1
|
Li X, Zhang J, Wang M, Li H, Zhang W, Sun J, Zhang L, Zheng Y, Liu J, Tang J. Pulmonary surfactant biogenesis blockage mediated polyhexamethylene guanidine disinfectant induced pulmonary fibrosis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136307. [PMID: 39488979 DOI: 10.1016/j.jhazmat.2024.136307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The widespread use of disinfectants and inhalation exposure to aerosolized forms is closely associated with adverse health effects on the respiratory system and pulmonary fibrosis, but the mechanism remains unclear. Here, we investigated the time-course pulmonary fibrosis effects of polyhexamethylene guanidine (PHMG) disinfectant inhalation exposure and elucidated its underlying mechanism. Specifically, scRNA-seq analysis revealed an initial increase in epithelial cell numbers after 4 weeks of PHMG exposure during induced pulmonary fibrosis, followed by a subsequent decrease after 8 weeks of exposure. Mechanistically, PHMG disrupted autophagic flux leading to intracellular accumulation and blocked pulmonary surfactant biogenesis in alveolar type II epithelial (AT2) cells both in vitro and in vivo. Furthermore, intervention studies using metformin confirmed that autophagy dysfunction mediated the blockage of pulmonary surfactant biogenesis in AT2 cells, playing a pivotal role in PHMG-induced pulmonary fibrosis. Our elucidation of these toxicological mechanisms provides valuable insights into the pathogenesis of pulmonary fibrosis triggered by environmental PHMG exposure, thereby offering a promising therapeutic target for mitigating and treating PHMG-associated pulmonary fibrosis.
Collapse
Affiliation(s)
- Xin Li
- Clinical Medical Research Center for Women and Children Diseases, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Jianzhong Zhang
- Clinical Medical Research Center for Women and Children Diseases, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Mingyue Wang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Haonan Li
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Wanjun Zhang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jiayin Sun
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Lin Zhang
- Clinical Medical Research Center for Women and Children Diseases, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China
| | - Yuxin Zheng
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jing Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Jinglong Tang
- Clinical Medical Research Center for Women and Children Diseases, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
2
|
Wang X, He W, Huang H, Han J, Wang R, Li H, Long Y, Wang G, Han X. Recent Advances in Hydrogel Technology in Delivering Mesenchymal Stem Cell for Osteoarthritis Therapy. Biomolecules 2024; 14:858. [PMID: 39062572 PMCID: PMC11274544 DOI: 10.3390/biom14070858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/06/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Osteoarthritis (OA), a chronic joint disease affecting over 500 million individuals globally, is characterized by the destruction of articular cartilage and joint inflammation. Conventional treatments are insufficient for repairing damaged joint tissue, necessitating novel therapeutic approaches. Mesenchymal stem cells (MSCs), with their potential for differentiation and self-renewal, hold great promise as a treatment for OA. However, challenges such as MSC viability and apoptosis in the ischemic joint environment hinder their therapeutic effectiveness. Hydrogels with biocompatibility and degradability offer a three-dimensional scaffold that support cell viability and differentiation, making them ideal for MSC delivery in OA treatment. This review discusses the pathological features of OA, the properties of MSCs, the challenges associated with MSC therapy, and methods for hydrogel preparation and functionalization. Furthermore, it highlights the advantages of hydrogel-based MSC delivery systems while providing insights into future research directions and the clinical potential of this approach.
