. Additionally, we describe the various industrial applications of direct reprogramming technologies.
Collapse
Affiliation(s)
- Kenichi HORISAWA
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Atsushi SUZUKI
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
- Correspondence should be addressed: A. Suzuki, Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan (e-mail: )
| |
Collapse
|
8
|
Bioactive Molecules for Skin Repair and Regeneration: Progress and Perspectives. Stem Cells Int 2019; 2019:6789823. [PMID: 32082386 PMCID: PMC7012201 DOI: 10.1155/2019/6789823] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/25/2019] [Indexed: 12/26/2022] Open
Abstract
Skin regeneration is a vexing problem in the field of regenerative medicine. A bioactive molecule-based strategy has been frequently used in skin wound healing in recent years. Bioactive molecules are practical tools for regulating cellular processes and have been applied to control cellular differentiation, dedifferentiation, and reprogramming. In this review, we focus on recent progress in the use of bioactive molecules in skin regenerative medicine, by which desired cell types can be generated in vitro for cell therapy and conventional therapeutics can be developed to repair and regenerate skin in vivo through activation of the endogenous repairing potential. We further prospect that the bioactive molecule-base method might be one of the promising strategies to achieve in situ skin regeneration in the future.
Collapse
|
9
|
Lee DH, Kim TM, Kim JK, Park C. ETV2/ER71 Transcription Factor as a Therapeutic Vehicle for Cardiovascular Disease. Theranostics 2019; 9:5694-5705. [PMID: 31534512 PMCID: PMC6735401 DOI: 10.7150/thno.35300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases have long been the leading cause of mortality and morbidity in the United States as well as worldwide. Despite numerous efforts over the past few decades, the number of the patients with cardiovascular disease still remains high, thereby necessitating the development of novel therapeutic strategies equipped with a better understanding of the biology of the cardiovascular system. Recently, the ETS transcription factor, ETV2 (also known as ER71), has been recognized as a master regulator of the development of the cardiovascular system and plays an important role in pathophysiological angiogenesis and the endothelial cell reprogramming. Here, we discuss the detailed mechanisms underlying ETV2/ER71-regulated cardiovascular lineage development. In addition, recent reports on the novel functions of ETV2/ER71 in neovascularization and direct cell reprogramming are discussed with a focus on its therapeutic potential for cardiovascular diseases.
Collapse
|
10
|
Yu JSL, Palano G, Lim C, Moggio A, Drowley L, Plowright AT, Bohlooly‐Y M, Rosen BS, Hansson EM, Wang Q, Yusa K. CRISPR-Knockout Screen Identifies Dmap1 as a Regulator of Chemically Induced Reprogramming and Differentiation of Cardiac Progenitors. Stem Cells 2019; 37:958-972. [PMID: 30932271 PMCID: PMC6767549 DOI: 10.1002/stem.3012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 02/11/2019] [Accepted: 03/02/2019] [Indexed: 12/12/2022]
Abstract
Direct in vivo reprogramming of cardiac fibroblasts into myocytes is an attractive therapeutic intervention in resolving myogenic deterioration. Current transgene-dependent approaches can restore cardiac function, but dependence on retroviral delivery and persistent retention of transgenic sequences are significant therapeutic hurdles. Chemical reprogramming has been established as a legitimate method to generate functional cell types, including those of the cardiac lineage. Here, we have extended this approach to generate progenitor cells that can differentiate into endothelial cells and cardiomyocytes using a single inhibitor protocol. Depletion of terminally differentiated cells and enrichment for proliferative cells result in a second expandable progenitor population that can robustly give rise to myofibroblasts and smooth muscle. Deployment of a genome-wide knockout screen with clustered regularly interspaced short palindromic repeats-guide RNA library to identify novel mediators that regulate the reprogramming revealed the involvement of DNA methyltransferase 1-associated protein 1 (Dmap1). Loss of Dmap1 reduced promoter methylation, increased the expression of Nkx2-5, and enhanced the retention of self-renewal, although further differentiation is inhibited because of the sustained expression of Cdh1. Our results hence establish Dmap1 as a modulator of cardiac reprogramming and myocytic induction. Stem Cells 2019;37:958-972.
