1
|
Pham DL, Gillette AA, Riendeau J, Wiech K, Guzman EC, Datta R, Skala MC. Perspectives on label-free microscopy of heterogeneous and dynamic biological systems. JOURNAL OF BIOMEDICAL OPTICS 2025; 29:S22702. [PMID: 38434231 PMCID: PMC10903072 DOI: 10.1117/1.jbo.29.s2.s22702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/22/2023] [Accepted: 12/14/2023] [Indexed: 03/05/2024]
Abstract
Significance Advancements in label-free microscopy could provide real-time, non-invasive imaging with unique sources of contrast and automated standardized analysis to characterize heterogeneous and dynamic biological processes. These tools would overcome challenges with widely used methods that are destructive (e.g., histology, flow cytometry) or lack cellular resolution (e.g., plate-based assays, whole animal bioluminescence imaging). Aim This perspective aims to (1) justify the need for label-free microscopy to track heterogeneous cellular functions over time and space within unperturbed systems and (2) recommend improvements regarding instrumentation, image analysis, and image interpretation to address these needs. Approach Three key research areas (cancer research, autoimmune disease, and tissue and cell engineering) are considered to support the need for label-free microscopy to characterize heterogeneity and dynamics within biological systems. Based on the strengths (e.g., multiple sources of molecular contrast, non-invasive monitoring) and weaknesses (e.g., imaging depth, image interpretation) of several label-free microscopy modalities, improvements for future imaging systems are recommended. Conclusion Improvements in instrumentation including strategies that increase resolution and imaging speed, standardization and centralization of image analysis tools, and robust data validation and interpretation will expand the applications of label-free microscopy to study heterogeneous and dynamic biological systems.
Collapse
Affiliation(s)
- Dan L. Pham
- University of Wisconsin—Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | | | | | - Kasia Wiech
- University of Wisconsin—Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | | | - Rupsa Datta
- Morgridge Institute for Research, Madison, Wisconsin, United States
| | - Melissa C. Skala
- University of Wisconsin—Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
- Morgridge Institute for Research, Madison, Wisconsin, United States
| |
Collapse
|
2
|
Nikolaev VV, Kistenev YV, Kröger M, Zuhayri H, Darvin ME. Review of optical methods for noninvasive imaging of skin fibroblasts-From in vitro to ex vivo and in vivo visualization. JOURNAL OF BIOPHOTONICS 2024; 17:e202300223. [PMID: 38018868 DOI: 10.1002/jbio.202300223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023]
Abstract
Fibroblasts are among the most common cell types in the stroma responsible for creating and maintaining the structural organization of the extracellular matrix in the dermis, skin regeneration, and a range of immune responses. Until now, the processes of fibroblast adaptation and functioning in a varying environment have not been fully understood. Modern laser microscopes are capable of studying fibroblasts in vitro and ex vivo. One-photon- and two-photon-excited fluorescence microscopy, Raman spectroscopy/microspectroscopy are well-suited noninvasive optical methods for fibroblast imaging in vitro and ex vivo. In vivo staining-free fibroblast imaging is not still implemented. The exception is fibroblast imaging in tattooed skin. Although in vivo noninvasive staining-free imaging of fibroblasts in the skin has not yet been implemented, it is expected in the future. This review summarizes the state-of-the-art in fibroblast visualization using optical methods and discusses the advantages, limitations, and prospects for future noninvasive imaging.
Collapse
Affiliation(s)
- Viktor V Nikolaev
- Tomsk State University, Laboratory of Molecular Imaging and Machine Learning, Tomsk, Russia
| | - Yury V Kistenev
- Tomsk State University, Laboratory of Molecular Imaging and Machine Learning, Tomsk, Russia
| | - Marius Kröger
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Berlin, Germany
| | - Hala Zuhayri
- Tomsk State University, Laboratory of Molecular Imaging and Machine Learning, Tomsk, Russia
| | - Maxim E Darvin
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Berlin, Germany
| |
Collapse
|
3
|
In-process monitoring of a tissue-engineered oral mucosa fabricated on a micropatterned collagen scaffold: use of optical coherence tomography for quality control. Heliyon 2022; 8:e11468. [DOI: 10.1016/j.heliyon.2022.e11468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
|
4
|
Ai Y, Luo R, Yang D, Ma J, Yu Y, Lu H. Fluorescence lifetime imaging of NAD(P)H upon oxidative stress in Kluyveromyces marxianus. Front Bioeng Biotechnol 2022; 10:998800. [PMID: 36118576 PMCID: PMC9479077 DOI: 10.3389/fbioe.2022.998800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
K. marxianus is a promising cell factory for producing heterologous proteins. Oxidative stresses were raised during overexpression of heterologous proteins, leading to the shift of the redox state. How to measure the redox state of live K. marxianus cells without perturbing their growth remains a big challenge. Here, a fluorescence lifetime imaging (FLIM)-based method was developed in live K. marxianus cells. During the early exponential growth, K. marxianus cells exhibited an increased mean fluorescence lifetime (τ-mean) of NAD(P)H compared with Saccharomyces cerevisiae cells, which was consistent with the preference for respiration in K. marxianus cells and that for fermentation in S. cerevisiae cells. Upon oxidative stresses induced by high temperature or H2O2, K. marxianus cells exhibited an increased τ-mean in company with decreased intracellular NAD(P)H/NAD(P)+, suggesting a correlation between an increased τ-mean and a more oxidized redox state. The relationship between τ-mean and the expression level of a heterologous protein was investigated. There was no difference between the τ-means of K. marxianus strains which were not producing a heterologous protein. The τ-mean of a strain yielding a high level of a heterologous protein was higher than that of a low-yielding strain. The results suggested the potential application of FLIM in the non-invasive screen of high-yielding cells.