Collapse
Affiliation(s)
- Xiangjiang Wang
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Wentao He
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Hao Huang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Collage of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Jiali Han
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Ruren Wang
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Hongyi Li
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Ying Long
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Guiqing Wang
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Xianjing Han
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| |
Collapse
|
3
|
Volpi G, Laurenti E, Rabezzana R. Imidazopyridine Family: Versatile and Promising Heterocyclic Skeletons for Different Applications. Molecules 2024; 29:2668. [PMID: 38893542 PMCID: PMC11173518 DOI: 10.3390/molecules29112668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
In recent years, there has been increasing attention focused on various products belonging to the imidazopyridine family; this class of heterocyclic compounds shows unique chemical structure, versatile optical properties, and diverse biological attributes. The broad family of imidazopyridines encompasses different heterocycles, each with its own specific properties and distinct characteristics, making all of them promising for various application fields. In general, this useful category of aromatic heterocycles holds significant promise across various research domains, spanning from material science to pharmaceuticals. The various cores belonging to the imidazopyridine family exhibit unique properties, such as serving as emitters in imaging, ligands for transition metals, showing reversible electrochemical properties, and demonstrating biological activity. Recently, numerous noteworthy advancements have emerged in different technological fields, including optoelectronic devices, sensors, energy conversion, medical applications, and shining emitters for imaging and microscopy. This review intends to provide a state-of-the-art overview of this framework from 1955 to the present day, unveiling different aspects of various applications. This extensive literature survey may guide chemists and researchers in the quest for novel imidazopyridine compounds with enhanced properties and efficiency in different uses.
Collapse
Affiliation(s)
- Giorgio Volpi
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy; (E.L.)
| | | | | |
Collapse
|
4
|
Rasouli M, Naeimzadeh Y, Hashemi N, Hosseinzadeh S. Age-Related Alterations in Mesenchymal Stem Cell Function: Understanding Mechanisms and Seeking Opportunities to Bypass the Cellular Aging. Curr Stem Cell Res Ther 2024; 19:15-32. [PMID: 36642876 DOI: 10.2174/1574888x18666230113144016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/28/2022] [Accepted: 11/23/2022] [Indexed: 01/17/2023]
Abstract
Undoubtedly, mesenchymal stem cells (MSCs) are the most common cell therapy candidates in clinical research and therapy. They not only exert considerable therapeutic effects to alleviate inflammation and promote regeneration, but also show low-immunogenicity properties, which ensure their safety following allogeneic transplantation. Thanks to the necessity of providing a sufficient number of MSCs to achieve clinically efficient outcomes, prolonged in vitro cultivation is indisputable. However, either following long-term in vitro expansion or aging in elderly individuals, MSCs face cellular senescence. Senescent MSCs undergo an impairment in their function and therapeutic capacities and secrete degenerative factors which negatively affect young MSCs. To this end, designing novel investigations to further elucidate cellular senescence and to pave the way toward finding new strategies to reverse senescence is highly demanded. In this review, we will concisely discuss current progress on the detailed mechanisms of MSC senescence and various inflicted changes following aging in MSC. We will also shed light on the examined strategies underlying monitoring and reversing senescence in MSCs to bypass the comprised therapeutic efficacy of the senescent MSCs.
Collapse
Affiliation(s)
- Mehdi Rasouli
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Naeimzadeh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Hashemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Chae CW, Jung YH, Han HJ. Transcription Factor EB-Mediated Lysosomal Function Regulation for Determining Stem Cell Fate under Metabolic Stress. Mol Cells 2023; 46:727-735. [PMID: 38052487 PMCID: PMC10701302 DOI: 10.14348/molcells.2023.0143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 12/07/2023] Open
Abstract
Stem cells require high amounts of energy to replicate their genome and organelles and differentiate into numerous cell types. Therefore, metabolic stress has a major impact on stem cell fate determination, including self-renewal, quiescence, and differentiation. Lysosomes are catabolic organelles that influence stem cell function and fate by regulating the degradation of intracellular components and maintaining cellular homeostasis in response to metabolic stress. Lysosomal functions altered by metabolic stress are tightly regulated by the transcription factor EB (TFEB) and TFE3, critical regulators of lysosomal gene expression. Therefore, understanding the regulatory mechanism of TFEB-mediated lysosomal function may provide some insight into stem cell fate determination under metabolic stress. In this review, we summarize the molecular mechanism of TFEB/TFE3 in modulating stem cell lysosomal function and then elucidate the role of TFEB/TFE3-mediated transcriptional activity in the determination of stem cell fate under metabolic stress.
