1
|
Liu X, Hyun Kim J, Li X, Liu R. Application of mesenchymal stem cells exosomes as nanovesicles delivery system in the treatment of breast cancer. Int J Pharm 2024; 666:124732. [PMID: 39304093 DOI: 10.1016/j.ijpharm.2024.124732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
As people's living standards continue to improve and human life span expectancy increases, the incidence and mortality rates of breast cancer are continuously rising. Early detection of breast cancer and targeted therapy for different breast cancer subtypes can significantly reduce the mortality rate and alleviate the suffering of patients. Exosomes are extracellular vesicles secreted by various cells in the body. They participate in physiological and pathological responses by releasing active substances and play an important role in regulating intercellular communication. In recent years, research on exosomes has gradually expanded, and their special membrane structure and targetable characteristics are being increasingly applied in various clinical studies. Mesenchymal stem cells (MSCs)-derived exosomes play an important role in regulating the progression of breast cancer. In this review, we summarize the current treatment methods for breast cancer, the connection between MSCs, exosomes, and breast cancer, as well as the application of exosomes derived from MSCs from different sources in cancer treatment. We highlight how the rational design of modified MSCs-derived exosomes (MSCs-Exos) delivery systems can overcome the uncertainties of stem cell therapy and overcome the clinical translation challenges of nanomaterials. This work aims to promote future research on the application of MSCs-Exos in breast cancer treatment.
Collapse
Affiliation(s)
- Xiaofan Liu
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Republic of Korea; Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - June Hyun Kim
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Republic of Korea
| | - Xuemei Li
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.
| | - Rui Liu
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Republic of Korea.
| |
Collapse
|
2
|
Taheri M, Tehrani HA, Dehghani S, Alibolandi M, Arefian E, Ramezani M. Nanotechnology and bioengineering approaches to improve the potency of mesenchymal stem cell as an off-the-shelf versatile tumor delivery vehicle. Med Res Rev 2024; 44:1596-1661. [PMID: 38299924 DOI: 10.1002/med.22023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 11/28/2023] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
Targeting actionable mutations in oncogene-driven cancers and the evolution of immuno-oncology are the two prominent revolutions that have influenced cancer treatment paradigms and caused the emergence of precision oncology. However, intertumoral and intratumoral heterogeneity are the main challenges in both fields of precision cancer treatment. In other words, finding a universal marker or pathway in patients suffering from a particular type of cancer is challenging. Therefore, targeting a single hallmark or pathway with a single targeted therapeutic will not be efficient for fighting against tumor heterogeneity. Mesenchymal stem cells (MSCs) possess favorable characteristics for cellular therapy, including their hypoimmune nature, inherent tumor-tropism property, straightforward isolation, and multilineage differentiation potential. MSCs can be loaded with various chemotherapeutics and oncolytic viruses. The combination of these intrinsic features with the possibility of genetic manipulation makes them a versatile tumor delivery vehicle that can be used for in vivo selective tumor delivery of various chemotherapeutic and biological therapeutics. MSCs can be used as biofactory for the local production of chemical or biological anticancer agents at the tumor site. MSC-mediated immunotherapy could facilitate the sustained release of immunotherapeutic agents specifically at the tumor site, and allow for the achievement of therapeutic concentrations without the need for repetitive systemic administration of high therapeutic doses. Despite the enthusiasm evoked by preclinical studies that used MSC in various cancer therapy approaches, the translation of MSCs into clinical applications has faced serious challenges. This manuscript, with a critical viewpoint, reviewed the preclinical and clinical studies that have evaluated MSCs as a selective tumor delivery tool in various cancer therapy approaches, including gene therapy, immunotherapy, and chemotherapy. Then, the novel nanotechnology and bioengineering approaches that can improve the potency of MSC for tumor targeting and overcoming challenges related to their low localization at the tumor sites are discussed.
Collapse
Affiliation(s)
- Mojtaba Taheri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Abdul Tehrani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sadegh Dehghani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Kamp M, Surmacki J, Segarra Mondejar M, Young T, Chrabaszcz K, Joud F, Zecchini V, Speed A, Frezza C, Bohndiek SE. Raman micro-spectroscopy reveals the spatial distribution of fumarate in cells and tissues. Nat Commun 2024; 15:5386. [PMID: 38918386 PMCID: PMC11199670 DOI: 10.1038/s41467-024-49403-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
Aberrantly accumulated metabolites elicit intra- and inter-cellular pro-oncogenic cascades, yet current measurement methods require sample perturbation/disruption and lack spatio-temporal resolution, limiting our ability to fully characterize their function and distribution. Here, we show that Raman spectroscopy (RS) can directly detect fumarate in living cells in vivo and animal tissues ex vivo, and that RS can distinguish between Fumarate hydratase (Fh1)-deficient and Fh1-proficient cells based on fumarate concentration. Moreover, RS reveals the spatial compartmentalization of fumarate within cellular organelles in Fh1-deficient cells: consistent with disruptive methods, we observe the highest fumarate concentration (37 ± 19 mM) in mitochondria, where the TCA cycle operates, followed by the cytoplasm (24 ± 13 mM) and then the nucleus (9 ± 6 mM). Finally, we apply RS to tissues from an inducible mouse model of FH loss in the kidney, demonstrating RS can classify FH status. These results suggest RS could be adopted as a valuable tool for small molecule metabolic imaging, enabling in situ non-destructive evaluation of fumarate compartmentalization.
Collapse
Affiliation(s)
- Marlous Kamp
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
- Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
- Department of Chemistry, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Jakub Surmacki
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590, Lodz, Poland
| | - Marc Segarra Mondejar
- Hutchison/MRC Cancer Unit, University of Cambridge, Biomedical Campus, Cambridge, CB2 0XZ, UK
- CECAD, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany
| | - Tim Young
- Hutchison/MRC Cancer Unit, University of Cambridge, Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Karolina Chrabaszcz
- Institute of Nuclear Physics, Polish Academy of Sciences, Department of Experimental Physics of Complex Systems, Radzikowskiego 152, 31-342, Krakow, Poland
| | - Fadwa Joud
- Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Vincent Zecchini
- Hutchison/MRC Cancer Unit, University of Cambridge, Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Alyson Speed
- Hutchison/MRC Cancer Unit, University of Cambridge, Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Christian Frezza
- Hutchison/MRC Cancer Unit, University of Cambridge, Biomedical Campus, Cambridge, CB2 0XZ, UK.
- CECAD, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany.
| | - Sarah E Bohndiek
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK.
- Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK.
| |
Collapse
|
4
|
Zawadzka-Knefel A, Rusak A, Mrozowska M, Machałowski T, Żak A, Haczkiewicz-Leśniak K, Kulus M, Kuropka P, Podhorska-Okołów M, Skośkiewicz-Malinowska K. Chitin scaffolds derived from the marine demosponge Aplysina fistularis stimulate the differentiation of dental pulp stem cells. Front Bioeng Biotechnol 2023; 11:1254506. [PMID: 38033818 PMCID: PMC10682193 DOI: 10.3389/fbioe.2023.1254506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023] Open
Abstract
The use of stem cells for tissue regeneration is a prominent trend in regenerative medicine and tissue engineering. In particular, dental pulp stem cells (DPSCs) have garnered considerable attention. When exposed to specific conditions, DPSCs have the ability to differentiate into osteoblasts and odontoblasts. Scaffolds are critical for cell differentiation because they replicate the 3D microenvironment of the niche and enhance cell adhesion, migration, and differentiation. The purpose of this study is to present the biological responses of human DPSCs to a purified 3D chitin scaffold derived from the marine demosponge Aplysina fistularis and modified with hydroxyapatite (HAp). Responses examined included proliferation, adhesion, and differentiation. The control culture consisted of the human osteoblast cell line, hFOB 1.19. Electron microscopy was used to examine the ultrastructure of the cells (transmission electron microscopy) and the surface of the scaffold (scanning electron microscopy). Cell adhesion to the scaffolds was determined by neutral red and crystal violet staining methods. An alkaline phosphatase (ALP) assay was used for assessing osteoblast/odontoblast differentiation. We evaluated the expression of osteogenic marker genes by performing ddPCR for ALP, RUNX2, and SPP1 mRNA expression levels. The results show that the chitin biomaterial provides a favorable environment for DPSC and hFOB 1.19 cell adhesion and supports both cell proliferation and differentiation. The chitin scaffold, especially with HAp modification, isolated from A. fistularis can make a significant contribution to tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Anna Zawadzka-Knefel
- Department of Conservative Dentistry with Endodontics, Wroclaw Medical University, Wroclaw, Poland
| | - Agnieszka Rusak
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Monika Mrozowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Tomasz Machałowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Poznan, Poland
| | - Andrzej Żak
- Electron Microscopy Laboratory, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | | | - Michał Kulus
- Division of Ultrastructural Research, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Piotr Kuropka
- Division of Histology and Embryology, Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Marzenna Podhorska-Okołów
- Division of Ultrastructural Research, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | | |
Collapse
|
5
|
Araldi RP, Delvalle DA, da Costa VR, Alievi AL, Teixeira MR, Dias Pinto JR, Kerkis I. Exosomes as a Nano-Carrier for Chemotherapeutics: A New Era of Oncology. Cells 2023; 12:2144. [PMID: 37681875 PMCID: PMC10486723 DOI: 10.3390/cells12172144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Despite the considerable advancements in oncology, cancer remains one of the leading causes of death worldwide. Drug resistance mechanisms acquired by cancer cells and inefficient drug delivery limit the therapeutic efficacy of available chemotherapeutics drugs. However, studies have demonstrated that nano-drug carriers (NDCs) can overcome these limitations. In this sense, exosomes emerge as potential candidates for NDCs. This is because exosomes have better organotropism, homing capacity, cellular uptake, and cargo release ability than synthetic NDCs. In addition, exosomes can serve as NDCs for both hydrophilic and hydrophobic chemotherapeutic drugs. Thus, this review aimed to summarize the latest advances in cell-free therapy, describing how the exosomes can contribute to each step of the carcinogenesis process and discussing how these nanosized vesicles could be explored as nano-drug carriers for chemotherapeutics.
Collapse
Affiliation(s)
- Rodrigo Pinheiro Araldi
- Genetics Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (D.A.D.); (V.R.d.C.); (A.L.A.); (M.R.T.)
- Structural and Functional Biology Post-Graduation Program, Paulista School of Medicine, São Paulo Federal University (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil
- BioDecision Analytics Ltd.a., São Paulo 13271-650, SP, Brazil;
| | - Denis Adrián Delvalle
- Genetics Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (D.A.D.); (V.R.d.C.); (A.L.A.); (M.R.T.)
- Structural and Functional Biology Post-Graduation Program, Paulista School of Medicine, São Paulo Federal University (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil
| | - Vitor Rodrigues da Costa
- Genetics Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (D.A.D.); (V.R.d.C.); (A.L.A.); (M.R.T.)
- Structural and Functional Biology Post-Graduation Program, Paulista School of Medicine, São Paulo Federal University (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil
| | - Anderson Lucas Alievi
- Genetics Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (D.A.D.); (V.R.d.C.); (A.L.A.); (M.R.T.)
- Endocrinology and Metabology Post-Graduation Program, Paulista School of Medicine, São Paulo Federal University (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil
| | - Michelli Ramires Teixeira
- Genetics Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (D.A.D.); (V.R.d.C.); (A.L.A.); (M.R.T.)
- Endocrinology and Metabology Post-Graduation Program, Paulista School of Medicine, São Paulo Federal University (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil
| | | | - Irina Kerkis
- Genetics Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (D.A.D.); (V.R.d.C.); (A.L.A.); (M.R.T.)
| |
Collapse
|
6
|
The Role of Mesenchymal Stem Cells and Exosomes in Tumor Development and Targeted Antitumor Therapies. Stem Cells Int 2023; 2023:7059289. [PMID: 36824409 PMCID: PMC9943627 DOI: 10.1155/2023/7059289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 01/17/2023] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
Mesenchymal stem cells (MSCs) can be isolated from various tissues in adults and differentiated into cells of the osteoblasts, adipocytes, chondrocytes, and myocytes. Recruitments of MSCs towards tumors have a crucial contribution to tumor development. However, the role of MSCs in the tumor microenvironment is uncertain. In addition, due to its tropism to the tumor and low immunogenic properties, more and more pieces of evidence indicate that MSCs may be an ideal carrier for antitumor biologics such as cytokines, chemotherapeutic agents, and oncolytic viruses. Here, we review the existing knowledge on the anti- and protumorigenic effect of MSCs and their extracellular vesicles and exosomes, the role of MSCs, and their extracellular vesicles and exosomes as antitumor vectors.