Collapse
Affiliation(s)
- Yi Ai
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Ruoyu Luo
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Deqiang Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Jiong Ma
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Yao Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
- *Correspondence: Yao Yu, ; Hong Lu,
| | - Hong Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
- *Correspondence: Yao Yu, ; Hong Lu,
| |
Collapse
|
5
|
FLIM for Evaluation of Difference in Metabolic Status between Native and Differentiated from iPSCs Dermal Papilla Cells. Cells 2022; 11:cells11172730. [PMID: 36078136 PMCID: PMC9454864 DOI: 10.3390/cells11172730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 12/29/2022] Open
Abstract
iPSCs and their derivatives are the most promising cell sources for creating skin equivalents. However, their properties are not fully understood. In addition, new approaches and parameters are needed for studying cells in 3D models without destroying their organization. Thus, the aim of our work was to study and compare the metabolic status and pH of dermal spheroids created from dermal papilla cells differentiated from pluripotent stem cells (iDP) and native dermal papilla cells (hDP) using fluorescence microscopy and fluorescence lifetime imaging microscopy (FLIM). For this purpose, fluorescence intensities of NAD(P)H and FAD, fluorescence lifetimes, and the contributions of NAD(P)H, as well as the fluorescence intensities of SypHer-2 and BCECF were measured. iDP in spheroids were characterized by a more glycolytic phenotype and alkaline intra-cellular pH in comparison with hDP cells. Moreover, the metabolic activity of iDP in spheroids depends on the source of stem cells from which they were obtained. So, less differentiated and condensed spheroids from iDP-iPSDP and iDP-iPSKYOU are characterized by a more glycolytic phenotype compared to dense spheroids from iDP-DYP0730 and iDP-hES. FLIM and fluorescent microscopy in combination with the metabolism and pH are promising tools for minimally invasive and long-term analyses of 3D models based on stem cells.
Collapse
|
6
|
Leitgeb R, Placzek F, Rank E, Krainz L, Haindl R, Li Q, Liu M, Andreana M, Unterhuber A, Schmoll T, Drexler W. Enhanced medical diagnosis for dOCTors: a perspective of optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210150-PER. [PMID: 34672145 PMCID: PMC8528212 DOI: 10.1117/1.jbo.26.10.100601] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/23/2021] [Indexed: 05/17/2023]
Abstract
SIGNIFICANCE After three decades, more than 75,000 publications, tens of companies being involved in its commercialization, and a global market perspective of about USD 1.5 billion in 2023, optical coherence tomography (OCT) has become one of the fastest successfully translated imaging techniques with substantial clinical and economic impacts and acceptance. AIM Our perspective focuses on disruptive forward-looking innovations and key technologies to further boost OCT performance and therefore enable significantly enhanced medical diagnosis. APPROACH A comprehensive review of state-of-the-art accomplishments in OCT has been performed. RESULTS The most disruptive future OCT innovations include imaging resolution and speed (single-beam raster scanning versus parallelization) improvement, new implementations for dual modality or even multimodality systems, and using endogenous or exogenous contrast in these hybrid OCT systems targeting molecular and metabolic imaging. Aside from OCT angiography, no other functional or contrast enhancing OCT extension has accomplished comparable clinical and commercial impacts. Some more recently developed extensions, e.g., optical coherence elastography, dynamic contrast OCT, optoretinography, and artificial intelligence enhanced OCT are also considered with high potential for the future. In addition, OCT miniaturization for portable, compact, handheld, and/or cost-effective capsule-based OCT applications, home-OCT, and self-OCT systems based on micro-optic assemblies or photonic integrated circuits will revolutionize new applications and availability in the near future. Finally, clinical translation of OCT including medical device regulatory challenges will continue to be absolutely essential. CONCLUSIONS With its exquisite non-invasive, micrometer resolution depth sectioning capability, OCT has especially revolutionized ophthalmic diagnosis and hence is the fastest adopted imaging technology in the history of ophthalmology. Nonetheless, OCT has not been completely exploited and has substantial growth potential-in academics as well as in industry. This applies not only to the ophthalmic application field, but also especially to the original motivation of OCT to enable optical biopsy, i.e., the in situ imaging of tissue microstructure with a resolution approaching that of histology but without the need for tissue excision.