Collapse
Affiliation(s)
- Chang Woo Chae
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul 08826, Korea
- These authors contributed equally to this work
| | - Young Hyun Jung
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
- These authors contributed equally to this work
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
6
|
Pan CC, Maeso-Díaz R, Lewis TR, Xiang K, Tan L, Liang Y, Wang L, Yang F, Yin T, Wang C, Du K, Huang D, Oh SH, Wang E, Lim BJW, Chong M, Alexander PB, Yao X, Arshavsky VY, Li QJ, Diehl AM, Wang XF. Antagonizing the irreversible thrombomodulin-initiated proteolytic signaling alleviates age-related liver fibrosis via senescent cell killing. Cell Res 2023; 33:516-532. [PMID: 37169907 PMCID: PMC10313785 DOI: 10.1038/s41422-023-00820-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
Cellular senescence is a stress-induced, stable cell cycle arrest phenotype which generates a pro-inflammatory microenvironment, leading to chronic inflammation and age-associated diseases. Determining the fundamental molecular pathways driving senescence instead of apoptosis could enable the identification of senolytic agents to restore tissue homeostasis. Here, we identify thrombomodulin (THBD) signaling as a key molecular determinant of the senescent cell fate. Although normally restricted to endothelial cells, THBD is rapidly upregulated and maintained throughout all phases of the senescence program in aged mammalian tissues and in senescent cell models. Mechanistically, THBD activates a proteolytic feed-forward signaling pathway by stabilizing a multi-protein complex in early endosomes, thus forming a molecular basis for the irreversibility of the senescence program and ensuring senescent cell viability. Therapeutically, THBD signaling depletion or inhibition using vorapaxar, an FDA-approved drug, effectively ablates senescent cells and restores tissue homeostasis in liver fibrosis models. Collectively, these results uncover proteolytic THBD signaling as a conserved pro-survival pathway essential for senescent cell viability, thus providing a pharmacologically exploitable senolytic target for senescence-associated diseases.
Collapse
Affiliation(s)
- Christopher C Pan
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Raquel Maeso-Díaz
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Tylor R Lewis
- Division of Ophthalmology, Department of Medicine, Duke University, Durham, NC, USA
| | - Kun Xiang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Lianmei Tan
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Yaosi Liang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Fengrui Yang
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Tao Yin
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Calvin Wang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Kuo Du
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - De Huang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Seh Hoon Oh
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Ergang Wang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | | | - Mengyang Chong
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Peter B Alexander
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Xuebiao Yao
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Vadim Y Arshavsky
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
- Division of Ophthalmology, Department of Medicine, Duke University, Durham, NC, USA
| | - Qi-Jing Li
- Department of Immunology, Duke University, Durham, NC, USA
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Xiao-Fan Wang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
7
|
Cerrato V, Volpi G, Priola E, Giordana A, Garino C, Rabezzana R, Diana E. Mono-, Bis-, and Tris-Chelate Zn(II) Complexes with Imidazo[1,5- a]pyridine: Luminescence and Structural Dependence. Molecules 2023; 28:molecules28093703. [PMID: 37175116 PMCID: PMC10179938 DOI: 10.3390/molecules28093703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
New mono-, bis-, and tris-chelate Zn(II) complexes have been synthesized starting from different Zn(II) salts and employing a fluorescent 1,3-substituted-imidazo[1,5-a]pyridine as a chelating ligand. The products have been characterized by single-crystal X-ray diffraction; mass spectrometry; and vibrational spectroscopy. The optical properties have been investigated to compare the performances of mono-, bis-, and tris-chelate forms. The collected data (in the solid state and in solution) elucidate an important modification of the ligand conformation upon metal coordination; which is responsible for a notable increase in the optical performance. An intense modification of the emission quantum yield along the series in the solid state is observed comparing mono-, bis-, and tris-chelate adducts; independently from the anionic ligand introduced by ionic exchange.