Collapse
|
7
|
Extracellular vesicles derived from dental mesenchymal stem/stromal cells with gemcitabine as a cargo have an inhibitory effect on the growth of pancreatic carcinoma cell lines in vitro. Mol Cell Probes 2023; 67:101894. [PMID: 36706931 DOI: 10.1016/j.mcp.2023.101894] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/27/2023]
Abstract
Extracellular vesicles (EVs) are nowadays a target of interest in cancer therapy as a successful drug delivering tool. Based on their many beneficial biocompatible properties are designed to transport nucleic acids, proteins, various nanomaterials or chemotherapeutics. Extracellular vesicles derived from mesenchymal stem/stromal cells (MSCs) possess their tumor-homing abilities. This inspired us to engineer the MSC's EVs to be packed with chemotherapeutic agents and deliver it as a Trojan horse directly into tumor cells. In our study, human dental pulp MSCs (DP-MSCs) were cultivated with gemcitabine (GCB), which led to its absorption by the cells and subsequent secretion of the drug out into conditioned media in EVs. Concentrated conditioned media containing small EVs (potentially exosomes) significantly inhibited the cell growth of pancreatic carcinoma cell lines in vitro. DP-MSCs were simultaneously engineered to express a suicide gene fused yeast cytosinedeaminase:uracilphosphoribosyltransferase (yCD::UPRT). The product of the suicide gene converts non-toxic prodrug 5-fluorocytosine (5-FC) to highly cytotoxic chemotherapeutic drug 5-fluorouracil (5-FU) in the recipient cancer cells. Conversion of 5-FC to 5-FU had an additional effect on cancer cell's growth inhibition. Our results showed a therapeutic potential for DP-MSC-EVs to be designed for successful delivering of chemotherapeutic drugs, together with prodrug suicide gene therapy system.
Collapse
|
8
|
Choi A, Javius-Jones K, Hong S, Park H. Cell-Based Drug Delivery Systems with Innate Homing Capability as a Novel Nanocarrier Platform. Int J Nanomedicine 2023; 18:509-525. [PMID: 36742991 PMCID: PMC9893846 DOI: 10.2147/ijn.s394389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/12/2023] [Indexed: 01/29/2023] Open
Abstract
Nanoparticle-based drug delivery systems have been designed to treat various diseases. However, many problems remain, such as inadequate tumor targeting and poor therapeutic outcomes. To overcome these obstacles, cell-based drug delivery systems have been developed. Candidates for cell-mediated drug delivery include blood cells, immune cells, and stem cells with innate tumor tropism and low immunogenicity; they act as a disguise to deliver the therapeutic payload. In drug delivery systems, therapeutic agents are encapsulated intracellularly or attached to the surface of the plasma membrane and transported to the desired site. Here, we review the pros and cons of cell-based therapies and discuss their homing mechanisms in the tumor microenvironment. In addition, different strategies to load therapeutic agents inside or on the surface of circulating cells and the current applications for a wide range of disease treatments are summarized.
Collapse
Affiliation(s)
- Anseo Choi
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Kaila Javius-Jones
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI, USA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI, USA
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea,Correspondence: Hansoo Park; Seungpyo Hong, School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea, Tel +82-2 820 5804, Fax +82-2 813 8159, Email ;
| |
Collapse
|
9
|
Alimardani V, Rahiminezhad Z, DehghanKhold M, Farahavar G, Jafari M, Abedi M, Moradi L, Niroumand U, Ashfaq M, Abolmaali SS, Yousefi G. Nanotechnology-based cell-mediated delivery systems for cancer therapy and diagnosis. Drug Deliv Transl Res 2023; 13:189-221. [PMID: 36074253 DOI: 10.1007/s13346-022-01211-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 12/13/2022]
Abstract
The global prevalence of cancer is increasing, necessitating new additions to traditional treatments and diagnoses to address shortcomings such as ineffectiveness, complications, and high cost. In this context, nano and microparticulate carriers stand out due to their unique properties such as controlled release, higher bioavailability, and lower toxicity. Despite their popularity, they face several challenges including rapid liver uptake, low chemical stability in blood circulation, immunogenicity concerns, and acute adverse effects. Cell-mediated delivery systems are important topics to research because of their biocompatibility, biodegradability, prolonged delivery, high loading capacity, and targeted drug delivery capabilities. To date, a variety of cells including blood, immune, cancer, and stem cells, sperm, and bacteria have been combined with nanoparticles to develop efficient targeted cancer delivery or diagnosis systems. The review paper aimed to provide an overview of the potential applications of cell-based delivery systems in cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Vahid Alimardani
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Rahiminezhad
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahvash DehghanKhold
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ghazal Farahavar
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Jafari
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Abedi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Moradi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Uranous Niroumand
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ashfaq
- University Centre for Research & Development (UCRD), Chandigarh University, Gharaun, Mohali, 140413, Punjab, India. .,Department of Biotechnology, Chandigarh University, Gharaun, Mohali, 140413, Punjab, India.
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran. .,Center for Drug Delivery in Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Gholamhossein Yousefi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran. .,Center for Drug Delivery in Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
10
|
Babajani A, Manzari-Tavakoli A, Jamshidi E, Tarasi R, Niknejad H. Anti-cancer effects of human placenta-derived amniotic epithelial stem cells loaded with paclitaxel on cancer cells. Sci Rep 2022; 12:18148. [PMID: 36307463 PMCID: PMC9616866 DOI: 10.1038/s41598-022-22562-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/17/2022] [Indexed: 12/31/2022] Open
Abstract
Available therapeutic strategies for cancers have developed side effects, resistance, and recurrence that cause lower survival rates. Utilizing targeted drug delivery techniques has opened up new hopes for increasing the efficacy of cancer treatment. The current study aimed to investigate the appropriate condition of primming human amniotic epithelial cells (hAECs) with paclitaxel as a dual therapeutic approach consisting of inherent anticancer features of hAECs and loaded paclitaxel. The effects of paclitaxel on the viability of hAECs were evaluated to find an appropriate loading period. The possible mechanism of hAECs paclitaxel resistance was assessed using verapamil. Afterward, the loading and releasing efficacy of primed hAECs were evaluated by HPLC. The anti-neoplastic effects and apoptosis as possible mechanism of conditioned media of paclitaxel-loaded hAECs were assessed on breast and cervical cancer cell lines. hAECs are highly resistant to cytotoxic effects of paclitaxel in 24 h. Evaluating the role of P-glycoproteins in hAECs resistance showed that they do not participate in hAECs resistance. The HPLC demonstrated that hAECs uptake/release paclitaxel with optimum efficacy in 8000 ng/ml treatment. Assessing the anti-proliferative effect of primed hAECs condition media on cancer cells showed that the secretome induced 3.3- and 4.8-times more potent effects on MCF-7 and HeLa, respectively, and enhanced the apoptosis process. These results suggest that hAECs could possibly be used as a drug delivery system for cancer treatment. Besides, inherent anticancer effects of hAECs were preserved during the modification process. Synergistic anticancer effects of paclitaxel and hAECs can be translated into clinical practice, which would be evaluated in the future studies.