Collapse
Affiliation(s)
- Rainer Leitgeb
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Medical University of Vienna, Christian Doppler Laboratory OPTRAMED, Vienna, Austria
| | - Fabian Placzek
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Elisabet Rank
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Lisa Krainz
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Richard Haindl
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Qian Li
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Mengyang Liu
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Marco Andreana
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Angelika Unterhuber
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Tilman Schmoll
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Carl Zeiss Meditec, Inc., Dublin, California, United States
| | - Wolfgang Drexler
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Address all correspondence to Wolfgang Drexler,
| |
Collapse
|
7
|
Dmitriev RI, Intes X, Barroso MM. Luminescence lifetime imaging of three-dimensional biological objects. J Cell Sci 2021; 134:1-17. [PMID: 33961054 PMCID: PMC8126452 DOI: 10.1242/jcs.254763] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A major focus of current biological studies is to fill the knowledge gaps between cell, tissue and organism scales. To this end, a wide array of contemporary optical analytical tools enable multiparameter quantitative imaging of live and fixed cells, three-dimensional (3D) systems, tissues, organs and organisms in the context of their complex spatiotemporal biological and molecular features. In particular, the modalities of luminescence lifetime imaging, comprising fluorescence lifetime imaging (FLI) and phosphorescence lifetime imaging microscopy (PLIM), in synergy with Förster resonance energy transfer (FRET) assays, provide a wealth of information. On the application side, the luminescence lifetime of endogenous molecules inside cells and tissues, overexpressed fluorescent protein fusion biosensor constructs or probes delivered externally provide molecular insights at multiple scales into protein-protein interaction networks, cellular metabolism, dynamics of molecular oxygen and hypoxia, physiologically important ions, and other physical and physiological parameters. Luminescence lifetime imaging offers a unique window into the physiological and structural environment of cells and tissues, enabling a new level of functional and molecular analysis in addition to providing 3D spatially resolved and longitudinal measurements that can range from microscopic to macroscopic scale. We provide an overview of luminescence lifetime imaging and summarize key biological applications from cells and tissues to organisms.
Collapse
Affiliation(s)
- Ruslan I. Dmitriev
- Tissue Engineering and Biomaterials Group, Department of
Human Structure and Repair, Faculty of Medicine and Health Sciences,
Ghent University, Ghent 9000,
Belgium
| | - Xavier Intes
- Department of Biomedical Engineering, Center for
Modeling, Simulation and Imaging for Medicine (CeMSIM),
Rensselaer Polytechnic Institute, Troy, NY
12180-3590, USA
| | - Margarida M. Barroso
- Department of Molecular and Cellular
Physiology, Albany Medical College,
Albany, NY 12208, USA
| |
Collapse
|
8
|
Rakhymzhan A, Reuter L, Raspe R, Bremer D, Günther R, Leben R, Heidelin J, Andresen V, Cheremukhin S, Schulz-Hildebrandt H, Bixel MG, Adams RH, Radbruch H, Hüttmann G, Hauser AE, Niesner RA. Coregistered Spectral Optical Coherence Tomography and Two-Photon Microscopy for Multimodal Near-Instantaneous Deep-Tissue Imaging. Cytometry A 2020; 97:515-527. [PMID: 32293804 DOI: 10.1002/cyto.a.24012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 12/23/2022]
Abstract
Two-photon microscopy (2PM) has brought unique insight into the mechanisms underlying immune system dynamics and function since it enables monitoring of cellular motility and communication in complex systems within their genuine environment-the living organism. However, use of 2PM in clinical settings is limited. In contrast, optical coherence tomography (OCT), a noninvasive label-free diagnostic imaging method, which allows monitoring morphologic changes of large tissue regions in vivo, has found broad application in the clinic. Here we developed a combined multimodal technology to achieve near-instantaneous coregistered OCT, 2PM, and second harmonic generation (SHG) imaging over large volumes (up to 1,000 × 1,000 × 300 μm3 ) of tendons and other tissue compartments in mouse paws, as well as in mouse lymph nodes, spleens, and femurs. Using our multimodal imaging approach, we found differences in macrophage cell shape and motility behavior depending on whether they are located in tendons or in the surrounding tissue compartments of the mouse paw. The cellular shape of tissue-resident macrophages, indicative for their role in tissue, correlated with the supramolecular organization of collagen as revealed by SHG and OCT. Hence, the here-presented approach of coregistered OCT and 2PM has the potential to link specific cellular phenotypes and functions (as revealed by 2PM) to tissue morphology (as highlighted by OCT) and thus, to build a bridge between basic research knowledge and clinical observations. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Asylkhan Rakhymzhan