Collapse
Affiliation(s)
- Valerio Cerrato
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Giorgio Volpi
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Emanuele Priola
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Alessia Giordana
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Claudio Garino
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Roberto Rabezzana
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Eliano Diana
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
| |
Collapse
|
8
|
Wang J, Zhang Y, Cao J, Wang Y, Anwar N, Zhang Z, Zhang D, Ma Y, Xiao Y, Xiao L, Wang X. The role of autophagy in bone metabolism and clinical significance. Autophagy 2023:1-19. [PMID: 36858962 PMCID: PMC10392742 DOI: 10.1080/15548627.2023.2186112] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
The skeletal system is the basis of the vertebral body composition, which affords stabilization sites for muscle attachment, protects vital organs, stores mineral ions, supplies places to the hematopoietic system, and participates in complex endocrine and immune system. Not surprisingly, bones are constantly reabsorbed, formed, and remodeled under physiological conditions. Once bone metabolic homeostasis is interrupted (including inflammation, tumors, fractures, and bone metabolic diseases), the body rapidly initiates bone regeneration to maintain bone tissue structure and quality. Macroautophagy/autophagy is an essential metabolic process in eukaryotic cells, which maintains metabolic energy homeostasis and plays a vital role in bone regeneration by controlling molecular degradation and organelle renewal. One relatively new observation is that mesenchymal cells, osteoblasts, osteoclasts, osteocytes, chondrocytes, and vascularization process exhibit autophagy, and the molecular mechanisms and targets involved are being explored and updated. The role of autophagy is also emerging in degenerative diseases (intervertebral disc degeneration [IVDD], osteoarthritis [OA], etc.) and bone metabolic diseases (osteoporosis [OP], osteitis deformans, osteosclerosis). The use of autophagy regulators to modulate autophagy has benefited bone regeneration, including MTOR (mechanistic target of rapamycin kinase) inhibitors, AMPK activators, and emerging phytochemicals. The application of biomaterials (especially nanomaterials) to trigger autophagy is also an attractive research direction, which can exert superior therapeutic properties from the material-loaded molecules/drugs or the material's properties such as shape, roughness, surface chemistry, etc. All of these have essential clinical significance with the discovery of autophagy associated signals, pathways, mechanisms, and treatments in bone diseases in the future.Abbreviations: Δψm: mitochondrial transmembrane potential AMPK: AMP-activated protein kinase ARO: autosomal recessive osteosclerosis ATF4: activating transcription factor 4 ATG: autophagy-related β-ECD: β-ecdysone BMSC: bone marrow mesenchymal stem cell ER: endoplasmic reticulum FOXO: forkhead box O GC: glucocorticoid HIF1A/HIF-1α: hypoxia inducible factor 1 subunit alpha HSC: hematopoietic stem cell HSP: heat shock protein IGF1: insulin like growth factor 1 IL1B/IL-1β: interleukin 1 beta IVDD: intervertebral disc degradation LPS: lipopolysaccharide MAPK: mitogen-activated protein kinase MSC: mesenchymal stem cell MTOR: mechanistic target of rapamycin kinase NP: nucleus pulposus NPWT: negative pressure wound therapy OA: osteoarthritis OP: osteoporosis PTH: parathyroid hormone ROS: reactive oxygen species SIRT1: sirtuin 1 SIRT3: sirtuin 3 SQSTM1/p62: sequestosome 1 TNFRSF11B/OPG: TNF receptor superfamily member 11b TNFRSF11A/RANK: tumor necrosis factor receptor superfamily, member 11a TNFSF11/RANKL: tumor necrosis factor (ligand) superfamily, member 11 TSC1: tuberous sclerosis complex 1 ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Jing Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Yi Zhang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Jin Cao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Yi Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Nadia Anwar
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Zihan Zhang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Dingmei Zhang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Yaping Ma