Collapse
Affiliation(s)
- Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asma Manzari-Tavakoli
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Jamshidi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roghayeh Tarasi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Litvinova LS, Shupletsova VV, Khaziakhmatova OG, Daminova AG, Kudryavtseva VL, Yurova KA, Malashchenko VV, Todosenko NM, Popova V, Litvinov RI, Korotkova EI, Sukhorukov GB, Gow AJ, Weissman D, Atochina-Vasserman EN, Khlusov IA. Human Mesenchymal Stem Cells as a Carrier for a Cell-Mediated Drug Delivery. Front Bioeng Biotechnol 2022; 10:796111. [PMID: 35284410 PMCID: PMC8909129 DOI: 10.3389/fbioe.2022.796111] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
A number of preclinical and clinical studies have demonstrated the efficiency of mesenchymal stromal cells to serve as an excellent base for a cell-mediated drug delivery system. Cell-based targeted drug delivery has received much attention as a system to facilitate the uptake a nd transfer of active substances to specific organs and tissues with high efficiency. Human mesenchymal stem cells (MSCs) are attracting increased interest as a promising tool for cell-based therapy due to their high proliferative capacity, multi-potency, and anti-inflammatory and immunomodulatory properties. In particular, these cells are potentially suitable for use as encapsulated drug transporters to sites of inflammation. Here, we studied the in vitro effects of incorporating synthetic polymer microcapsules at various microcapsule-to-cell ratios on the morphology, ultrastructure, cytokine profile, and migration ability of human adipose-derived MSCs at various time points post-phagocytosis. The data show that under appropriate conditions, human MSCs can be efficiently loaded with synthesized microcapsules without damaging the cell’s structural integrity with unexpressed cytokine secretion, retained motility, and ability to migrate through 8 μm pores. Thus, the strategy of using human MSCs as a delivery vehicle for transferring microcapsules, containing bioactive material, across the tissue–blood or tumor–blood barriers to facilitate the treatment of stroke, cancer, or inflammatory diseases may open a new therapeutic perspective.
Collapse
Affiliation(s)
- L. S. Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - V. V. Shupletsova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - O. G. Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - A. G. Daminova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Kazan Institute of Biochemistry and Biophysics, FRC KSC of RAS, Kazan, Russia
- Interdisciplinary Center for Analytical Microscopy, Kazan Federal University, Kazan, Russia
| | - V. L. Kudryavtseva
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - K. A. Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - V. V. Malashchenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - N. M. Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - V. Popova
- School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - R. I. Litvinov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - E. I. Korotkova
- School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - G. B. Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - A. J. Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - D. Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - E. N. Atochina-Vasserman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: E. N. Atochina-Vasserman,
| | - I. A. Khlusov
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Department of Morphology and General Pathology, Siberian State Medical University, Tomsk, Russia
- Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, Russia
| |
Collapse
|
12
|
The Growth Factors and Cytokines of Dental Pulp Mesenchymal Stem Cell Secretome May Potentially Aid in Oral Cancer Proliferation. Molecules 2021; 26:molecules26185683. [PMID: 34577154 PMCID: PMC8466568 DOI: 10.3390/molecules26185683] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Growth factors and cytokines responsible for the regenerative potential of the dental pulp mesenchymal stem cell secretome (DPMSC-S) are implicated in oral carcinogenesis. The impact and effects of these secretory factors on cancer cells must be understood in order to ensure their safe application in cancer patients. OBJECTIVE We aimed to quantify the growth factors and cytokines in DPMSC-S and assess their effect on oral cancer cell proliferation. MATERIALS AND METHODS DPMSCs were isolated from patients with healthy teeth (n = 5) that were indicated for extraction for orthodontic reasons. The cells were characterized using flow cytometry and conditioned medium (DPMSC-CM) was prepared. DPMSC-CM was subjected to a bead-based array to quantify the growth factors and cytokines that may affect oral carcinogenesis. The effect of DPMSC-CM (20%, 50%, 100%) on the proliferation of oral cancer cells (AW123516) was evaluated using a Ki-67-based assay at 48 h. AW13516 cultured in the standard growth medium acted as the control. RESULTS VEGF, HCF, Ang-2, TGF-α, EPO, SCF, FGF, and PDGF-BB were the growth factors with the highest levels in the DPMSC-CM. The highest measured pro-inflammatory cytokine was TNF-α, followed by CXCL8. The most prevalent anti-inflammatory cytokine in the DPMSC-CM was IL-10, followed by TGF-β1 and IL-4. Concentrations of 50% and 100% DPMSC-CM inhibited Ki-67 expression in AW13516, although the effect was non-significant. Moreover, 20% DPMSC-CM significantly increased Ki-67 expression compared to the control. CONCLUSIONS The increased Ki-67 expression of oral cancer cells in response to 20% DPMSC-CM indicates the potential for cancer progression. Further research is needed to identify their effects on other carcinogenic properties, including apoptosis, stemness, migration, invasion, adhesion, and therapeutic resistance.