- Biophysical Analytics, Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| | - Lucie Reuter
- Biophysical Analytics, Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| | - Raphael Raspe
- Immundynamics, Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany.,Immundynamics and Intravital Microscopy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel Bremer
- Biophysical Analytics, Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| | - Robert Günther
- Biophysical Analytics, Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany.,Immundynamics, Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| | - Ruth Leben
- Biophysical Analytics, Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| | - Judith Heidelin
- LaVision BioTec-A Miltenyi Biotec Company, Bielefeld, Germany
| | - Volker Andresen
- LaVision BioTec-A Miltenyi Biotec Company, Bielefeld, Germany
| | | | | | - Maria G Bixel
- Max-Plank-Institut for Molecular Biomedicine, Tissue Morphogenesis, Münster, Germany
| | - Ralf H Adams
- Max-Plank-Institut for Molecular Biomedicine, Tissue Morphogenesis, Münster, Germany
| | - Helena Radbruch
- Institute for Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gereon Hüttmann
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Lübeck, Germany
| | - Anja E Hauser
- Immundynamics, Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany.,Immundynamics and Intravital Microscopy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Raluca A Niesner
- Biophysical Analytics, Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany.,Dynamic and Functional in vivo Imaging, Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
9
|
Vaughan MB, Xu G, Morris TL, Kshetri P, Herwig JX. Predictable fibroblast tension generation by measuring compaction of anchored collagen matrices using microscopy and optical coherence tomography. Cell Adh Migr 2019; 13:303-314. [PMID: 31331232 PMCID: PMC6650198 DOI: 10.1080/19336918.2019.1644855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The anchored fibroblast-populated collagen matrix (aFPCM) is an appropriate model to study fibrocontractive disease mechanisms. Our goal was to determine if aFPCM height reduction (compaction) during development is sufficient to predict tension generation. Compaction was quantified daily by both traditional light microscopy and an optical coherence tomography (OCT) system. Contraction in aFPCM was revealed by releasing them from anchorage. We found that aFPCM contraction increase was correlated to the compaction increase. Cytochalasin D treatment reversibly inhibited compaction. Therefore, we demonstrated that aFPCM height reduction efficiently measures compaction, contraction, and relative maturity of the collagen matrix during development or treatment. In addition, we showed that OCT is suitable for effectively imaging the cross-sectional morphology of the aFPCM in culture. This study will pave the way for more efficient studies on the mechanisms of (and treatments that target) migration and contraction in wound healing and Dupuytren’s contracture in a tissue environment.
Collapse
Affiliation(s)
- Melville B Vaughan
- a Department of Biology, University of Central Oklahoma , Edmond , OK , USA.,b Center for Interdisciplinary Biomedical Education and Research (CIBER), University of Central Oklahoma, 100 N. University Drive , Edmond , OK
| | - Gang Xu
- b Center for Interdisciplinary Biomedical Education and Research (CIBER), University of Central Oklahoma, 100 N. University Drive , Edmond , OK.,c Department of Engineering and Physics, University of Central Oklahoma , Edmond , OK , USA
| | - Tracy L Morris
- b Center for Interdisciplinary Biomedical Education and Research (CIBER), University of Central Oklahoma, 100 N. University Drive , Edmond , OK.,d Department of Mathematics and Statistics, University of Central Oklahoma , Edmond , OK , USA
| | - Pratiksha Kshetri
- a Department of Biology, University of Central Oklahoma , Edmond , OK , USA
| | - Jing X Herwig
- a Department of Biology, University of Central Oklahoma , Edmond , OK , USA
| |
Collapse
|
10
|
Andreana M, Sentosa R, Erkkilä MT, Drexler W, Unterhuber A. Depth resolved label-free multimodal optical imaging platform to study morpho-molecular composition of tissue. Photochem Photobiol Sci 2019; 18:997-1008. [PMID: 30882117 DOI: 10.1039/c8pp00410b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multimodal imaging platforms offer a vast array of tissue information in a single image acquisition by combining complementary imaging techniques. By merging different systems, better tissue characterization can be achieved than is possible by the constituent imaging modalities alone. The combination of optical coherence tomography (OCT) with non-linear optical imaging (NLOI) techniques such as two-photon excited fluorescence (TPEF), second harmonic generation (SHG) and coherent anti-Stokes Raman scattering (CARS) provides access to detailed information of tissue structure and molecular composition in a fast, label-free and non-invasive manner. We introduce a multimodal label-free approach for morpho-molecular imaging and spectroscopy and validate the system in mouse skin demonstrating the potential of the system for colocalized acquisition of OCT and NLOI signals.