Collapse
MESH Headings
- Animals
- Benzamides/pharmacology
- CRISPR-Cas Systems
- Cadherins/genetics
- Cadherins/metabolism
- Cell Differentiation/drug effects
- Cell Proliferation/drug effects
- Cellular Reprogramming/drug effects
- Cellular Reprogramming/genetics
- Dioxoles/pharmacology
- Fibroblasts/cytology
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Gene Editing/methods
- Homeobox Protein Nkx-2.5/genetics
- Homeobox Protein Nkx-2.5/metabolism
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth/cytology
- Muscle, Smooth/metabolism
- Myocardium/cytology
- Myocardium/metabolism
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Primary Cell Culture
- Pyrazoles/pharmacology
- Pyridines/pharmacology
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Stem Cells/cytology
- Stem Cells/drug effects
- Stem Cells/metabolism
Collapse
Affiliation(s)
- Jason S. L. Yu
- Stem Cell Genetics, Wellcome Sanger InstituteHinxton, CambridgeUnited Kingdom
- Department of Cell BiologyThe Francis Crick InstituteLondonUnited Kingdom
| | - Giorgia Palano
- KI/AZ Integrated CardioMetabolic Center (ICMC), Department of MedicineKarolinska InstitutetHuddingeSweden
| | - Cindy Lim
- Bioscience Heart Failure, Cardiovascular, Renal and Metabolism, IMED Biotech UnitAstraZenecaGothenburgSweden
| | - Aldo Moggio
- KI/AZ Integrated CardioMetabolic Center (ICMC), Department of MedicineKarolinska InstitutetHuddingeSweden
| | - Lauren Drowley
- Bioscience Heart Failure, Cardiovascular, Renal and Metabolism, IMED Biotech UnitAstraZenecaGothenburgSweden
| | - Alleyn T. Plowright
- Medicinal Chemistry, Cardiovascular, Renal and Metabolism, IMED Biotech UnitAstraZenecaGothenburgSweden
| | | | - Barry S. Rosen
- Discovery Sciences, IMED Biotech UnitAstraZenecaGothenburgSweden
| | - Emil M. Hansson
- KI/AZ Integrated CardioMetabolic Center (ICMC), Department of MedicineKarolinska InstitutetHuddingeSweden
| | - Qing‐Dong Wang
- Bioscience Heart Failure, Cardiovascular, Renal and Metabolism, IMED Biotech UnitAstraZenecaGothenburgSweden
| | - Kosuke Yusa
- Stem Cell Genetics, Wellcome Sanger InstituteHinxton, CambridgeUnited Kingdom
- Stem Cell GeneticsInstitute for Frontier Life and Medical Sciences, Kyoto UniversityKyotoJapan
| |
Collapse
|
11
|
Grath A, Dai G. Direct cell reprogramming for tissue engineering and regenerative medicine. J Biol Eng 2019; 13:14. [PMID: 30805026 PMCID: PMC6373087 DOI: 10.1186/s13036-019-0144-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/27/2019] [Indexed: 02/06/2023] Open
Abstract
Direct cell reprogramming, also called transdifferentiation, allows for the reprogramming of one somatic cell type directly into another, without the need to transition through an induced pluripotent state. Thus, it is an attractive approach to develop novel tissue engineering applications to treat diseases and injuries where there is a shortage of proliferating cells for tissue repair. In certain tissue damage, terminally differentiated somatic cells lose their ability to proliferate, as a result, damaged tissues cannot heal by themselves. Examples of these scenarios include myocardial infarctions, neurodegenerative diseases, and cartilage injuries. Transdifferentiation is capable of reprogramming cells that are abundant in the body into desired cell phenotypes that are able to restore tissue function in damaged areas. Therefore, direct cell reprogramming is a promising direction in the cell and tissue engineering and regenerative medicine fields. In recent years, several methods for transdifferentiation have been developed, ranging from the overexpression of transcription factors via viral vectors, to small molecules, to clustered regularly interspaced short palindromic repeats (CRISPR) and its associated protein (Cas9) for both genetic and epigenetic reprogramming. Overexpressing transcription factors by use of a lentivirus is currently the most prevalent technique, however it lacks high reprogramming efficiencies and can pose problems when transitioning to human subjects and clinical trials. CRISPR/Cas9, fused with proteins that modulate transcription, has been shown to improve efficiencies greatly. Transdifferentiation has successfully generated many cell phenotypes, including