Collapse
|
13
|
Fu H, Wu Y, Yang X, Huang S, Yu F, Deng H, Zhang S, Xiang Q. Stem cell and its derivatives as drug delivery vehicles: an effective new strategy of drug delivery system. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1967202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Hongwei Fu
- Institute of Materia Medica and Guangdong Provincial Key Laboratory of New Pharmaceutical Dosage Form, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Province Engineering & Technology Research Centre for Topical Precise Drug Delivery System School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Yinan Wu
- Institute of Materia Medica and Guangdong Provincial Key Laboratory of New Pharmaceutical Dosage Form, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Province Engineering & Technology Research Centre for Topical Precise Drug Delivery System School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Xiaobin Yang
- Institute of Materia Medica and Guangdong Provincial Key Laboratory of New Pharmaceutical Dosage Form, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Province Engineering & Technology Research Centre for Topical Precise Drug Delivery System School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Shiyi Huang
- Biopharmaceutical R&D Center of Jinan University & Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, People’s Republic of China
| | - Fenglin Yu
- Biopharmaceutical R&D Center of Jinan University & Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, People’s Republic of China
| | - Hong Deng
- Institute of Materia Medica and Guangdong Provincial Key Laboratory of New Pharmaceutical Dosage Form, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Province Engineering & Technology Research Centre for Topical Precise Drug Delivery System School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Shu Zhang
- Institute of Materia Medica and Guangdong Provincial Key Laboratory of New Pharmaceutical Dosage Form, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Province Engineering & Technology Research Centre for Topical Precise Drug Delivery System School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Qi Xiang
- Biopharmaceutical R&D Center of Jinan University & Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, People’s Republic of China
| |
Collapse
|
14
|
Hassanzadeh A, Altajer AH, Rahman HS, Saleh MM, Bokov DO, Abdelbasset WK, Marofi F, Zamani M, Yaghoubi Y, Yazdanifar M, Pathak Y, Chartrand MS, Jarahian M. Mesenchymal Stem/Stromal Cell-Based Delivery: A Rapidly Evolving Strategy for Cancer Therapy. Front Cell Dev Biol 2021; 9:686453. [PMID: 34322483 PMCID: PMC8311597 DOI: 10.3389/fcell.2021.686453] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem/stromal cell (MSC)-based therapy has become an attractive and advanced scientific research area in the context of cancer therapy. This interest is closely linked to the MSC-marked tropism for tumors, suggesting them as a rational and effective vehicle for drug delivery for both hematological and solid malignancies. Nonetheless, the therapeutic application of the MSCs in human tumors is still controversial because of the induction of several signaling pathways largely contributing to tumor progression and metastasis. In spite of some evidence supporting that MSCs may sustain cancer pathogenesis, increasing proofs have indicated the suppressive influences of MSCs on tumor cells. During the last years, a myriad of preclinical and some clinical studies have been carried out or are ongoing to address the safety and efficacy of the MSC-based delivery of therapeutic agents in diverse types of malignancies. A large number of studies have focused on the MSC application as delivery vehicles for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), chemotherapeutic drug such as gemcitabine (GCB), paclitaxel (PTX), and doxorubicin (DOX), prodrugs such as 5-fluorocytosine (5-FC) and ganciclovir (GCV), and immune cell-activating cytokines along with oncolytic virus. In the current review, we evaluate the latest findings rendering the potential of MSCs to be employed as potent gene/drug delivery vehicle for inducing tumor regression with a special focus on the in vivo reports performed during the last two decades.
Collapse
Affiliation(s)
- Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Heshu Sulaiman Rahman
- College of Medicine, University of Sulaimani, Sulaymaniyah, Iraq
- Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaymaniyah, Iraq
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University of Anbar, Ramadi, Iraq
| | - Dmitry O. Bokov
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Faroogh Marofi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Zamani
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Yoda Yaghoubi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Yashwant Pathak
- Professor and Associate Dean for Faculty Affairs, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
- Adjunct Professor, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | | | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), Heidelberg, Germany
| |
Collapse
|
15
|
Zhou D, Chen Y, Bu W, Meng L, Wang C, Jin N, Chen Y, Ren C, Zhang K, Sun H. Modification of Metal-Organic Framework Nanoparticles Using Dental Pulp Mesenchymal Stem Cell Membranes to Target Oral Squamous Cell Carcinoma. J Colloid Interface Sci 2021; 601:650-660. [PMID: 34091312 DOI: 10.1016/j.jcis.2021.05.126] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/24/2022]
Abstract
Engineering a targetable nanoparticle to tumor cell is a challenge issue for clinical application. Our results demonstrated that the chemokine CXCL8 secreted by oral squamous cell carcinoma (OSCC) could act as a chemoattractant to attract dental pulp mesenchymal stem cell (DPSC), which expressed the CXCL8 binding receptor, CXCR2, to the OSCC. Therefore, to create OSCC targetable nanoparticles, we used DPSC membranes to modify nanoparticles of metal-organic framework nanoparticles (MOFs) resulting in a novel MOF@DPSCM nanoparticle. Interestingly, results from in vitro and in vivo experiments illustrated that MOF@DPSCM possessed specificity for the OSCC, and the MOF@DPSCM carried DOX (doxorubicin), MOF-DOX@DPSCM could induce CAL27 cell death in vitro and block CAL27 tumor growth in vivo. Our data suggest that this novel MOF-DOX@DPSCM nanoparticle is a potential targetable drug delivery system for the OSCC in the future clinical application.
Collapse
Affiliation(s)
- Dabo Zhou
- School and Hospital of Stomatology, China Medical University, 117 Nanjing North Street, Shenyang 110002, China
| | - Yixin Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Wenhuan Bu
- School and Hospital of Stomatology, China Medical University, 117 Nanjing North Street, Shenyang 110002, China
| | - Lin Meng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Congcong Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Nianqiang Jin
- School and Hospital of Stomatology, China Medical University, 117 Nanjing North Street, Shenyang 110002, China
| | - Yumeng Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Chunxia Ren
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Kai Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Hongchen Sun
- School and Hospital of Stomatology, China Medical University, 117 Nanjing North Street, Shenyang 110002, China.
| |
Collapse
|
16
|
Vian R, Salehi H, Lapierre M, Cuisinier F, Cavaillès V, Balme S. Adsorption of proteins on TiO 2 particles influences their aggregation and cell penetration. Food Chem 2021; 360:130003. [PMID: 33993073 DOI: 10.1016/j.foodchem.2021.130003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 04/09/2021] [Accepted: 05/01/2021] [Indexed: 12/21/2022]
Abstract
TiO2 nanoparticles known as E171 are one controversial food additive due to its potential toxicity. In this work, the main hypothesis is that the proteins adsorbed on the TiO2 nanoparticles prevent their aggregation and favor the cell penetration. To do so, the TiO2 nanoparticles were coated with gelatin and β-lactoglobulin to reach interfacial concentrations about 0.25 mg/mg and 0.32 mg/mg, respectively. The measurement of NP size showed that the protein coating improve the colloidal stability of TiO2 nanoparticles. The FTIR analysis suggests that the β-lactoglobulin structure is modified after adsorption. The penetration of TiO2 penetration inside human intestinal epithelial cells was shown and quantify by using confocal Raman microscopy. The promoting role of the protein coating on the cell penetration was demonstrated for both the gelatin and β-lactoglobulin. Finally, the results allow establishing a correlation between the ability of proteins to prevent NP aggregation and the cell penetration.