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Yin Xiao
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Queensland, Australia.,School of Medicine and Dentistry & Menzies Health Institute Queensland, Griffith University, Queensland, Australia
| | - Lan Xiao
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia.,Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Xin Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China.,School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia.,Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
9
|
Ren H, Han W, Wang S, Zhao B, Miao J, Lin Z. A novel sulfur dioxide probe inhibits high glucose-induced endothelial cell senescence. Front Physiol 2022; 13:979986. [PMID: 36589455 PMCID: PMC9800602 DOI: 10.3389/fphys.2022.979986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Sulfur dioxide (SO2) is an important gas signal molecule produced in the cardiovascular system, so it has an important regulatory effect on human umbilical vascular endothelial cells (HUVECs). Studies have shown that high glucose (HG) has become the main cause of endothelial dysfunction and aging. However, the mechanism by which SO2 regulates the senescence of vascular endothelial cells induced by HG has not yet been clarified, so it is necessary to find effective tools to elucidate the effect of SO2 on senescence of HUVECs. In this paper, we identified a novel sulfur dioxide probe (2-(4-(dimethylamino)styryl)-1,1,3-trimethyl-1H-benzo [e]indol-3-ium, DLC) that inhibited the senescence of HUVECs. Our results suggested that DLC facilitated lipid droplets (LDs) translocation to lysosomes and triggered upregulation of LAMP1 protein levels by targeting LDs. Further study elucidated that DLC inhibited HG-induced HUVECs senescence by promoting the decomposition of LDs and protecting the proton channel of V-ATPase on lysosomes. In conclusion, our study revealed the regulatory effect of lipid droplet-targeted sulfur dioxide probes DLC on HG-induced HUVECs senescence. At the same time, it provided the new experimental evidence for elucidating the regulatory mechanism of intracellular gas signaling molecule sulfur dioxide on vascular endothelial fate.
Collapse
Affiliation(s)
- Hui Ren
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, China
| | - WenWen Han
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, China
| | - Shuo Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, China
| | - BaoXiang Zhao
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - JunYing Miao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, China,*Correspondence: JunYing Miao, ; ZhaoMin Lin,
| | - ZhaoMin Lin
- Institute of Medical Science, The Second Hospital of Shandong University, Jinan, China,*Correspondence: JunYing Miao, ; ZhaoMin Lin,
| |
Collapse
|
10
|
Grp94 Inhibitor HCP1 Inhibits Human Dermal Fibroblast Senescence. Genes (Basel) 2022; 13:genes13091651. [PMID: 36140818 PMCID: PMC9498348 DOI: 10.3390/genes13091651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Researchers are paying more and more attention to aging, especially skin aging. Therefore, it is urgent to find an effective way to inhibit aging. Here, we report a small chemical molecule, HCP1, that inhibited the senescence of human dermal fibroblasts (HDFs). First, we performed morphological experiment and found that HCP1-treated HDFs were no longer elongated and flat compared to DMSO-treated groups. Next, we found that the number of β-gal positive cells decreased compared to DMSO-treated groups. Through flow cytometry, western blot, and immunofluorescence, we found that HCP1 could inhibit the senescence of HDFs. In the study of the mechanism, we found that HCP1 could regulate the AMPK/mTOR signal pathway through glucose-regulated protein 94 (Grp94). In addition, we found that HCP1 could promote the interaction between Grp94 and lysosomes, which led to an increase in the activity of lysosomes and inhibited the senescence of HDFs. At the same time, we found that HCP1 decreased the concentration of Ca2+ in mitochondria, inhibiting the senescence of HCP1. Therefore, we propose that HCP1 is a potential aging-inhibiting compound, and provide a new idea for the development of senescence-inhibiting drugs.