endothelial cells, skeletal myocytes, neuronal cells, and more. These cells have been shown to emulate mature adult cells such that they are able to mimic major functions, and some are capable of promoting regeneration of damaged tissue in vivo. While transdifferentiated cells have not yet seen clinical use, they have had promise in mice models, showing success in treating liver disease and several brain-related diseases, while also being utilized as a cell source for tissue engineered vascular grafts to treat damaged blood vessels. Recently, localized transdifferentiated cells have been generated in situ, allowing for treatments without invasive surgeries and more complete transdifferentiation. In this review, we summarized the recent development in various cell reprogramming techniques, their applications in converting various somatic cells, their uses in tissue regeneration, and the challenges of transitioning to a clinical setting, accompanied with potential solutions.
Collapse
Affiliation(s)
- Alexander Grath
- Department of Bioengineering, Northeastern University, Lake Hall 214A, 360 Huntington Avenue, Boston, MA 02115 USA
| | - Guohao Dai
- Department of Bioengineering, Northeastern University, Lake Hall 214A, 360 Huntington Avenue, Boston, MA 02115 USA
| |
Collapse
|
12
|
Cheng F, Zhang Y, Wang Y, Jiang Q, Zhao CJ, Deng J, Chen X, Yao Y, Xia Z, Cheng L, Dai L, Shi G, Yang Y, Zhang S, Yu D, Wei Y, Deng H. Conversion of human adipose-derived stem cells into functional and expandable endothelial-like cells for cell-based therapies. Stem Cell Res Ther 2018; 9:350. [PMID: 30558659 PMCID: PMC6296081 DOI: 10.1186/s13287-018-1088-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/16/2018] [Accepted: 11/21/2018] [Indexed: 02/05/2023] Open
Abstract
Background Ischemic vascular diseases are the major cause of death worldwide. In recent years, endothelial cell (EC)-based approaches to vascular regeneration are increasingly viable strategies for treating ischemic diseases, but their applications are challenged by the difficulties in their efficient generation and stable maintenance. Here, we show an alternative protocol that facilitates the generation of functional and expandable ETS variant 2 (ETV2)-induced endothelial-like cells (EiECs) from human adipose-derived stem cells (hADSCs), providing a potential source of cells for autologous ECs to treat ischemic vascular diseases. Methods hADSCs were obtained from fresh human adipose tissue. Passage 3 hADSCs were transduced with doxycycline (DOX)-inducible ETV2 transcription factor; purified ETV2-hADSCs were induced into endothelial-like cells using a two-stage induction culture system composed of small molecule compounds and cell factors. EiECs were evaluated for their surface markers, proliferation, gene expression, secretory capacity, and effects on vascular regeneration in vivo. Results We found that short-term ETV2 expression combined with TGF-β inhibition is sufficient for the generation of kinase insert domain receptor (KDR)+ cells from hADSCs within 10 days. KDR+ cells showed immature endothelial characteristics, and they can gradually mature in a chemically defined induction medium at the second stage of induction. Futher studies showed that KDR+ cells deriving EC-like cells could stably self-renew and expand about 106-fold in 1 month, and they exhibited expected genome-wide molecular features of mature ECs. Functionally, these EC-like cells significantly promoted revascularization in a hind limb ischemic model. Conclusions We isolated highly purified hADSCs and effectively converted them into functional and expandable endothelial-like cells. Thus, the study may provide an alternative strategy to obtain functional EC-like cells with potential for biomedical and pharmaceutical applications. Electronic supplementary material The online version of this article (10.1186/s13287-018-1088-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fuyi Cheng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yujing Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yuan Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Qingyuan Jiang
- Department of Obstetrics, Sichuan Provincial Hospital for Women and Children, Chengdu, People's Republic of China