Collapse
Affiliation(s)
- Romain Vian
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, Montpellier F-34298, France
| | | | - Marion Lapierre
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, Montpellier F-34298, France
| | | | - Vincent Cavaillès
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, Montpellier F-34298, France
| | - Sébastien Balme
- IEM, Institut Européen des Membranes, UMR 5635 Université Montpellier, CNRS, ENSCM, Place Eugene Bataillon, F-34095 Montpellier cedex 5, France.
| |
Collapse
|
17
|
Modulation of the Dental Pulp Stem Cell Secretory Profile by Hypoxia Induction Using Cobalt Chloride. J Pers Med 2021; 11:jpm11040247. [PMID: 33808091 PMCID: PMC8066657 DOI: 10.3390/jpm11040247] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
The action of stem cells is mediated by their paracrine secretions which comprise the secretory profile. Various approaches can be used to modify the secretory profile of stem cells. Creating a hypoxic environment is one method. The present study aims to demonstrate the influence of CoCl2 in generating hypoxic conditions in a dental pulp stem cell (DPSCs) culture, and the effect of this environment on their secretory profile. DPSCs that were isolated from human permanent teeth were characterized and treated with different concentrations of CoCl2 to assess their viability by an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and proliferation by a cell counting kit (CCK)-8 assay. The gene expression level of hypoxia-inducible factor 1-alpha (HIF-1α) was analyzed by quantitative real time polymerase chain reaction (qRT-PCR) to demonstrate a hypoxic environment. Comparative evaluation of the growth factors and cytokines were done by cytometric bead array. Gene expression levels of transcription factors OCT4 and SOX2 were analyzed by qRT-PCR to understand the effect of CoCl2 on stemness in DPSCs. DPSCs were positive for MSC-specific markers. Doses of CoCl2, up to 20 µM, did not negatively affect cell viability; in low doses (5 µM), it promoted cell survival. Treatment with 10 µM of CoCl2 significantly augmented the genetic expression of HIF-1α. Cells treated with 10 µM of CoCl2 showed changes in the levels of growth factors and cytokines produced. It was very evident that CoCl2 also increased the expression of OCT4 and SOX2, which is the modulation of stemness of DPSCs. A CoCl2 treatment-induced hypoxic environment modulates the secretory profile of DPSCs.
Collapse
|
18
|
Zhou YC, Zhang YN, Yang X, Wang SB, Hu PY. Delivery systems for enhancing oncolytic adenoviruses efficacy. Int J Pharm 2020; 591:119971. [PMID: 33059014 DOI: 10.1016/j.ijpharm.2020.119971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/24/2022]
Abstract
Oncolytic adenovirus (OAds) has long been considered a promising biotherapeutic agent against various types of cancer owing to selectively replicate in and lyse cancer cells, while remaining dormant in healthy cells. In the last years, multiple (pre)clinical studies using genetic engineering technologies enhanced OAds anti-tumor effects in a broad range of cancers. However, poor targeting delivery, tropism toward healthy tissues, low-level expression of Ad receptors on tumor cells, and pre-existing neutralizing antibodies are major hurdles for systemic administration of OAds. Different vehicles have been developed for addressing these obstacles, such as stem cells, nanoparticles (NPs) and shielding polymers, extracellular vesicles (EVs), hydrogels, and microparticles (MPs). These carriers can enhance the therapeutic efficacy of OVs through enhancing transfection, circulatory longevity, cellular interactions, specific targeting, and immune responses against cancer. In this paper, we reviewed adenovirus structure and biology, different types of OAds, and the efficacy of different carriers in systemic administration of OAds.
Collapse
Affiliation(s)
- Yu-Cheng Zhou
- Gastroenterological & Pancreatic Surgery Department, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China; Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - You-Ni Zhang
- Clinical Laboratory, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People's Hospital), Taizhou 317200, Zhejiang Province, China
| | - Xue Yang
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Shi-Bing Wang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China.
| | - Pei-Yang Hu
- Department of Traumatology, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People's Hospital), Taizhou 317200, Zhejiang Province, China.
| |
Collapse
|
19
|
Rauwel E, Al-Arag S, Salehi H, Amorim CO, Cuisinier F, Guha M, Rosario MS, Rauwel P. Assessing Cobalt Metal Nanoparticles Uptake by Cancer Cells Using Live Raman Spectroscopy. Int J Nanomedicine 2020; 15:7051-7062. [PMID: 33061367 PMCID: PMC7522600 DOI: 10.2147/ijn.s258060] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/08/2020] [Indexed: 11/26/2022] Open
Abstract
Purpose Nanotechnology applied to cancer treatment is a growing area of research in nanomedicine with magnetic nanoparticle-mediated anti-cancer drug delivery systems offering least possible side effects. To that end, both structural and chemical properties of commercial cobalt metal nanoparticles were studied using label-free confocal Raman spectroscopy. Materials and Methods Crystal structure and morphology of cobalt nanoparticles were studied by XRD and TEM. Magnetic properties were studied with SQUID and PPMS. Confocal Raman microscopy has high spatial resolution and compositional sensitivity. It, therefore, serves as a label-free tool to trace nanoparticles within cells and investigate the interaction between coating-free cobalt metal nanoparticles and cancer cells. The toxicity of cobalt nanoparticles against human cells was assessed by MTT assay. Results Superparamagnetic Co metal nanoparticle uptake by MCF7 and HCT116 cancer cells and DPSC mesenchymal stem cells was investigated by confocal Raman microscopy. The Raman nanoparticle signature also allowed accurate detection of the nanoparticle within the cell without labelling. A rapid uptake of the cobalt nanoparticles followed by rapid apoptosis was observed. Their low cytotoxicity, assessed by means of MTT assay against human embryonic kidney (HEK) cells, makes them promising candidates for the development of targeted therapies. Moreover, under a laser irradiation of 20mW with a wavelength of 532nm, it is possible to bring about local heating leading to combustion of the cobalt metal nanoparticles within cells, whereupon opening new routes for cancer phototherapy. Conclusion Label-free confocal Raman spectroscopy enables accurately localizing the Co metal nanoparticles in cellular environments. The interaction between the surfactant-free cobalt metal nanoparticles and cancer cells was investigated. The facile endocytosis in cancer cells shows that these nanoparticles have potential in engendering their apoptosis. This preliminary study demonstrates the feasibility and relevance of cobalt nanomaterials for applications in nanomedicine such as phototherapy, hyperthermia or stem cell delivery.
Collapse
Affiliation(s)
- Erwan Rauwel
- Institute of Technology, Estonian University of Life Sciences, Tartu, Estonia
| | | | | | - Carlos O Amorim
- Dpt. Of Physics & CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | | | - Mithu Guha
- Dpt. Of General & Molecular Pathology, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Maria S Rosario
- CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Protima Rauwel
- Institute of Technology, Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
20
|
Babajani A, Soltani P, Jamshidi E, Farjoo MH, Niknejad H. Recent Advances on Drug-Loaded Mesenchymal Stem Cells With Anti-neoplastic Agents for Targeted Treatment of Cancer. Front Bioeng Biotechnol 2020; 8:748. [PMID: 32793565 PMCID: PMC7390947 DOI: 10.3389/fbioe.2020.00748] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs), as an undifferentiated group of adult multipotent cells, have remarkable antitumor features that bring them up as a novel choice to treat cancers. MSCs are capable of altering the behavior of cells in the tumor microenvironment, inducing an anti-inflammatory effect in tumor cells, inhibiting tumor angiogenesis, and preventing metastasis. Besides, MSCs can induce apoptosis and inhibit the proliferation of tumor cells. The ability of MSCs to be loaded with chemotherapeutic drugs and release them in the site of primary and metastatic neoplasms makes them a preferable choice as targeted drug delivery procedure. Targeted drug delivery minimizes unexpected side effects of chemotherapeutic drugs and improves clinical outcomes. This review focuses on recent advances on innate antineoplastic features of MSCs and the effect of chemotherapeutic drugs on viability, proliferation, and the regenerative capacity of various kinds of MSCs. It also discusses the efficacy and mechanisms of drug loading and releasing procedures along with in vivo and in vitro preclinical outcomes of antineoplastic effects of primed MSCs for clinical prospection.