Collapse
Affiliation(s)
- Marco Andreana
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| | | | | | | | | |
Collapse
|
11
|
Shcheslavskiy VI, Shirmanova MV, Jelzow A, Becker W. Multiparametric Time-Correlated Single Photon Counting Luminescence Microscopy. BIOCHEMISTRY (MOSCOW) 2019; 84:S51-S68. [PMID: 31213195 DOI: 10.1134/s0006297919140049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Classic time-correlated single photon counting (TCSPC) technique involves detection of single photons of a periodic optical signal, registration of the photon arrival time in respect to the reference pulse, and construction of photon distribution with regard to the detection times. This technique achieves extremely high time resolution and near-ideal detection efficiency. Modern TCSPC is multi-dimensional, i.e., in addition to the photon arrival time relative to the excitation pulse, spatial coordinates within the image area, wavelength, time from the start of the experiment, and many other parameters are determined for each photon. Hence, the multi-dimensional TCSPC allows generation of photon distributions over these parameters. This review describes both classic and multi-dimensional types of TCSPC microscopy and their application for fluorescence lifetime imaging in different areas of biological studies.
Collapse
Affiliation(s)
- V I Shcheslavskiy
- Becker&Hickl GmbH, Berlin, 12277, Germany. .,Privolzhskiy Medical Research University, Nizhny Novgorod, 603005, Russia
| | - M V Shirmanova
- Privolzhskiy Medical Research University, Nizhny Novgorod, 603005, Russia
| | - A Jelzow
- Becker&Hickl GmbH, Berlin, 12277, Germany
| | - W Becker
- Becker&Hickl GmbH, Berlin, 12277, Germany
| |
Collapse
|
12
|
Regeneration of Dermis: Scarring and Cells Involved. Cells 2019; 8:cells8060607. [PMID: 31216669 PMCID: PMC6627856 DOI: 10.3390/cells8060607] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/12/2019] [Accepted: 06/15/2019] [Indexed: 12/31/2022] Open
Abstract
There are many studies on certain skin cell specifications and their contribution to wound healing. In this review, we provide an overview of dermal cell heterogeneity and their participation in skin repair, scar formation, and in the composition of skin substitutes. The papillary, reticular, and hair follicle associated fibroblasts differ not only topographically, but also functionally. Human skin has a number of particular characteristics that are different from murine skin. This should be taken into account in experimental procedures. Dermal cells react differently to skin wounding, remodel the extracellular matrix in their own manner, and convert to myofibroblasts to different extents. Recent studies indicate a special role of papillary fibroblasts in the favorable outcome of wound healing and epithelial-mesenchyme interactions. Neofolliculogenesis can substantially reduce scarring. The role of hair follicle mesenchyme cells in skin repair and possible therapeutic applications is discussed. Participation of dermal cell types in wound healing is described, with the addition of possible mechanisms underlying different outcomes in embryonic and adult tissues in the context of cell population characteristics and extracellular matrix composition and properties. Dermal white adipose tissue involvement in wound healing is also overviewed. Characteristics of myofibroblasts and their activity in scar formation is extensively discussed. Cellular mechanisms of scarring and possible ways for its prevention are highlighted. Data on keloid cells are provided with emphasis on their specific characteristics. We also discuss the contribution of tissue tension to the scar formation as well as the criteria and effectiveness of skin substitutes in skin reconstruction. Special attention is given to the properties of skin substitutes in terms of cell composition and the ability to prevent scarring.
Collapse
|
13
|
Dudenkova VV, Shirmanova MV, Lukina MM, Feldshtein FI, Virkin A, Zagainova EV. Examination of Collagen Structure and State by the Second Harmonic Generation Microscopy. BIOCHEMISTRY (MOSCOW) 2019; 84:S89-S107. [DOI: 10.1134/s0006297919140062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|