| | - Cheng Jian Zhao
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jie Deng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiaolei Chen
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yunqi Yao
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Zhemin Xia
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Lin Cheng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Lei Dai
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Gang Shi
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yang Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Shuang Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Dechao Yu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Hongxin Deng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
13
|
Tsifaki M, Kelaini S, Caines R, Yang C, Margariti A. Regenerating the Cardiovascular System Through Cell Reprogramming; Current Approaches and a Look Into the Future. Front Cardiovasc Med 2018; 5:109. [PMID: 30177971 PMCID: PMC6109758 DOI: 10.3389/fcvm.2018.00109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/24/2018] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular disease (CVD), despite the advances of the medical field, remains one of the leading causes of mortality worldwide. Discovering novel treatments based on cell therapy or drugs is critical, and induced pluripotent stem cells (iPS Cells) technology has made it possible to design extensive disease-specific in vitro models. Elucidating the differentiation process challenged our previous knowledge of cell plasticity and capabilities and allows the concept of cell reprogramming technology to be established, which has inspired the creation of both in vitro and in vivo techniques. Patient-specific cell lines provide the opportunity of studying their pathophysiology in vitro, which can lead to novel drug development. At the same time, in vivo models have been designed where in situ transdifferentiation of cell populations into cardiomyocytes or endothelial cells (ECs) give hope toward effective cell therapies. Unfortunately, the efficiency as well as the concerns about the safety of all these methods make it exceedingly difficult to pass to the clinical trial phase. It is our opinion that creating an ex vivo model out of patient-specific cells will be one of the most important goals in the future to help surpass all these hindrances. Thus, in this review we aim to present the current state of research in reprogramming toward the cardiovascular system's regeneration, and showcase how the development and study of a multicellular 3D ex vivo model will improve our fighting chances.
Collapse
Affiliation(s)
- Marianna Tsifaki
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Sophia Kelaini
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Rachel Caines
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Chunbo Yang
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Andriana Margariti
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
14
|
Koyano-Nakagawa N, Garry DJ. Etv2 as an essential regulator of mesodermal lineage development. Cardiovasc Res 2018; 113:1294-1306. [PMID: 28859300 DOI: 10.1093/cvr/cvx133] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/24/2017] [Indexed: 11/14/2022] Open
Abstract
The 'master regulatory factors' that position at the top of the genetic hierarchy of lineage determination have been a focus of intense interest, and have been investigated in various systems. Etv2/Etsrp71/ER71 is such a factor that is both necessary and sufficient for the development of haematopoietic and endothelial lineages. As such, genetic ablation of Etv2 leads to complete loss of blood and vessels, and overexpression can convert non-endothelial cells to the endothelial lineage. Understanding such master regulatory role of a lineage is not only a fundamental quest in developmental biology, but also holds immense possibilities in regenerative medicine. To harness its activity and utility for therapeutic interventions, it is essential to understand the regulatory mechanisms, molecular function, and networks that surround Etv2. In this review, we provide a comprehensive overview of Etv2 biology focused on mouse and human systems.