Collapse
Affiliation(s)
- Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pegah Soltani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Jamshidi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Student Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Farjoo
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Kholiya F, Chatterjee S, Bhojani G, Sen S, Barkume M, Kasinathan NK, Kode J, Meena R. Seaweed polysaccharide derived bioaldehyde nanocomposite: Potential application in anticancer therapeutics. Carbohydr Polym 2020; 240:116282. [PMID: 32475566 DOI: 10.1016/j.carbpol.2020.116282] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 02/05/2023]
Abstract
In the present study, we have demonstrated synthesis of agar aldehyde (Aald) from seaweed polysaccharide and its further successful application for preparation of Aald mediated solid silver nanocomposite (Aald-AgNPs). Aald-AgNPs were characterized for biophysical properties by FTIR, XRD, SEM, TEM, XPS, and UV-vis spectroscopy. Aald-AgNPs were further tested in vitro and in vivo for anticancer activity. The results of the in vitro study revealed that Aald-AgNPs exhibited activity against 3 cancer cell lines. Aald-AgNPs were found to act through causing dose dependent increase in cell size, inducing anueploidy, mitochondrial disintegration and increasing septa formation in cell cytoplasm. Results of in vivo anticancer activity against ME-180, Colon-26, and HL-60 xenograft mice tumor models showed 64 %, 27.3 % and 51 % reduction in tumor volume, respectively with 83-100 % survival rate. Aald-AgNPs exhibited excellent antibacterial activity. It was interesting to note that Aald-AgNPs did not exhibit any significant detrimental effect on viability and metabolic activity of normal bone marrow derived mesenchymal stem cells. This study opens new areas of research for chemists and biologists to use seaweed-derived polymers to develop nanocomposites for cancer therapeutics.
Collapse
Affiliation(s)
- Faisal Kholiya
- Natural Products & Green Chemistry Division, CSIR-Central Salt & Marine Chemicals Research Institute, G. B Marg, Bhavnagar, 364002, Gujarat, India
| | - Shruti Chatterjee
- Division of Biotechnology and Phycology, CSIR-Central Salt & Marine Chemicals Research Institute, G. B Marg, Bhavnagar, 364002, Gujarat, India
| | - Gopal Bhojani
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Subrata Sen
- Anti-Cancer Drug Screening Facility, Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, 410210, India
| | - Madan Barkume
- Anti-Cancer Drug Screening Facility, Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, 410210, India
| | - Nirmal Kumar Kasinathan
- Anti-Cancer Drug Screening Facility, Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, 410210, India
| | - Jyoti Kode
- Anti-Cancer Drug Screening Facility, Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Ramavatar Meena
- Natural Products & Green Chemistry Division, CSIR-Central Salt & Marine Chemicals Research Institute, G. B Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
22
|
Ayoub S, Berbéri A, Fayyad-Kazan M. An update on human periapical cyst-mesenchymal stem cells and their potential applications in regenerative medicine. Mol Biol Rep 2020; 47:2381-2389. [PMID: 32026284 DOI: 10.1007/s11033-020-05298-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/31/2020] [Indexed: 12/16/2022]
Abstract
The broad clinical applications of Mesenchymal Stem Cells (MSCs) in the regenerative medicine field is attributed to their ability to self-renew and differentiate into multiple cellular lineages. Nowadays, MSCs can be derived from a variety of adult and fetal tissues including bone marrow, adipose tissue, umbilical cord and placenta. The difficulties associated with the isolation of MSCs from certain tissues such as bone marrow promoted the search for alternative tissues which are easily accessible. Oral derived MSCs include dental pulp stem cells (DPSCs), dental follicle progenitor cells (DFPC), and periodontal ligament stem cells (PDLSC). Being abundant and easily accessible, oral derived MSCs represent an interesting alternative MSC type to be employed in regenerative medicine. Human periapical cyst-mesenchymal stem cells (hPCy-MSCs) correspond to a newly discovered and characterized MSC subtype. Interestingly, hPCy-MSCs are collected from periapical cysts, which are a biological waste, without any influence on the other healthy tissues in oral cavity. hPCy-MSCs exhibit cell surface marker profile similar to that of other oral derived MSCs, show high proliferative potency, and possess the potential to differentiate into different cell types such as osteoblasts, adipocytes and neurons-like cells. hPCy-MSCs, therefore, represent a novel promising MSCs type to be applied in regenerative medicine domain. In this review, we will compare the different types of dental derived MSCs, we will highlight the isolation technique, the characteristics, and the therapeutic potential of hPCy-MSCs.
Collapse
Affiliation(s)
- Sara Ayoub
- Department of Prosthodontics, Faculty of Dental Medicine, Lebanese University, Beirut, Lebanon
| | - Antoine Berbéri
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Lebanese University, Beirut, Lebanon
| | - Mohammad Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon. .,Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon.
| |
Collapse
|
23
|
Lutz H, Hu S, Dinh PU, Cheng K. Cells and cell derivatives as drug carriers for targeted delivery. MEDICINE IN DRUG DISCOVERY 2019; 3:100014. [PMID: 38596257 PMCID: PMC11003759 DOI: 10.1016/j.medidd.2020.100014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
For over a century, researchers have focused on how to optimize drug delivery. Systemic administration means that the drug becomes dilute and has the potential to diffuse to all tissues, which is only until the immune system steps in and rapidly clears it from blood circulation. Drug carriers are the solution for amplifying the intended effect and diminishing side effects. With drug carriers, tissue-specific drug delivery and controlled drug release is possible. Thus far, both synthetic and non-synthetic carriers exist. However, due to the numerous limitations of synthetic carriers, science has begun to concentrate on using live cells and cell-derivatives as drug carriers. The most problematic shortcomings of synthetic carriers are their limited biocompatibility and biodegradability. Most synthetic carriers are cytotoxic or induce immune responses. Moreover, synthetic carriers typically depend on passive diffusion and risk phagocytosis, further reducing their impact. On the other hand, live-cell carriers and their derivatives usually have a targeting mechanism and drug release is controlled, increasing the efficiency with which a drug accumulates and acts on a tissue. Still, both types of carriers face similar problems, including achieving high loading capacity, maintaining drug quality, efficiently accumulating in the target tissue, and minimizing side effects. This review aims to elucidate the advantages and disadvantages of each popular cell or cell-derived carrier and to spotlight novel solutions.