Collapse
Affiliation(s)
- Naoko Koyano-Nakagawa
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 2231 6th st. SE, Minneapolis, MN 55455, USA
| | - Daniel J Garry
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 2231 6th st. SE, Minneapolis, MN 55455, USA
| |
Collapse
|
15
|
Li X, Moon G, Shin S, Zhang B, Janknecht R. Cooperation between ETS variant 2 and Jumonji domain‑containing 2 histone demethylases. Mol Med Rep 2018; 17:5518-5527. [PMID: 29393482 PMCID: PMC5865994 DOI: 10.3892/mmr.2018.8507] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 01/03/2018] [Indexed: 12/15/2022] Open
Abstract
The E26 transformation-specific (ETS) variant 2 (ETV2) protein, also designated as ETS-related 71, is a member of the ETS transcription factor family and is essential for blood and vascular development in the embryo. The role of ETV2 in cancer has not yet been investigated. In the present study, the expression of ETV2 mRNA was identified in a variety of tumor types, including prostate carcinoma. In addition, ETV2 gene amplification was identified in several types of cancer, suggesting that ETV2 plays an oncogenic role in tumorigenesis. It was demonstrated that ETV2 forms complexes with two histone demethylases: Jumonji domain-containing (JMJD)2A and JMJD2D; JMJD2A has been previously reported as a driver of prostate cancer development. In the present study, it was reported that ETV2 exhibited the potential to stimulate the promoters of matrix metalloproteinases (MMPs), including MMP1 and MMP7, within LNCaP prostate cancer cells. JMJD2A and JMJD2D could synergize with ETV2 to activate the MMP1 promoter, whereas only JMJD2A stimulated the MMP7 promoter in cooperation with ETV2. Furthermore, ETV2 expression was positively associated with JMJD2A and JMJD2D mRNA levels in neuroendocrine prostate tumors, in which an ETV2 gene amplification rate of 17.8% was identified. Collectively, the results of the present study indicated that ETV2, JMJD2A and JMJD2D may jointly promote tumorigenesis, particularly neuroendocrine prostate tumors. In addition, the interaction with the JMJD2A and JMJD2D epigenetic regulators may be important in the ability of ETV2 to reprogram cells, modulate normal and cancer stem cells, and affect spermatogenesis.
Collapse
Affiliation(s)
- Xiaomeng Li
- China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Gene Moon
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Sook Shin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Bin Zhang
- China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Ralf Janknecht
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| |
Collapse
|
16
|
Chen JH, Goh KJ, Rocha N, Groeneveld MP, Minic M, Barrett TG, Savage D, Semple RK. Evaluation of human dermal fibroblasts directly reprogrammed to adipocyte-like cells as a metabolic disease model. Dis Model Mech 2017; 10:1411-1420. [PMID: 28982679 PMCID: PMC5769609 DOI: 10.1242/dmm.030981] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/29/2017] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue is the primary tissue affected in most single gene forms of severe insulin resistance, and growing evidence has implicated it as a site at which many risk alleles for insulin resistance identified in population-wide studies might exert their effect. There is thus increasing need for human adipocyte models in which to interrogate the function of known and emerging genetic risk variants. However, primary adipocyte cultures, existing immortalised cell lines and stem-cell based models all have significant biological or practical limitations. In an attempt to widen the repertoire of human cell models in which to study adipocyte-autonomous effects of relevant human genetic variants, we have undertaken direct reprogramming of skin fibroblasts to adipocyte-like cells by employing an inducible recombinant lentivirus overexpressing the master adipogenic transcription factor PPARγ2. Doxycycline-driven expression of PPARγ2 and adipogenic culture conditions converted dermal fibroblasts into triglyceride-laden cells within days. The resulting cells recapitulated most of the crucial aspects of adipocyte biology in vivo, including the expression of mature adipocyte markers, secreted high levels of the adipokine adiponectin, and underwent lipolysis when treated with isoproterenol/3-isobutyl-1-methylxanthine (IBMX). They did not, however, exhibit insulin-inducible glucose uptake, and withdrawal of doxycycline produced rapid delipidation and loss of adipogenic markers. This protocol was applied successfully to a panel of skin cells from individuals with monogenic severe insulin resistance; however, surprisingly, even cell lines harbouring mutations causing severe, generalised lipodystrophy accumulated large lipid droplets and induced adipocyte-specific genes. The direct reprogramming protocol of human dermal fibroblasts to adipocyte-like cells we established is simple, fast and efficient, and has the potential to generate cells which can serve as a tool to address some, though not all, aspects of adipocyte function in the presence of endogenous disease-causing mutations.
Collapse
Affiliation(s)
- Jian-Hua Chen
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
- The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
| | - Kim Jee Goh
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
- The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
| | - Nuno Rocha
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
- The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
| | - Matthijs P Groeneveld
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
- The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
| | - Marina Minic
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
- The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
| | - Timothy G Barrett
- The Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - David Savage
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
- The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
| | - Robert K Semple
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
- The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
| |
Collapse
|
17
|
Extracellular vesicles of ETV2 transfected fibroblasts stimulate endothelial cells and improve neovascularization in a murine model of hindlimb ischemia. Cytotechnology 2017; 69:801-814. [PMID: 28466428 DOI: 10.1007/s10616-017-0095-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/07/2017] [Indexed: 01/08/2023] Open
Abstract
Ischemia are common conditions related to lack of blood supply to tissues. Depending on the ischemic sites, ischemia can cause different diseases, such as hindlimb ischemia, heart infarction and stroke. This study aims to evaluate how extracellular vesicles (EVs) derived from ETV2 transfected fibroblasts affect endothelial cell proliferation and neovascularization in a murine model of hindlimb ischemia. Human fibroblasts were isolated and cultured under standard conditions and expanded to the 3th passage before use in experiments. Human fibroblasts were transduced with a viral vector containing the ETV2 gene. Transduced cells were selected by puromycin treatment. These cells were further cultured for collection of EVs, which were isolated from culture supernatant. Following co-culture with endothelial cells, EVs were evaluated for their effect on endothelial cell proliferation and were directly injected into ischemic tissues of a murine model of hindlimb ischemia. The results showed that EVs could induce endothelial cell proliferation in vitro and improved neovascularization in a murine model of hindlimb ischemia. Our results suggest that EVs derived from ETV2-transfected fibroblasts can be promising non-cellular products for the regeneration of blood vessels.
Collapse
|
18
|
ETV-2 activated proliferation of endothelial cells and attenuated acute hindlimb ischemia in mice. In Vitro Cell Dev Biol Anim 2017; 53:616-625. [DOI: 10.1007/s11626-017-0151-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 03/30/2017] [Indexed: 01/03/2023]
|
19
|
Van Pham P, Vu NB, Dao TTT, Le HTN, Phi LT, Phan NK. Production of endothelial progenitor cells from skin fibroblasts by direct reprogramming for clinical usages. In Vitro Cell Dev Biol Anim 2016; 53:207-216. [PMID: 27778229 DOI: 10.1007/s11626-016-0106-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/10/2016] [Indexed: 11/30/2022]
Abstract
Endothelial progenitor cells (EPCs) play an important role in angiogenesis. However, they exist in limited numbers in the human body. This study was aimed to produce EPCs, for autologous transplantation, using direct reprogramming of skin fibroblasts under GMP-compliant conditions. Fibroblasts were collected and cultured from the skin in DMEM/F12 medium supplemented with 5% activated platelet-rich plasma and 1% antibiotic-antimycotic solution. They were then transfected with mRNA ETV2 and incubated in culture medium under hypoxia (5% oxygen) for 14 d. Phenotype analysis of transfected cells confirmed that single-factor ETV2 transfection successfully reprogrammed dermal fibroblasts into functional EPCs. Our results showed that ETV2 mRNA combined with hypoxia can give rise to functional EPCs. The cells exhibited functional phenotypes similar to endothelial cells derived from umbilical cord vein; they expressed CD31 and VEGFR2, and formed capillary-like structures in vitro. Moreover, these EPCs could significantly improve hindlimb ischemia in mouse models. Although the direct conversion efficacy was low (3.12 ± 0.98%), altogether our study demonstrates that functional EPCs can be produced from fibroblasts and can be used in clinical applications.
Collapse
Affiliation(s)
- Phuc Van Pham
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam.
| | - Ngoc Bich Vu
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Thuy Thi-Thanh Dao
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Ha Thi-Ngan Le
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Lan Thi Phi
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Ngoc Kim Phan
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
20
|
Van Pham P, Vu NB, Truong MTH, Huynh OT, Nguyen HT, Pham HL, Phan NK. Hepatocyte growth factor improves direct reprogramming of fibroblasts towards endothelial progenitor cells via ETV2 transduction. BIOMEDICAL RESEARCH AND THERAPY 2016. [DOI: 10.7603/s40730-016-0045-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|