Collapse
Affiliation(s)
- Halle Lutz
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, United States
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, United States
| | - Phuong-Uyen Dinh
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, United States
| | - Ke Cheng
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, United States
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27607, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
24
|
Li X, Guo H, Ren S, Fan R, Yu Y, Zhang H, Liu C, Miao L. Fluorescent labelling in living dental pulp stem cells by graphene oxide quantum dots. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:115-122. [PMID: 30663424 DOI: 10.1080/21691401.2018.1544141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cellular labelling is possible to offer significant information after transplantation for the purpose of determining stem cell therapy's efficacy. According to the research, it has been reported that graphene oxide quantum dots (GOQDs) are a kind of healthy biological labelling agent for stem cells which show little cytotoxicity. GOQDs' interactions have been examined on the dental pulp stem cells (hDPSCs) of human beings for the purpose of investigating GOQD's biocompatibility and uptake and explored GOQDs' effects on hDPSCs' metabolic activity and the proliferation. According to the outcomes, GDQDs have been accepted by hDPSCs in a time-dependent and concentration-dependent behaviour. Moreover, no important changes have been discovered within hDOPSCs' proliferation, viability as well as metabolic activity after treatment with GOQDs. Therefore, such resources have shown that GOQDs can be multifunctional agents for cell therapy, drug delivery as well as cell imaging and also as outstanding candidates for labelling stem cells.
Collapse
Affiliation(s)
- Xincong Li
- a Department of Cariology and Endodontics, Nanjing Stomatological Hospital , Medical School of Nanjing University , Nanjing , People's Republic of China
| | - Haowei Guo
- b Department of Breast and Thyroid Surgery, Huai'an First People's Hospital , Nanjing Medical University , Huai'an , People's Republic of China
| | - Shuangshuang Ren
- c Department of Periodontology, Nanjing Stomatological Hospital , Medical School of Nanjing University , Nanjing , People's Republic of China
| | - Ruirui Fan
- c Department of Periodontology, Nanjing Stomatological Hospital , Medical School of Nanjing University , Nanjing , People's Republic of China
| | - Yijun Yu
- a Department of Cariology and Endodontics, Nanjing Stomatological Hospital , Medical School of Nanjing University , Nanjing , People's Republic of China
| | - He Zhang
- c Department of Periodontology, Nanjing Stomatological Hospital , Medical School of Nanjing University , Nanjing , People's Republic of China
| | - Chao Liu
- d Department of Orthodontics, Nanjing Stomatological Hospital , Medical School of Nanjing University , Nanjing , People's Republic of China
| | - Leiying Miao
- a Department of Cariology and Endodontics, Nanjing Stomatological Hospital , Medical School of Nanjing University , Nanjing , People's Republic of China
| |
Collapse
|
25
|
Coccè V, Franzè S, Brini AT, Giannì AB, Pascucci L, Ciusani E, Alessandri G, Farronato G, Cavicchini L, Sordi V, Paroni R, Dei Cas M, Cilurzo F, Pessina A. In Vitro Anticancer Activity of Extracellular Vesicles (EVs) Secreted by Gingival Mesenchymal Stromal Cells Primed with Paclitaxel. Pharmaceutics 2019; 11:pharmaceutics11020061. [PMID: 30717104 PMCID: PMC6409699 DOI: 10.3390/pharmaceutics11020061] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/15/2019] [Accepted: 01/26/2019] [Indexed: 01/08/2023] Open
Abstract
Interdental papilla are an interesting source of mesenchymal stromal cells (GinPaMSCs), which are easy to isolate and expand in vitro. In our laboratory, GinPaMSCs were isolated, expanded, and characterized by studying their secretome before and after priming with paclitaxel (PTX). The secretome of GinPaMSCs did not affect the growth of cancer cell lines tested in vitro, whereas the secretome of GinPaMSCs primed with paclitaxel (GinPaMSCs/PTX) exerted a significant anticancer effect. GinPaMSCs were able to uptake and then release paclitaxel in amounts pharmacologically effective against cancer cells, as demonstrated in vitro by the direct activity of GinPaMSCs/PTX and their secretome against both human pancreatic carcinoma and squamous carcinoma cells. PTX was associated with extracellular vesicles (EVs) secreted by cells (EVs/PTX), suggesting that PTX is incorporated into exosomes during their biogenesis. The isolation of mesenchymal stromal cells (MSCs) from gingiva is less invasive than that from other tissues (such as bone marrow and fat), and GinPaMSCs provide an optimal substrate for drug-priming to obtain EVs/PTX having anticancer activity. This research may contribute to develop new strategies of cell-mediated drug delivery by EVs that are easy to store without losing function, and could have a superior safety profile in therapy.
Collapse
Affiliation(s)
- Valentina Coccè
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20133 Milan, Italy.
| | - Silvia Franzè
- Department of Pharmaceutical Science, University of Milan, 20133 Milan, Italy.
| | - Anna Teresa Brini
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20133 Milan, Italy.
- IRCCS Orthopedic Institute Galeazzi, 20161 Milan, Italy.
| | - Aldo Bruno Giannì
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20133 Milan, Italy.
- Maxillo-Facial and Dental Unit, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy.
| | - Luisa Pascucci
- Department of Veterinary Medicine, University of Perugia, 06123 Perugia, Italy.
| | - Emilio Ciusani
- Laboratory of Clinical Pathology and Medical Genetics, Fondazione IRCCS Istituto Neurologico "C. Besta", 20133 Milan, Italy.
| | - Giulio Alessandri
- Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases, IRCCS Neurological Institute C. Besta, 20133 Milan, Italy.
| | - Giampietro Farronato
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20133 Milan, Italy.
- Unit of Orthodontics and Paediatric Dentistry, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy.
| | - Loredana Cavicchini
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20133 Milan, Italy.
| | - Valeria Sordi
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Rita Paroni
- Department of Health Sciences of the University of Milan, 20142 Milan, Italy.
| | - Michele Dei Cas
- Department of Health Sciences of the University of Milan, 20142 Milan, Italy.
| | - Francesco Cilurzo
- Department of Pharmaceutical Science, University of Milan, 20133 Milan, Italy.
| | - Augusto Pessina
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20133 Milan, Italy.
| |
Collapse
|