Collapse
|
11
|
Application of meso-CF 3-Fluorophore BODIPY with Phenyl and Pyrazolyl Substituents for Lifetime Visualization of Lysosomes. Molecules 2022; 27:molecules27155018. [PMID: 35956971 PMCID: PMC9370186 DOI: 10.3390/molecules27155018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
A bright far-red emitting unsymmetrical meso-CF3-BODIPY fluorescent dye with phenyl and pyrazolyl substituents was synthesized by condensation of trifluoropyrrolylethanol with pyrazolyl-pyrrole, with subsequent oxidation and complexation of the formed dipyrromethane. This BODIPY dye exhibits optical absorption at λab ≈ 610-620 nm and emission at λem ≈ 640-650 nm. The BODIPY was studied on Ehrlich carcinoma cells as a lysosome-specific fluorescent dye that allows intravital staining of cell structures with subsequent real-time monitoring of changes occurring in the cells. It was also shown that the rate of uptake by cells, the rate of intracellular transport into lysosomes, and the rate of saturation of cells with the dye depend on its concentration in the culture medium. A concentration of 5 μM was chosen as the most suitable BODIPY concentration for fluorescent staining of living cell lysosomes, while a concentration of 100 μM was found to be toxic to Ehrlich carcinoma cells.
Collapse
|
12
|
Volpi G. Luminescent imidazo[1,5‐a] pyridine scaffold: synthetic heterocyclization strategies overview and promising applications. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Giorgio Volpi
- University of Turin: Universita degli Studi di Torino Chemistry ITALY
| |
Collapse
|
13
|
Ruiz-Aparicio PF, Vernot JP. Bone Marrow Aging and the Leukaemia-Induced Senescence of Mesenchymal Stem/Stromal Cells: Exploring Similarities. J Pers Med 2022; 12:jpm12050716. [PMID: 35629139 PMCID: PMC9147878 DOI: 10.3390/jpm12050716] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 12/17/2022] Open
Abstract
Bone marrow aging is associated with multiple cellular dysfunctions, including perturbed haematopoiesis, the propensity to haematological transformation, and the maintenance of leukaemia. It has been shown that instructive signals from different leukemic cells are delivered to stromal cells to remodel the bone marrow into a supportive leukemic niche. In particular, cellular senescence, a physiological program with both beneficial and deleterious effects on the health of the organisms, may be responsible for the increased incidence of haematological malignancies in the elderly and for the survival of diverse leukemic cells. Here, we will review the connection between BM aging and cellular senescence and the role that these processes play in leukaemia progression. Specifically, we discuss the role of mesenchymal stem cells as a central component of the supportive niche. Due to the specificity of the genetic defects present in leukaemia, one would think that bone marrow alterations would also have particular changes, making it difficult to envisage a shared therapeutic use. We have tried to summarize the coincident features present in BM stromal cells during aging and senescence and in two different leukaemias, acute myeloid leukaemia, with high frequency in the elderly, and B-acute lymphoblastic leukaemia, mainly a childhood disease. We propose that mesenchymal stem cells are similarly affected in these different leukaemias, and that the changes that we observed in terms of cellular function, redox balance, genetics and epigenetics, soluble factor repertoire and stemness are equivalent to those occurring during BM aging and cellular senescence. These coincident features may be used to explore strategies useful to treat various haematological malignancies.
Collapse
Affiliation(s)
- Paola Fernanda Ruiz-Aparicio
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
| | - Jean-Paul Vernot
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Correspondence:
| |
Collapse
|
14
|
Anderson M, Dubey N, Bogie K, Cao C, Li J, Lerchbacker J, Mendonça G, Kauffmann F, Bottino MC, Kaigler D. Three-dimensional printing of clinical scale and personalized calcium phosphate scaffolds for alveolar bone reconstruction. Dent Mater 2022; 38:529-539. [PMID: 35074166 PMCID: PMC9016367 DOI: 10.1016/j.dental.2021.12.141] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/20/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Alveolar bone defects can be highly variable in their morphology and, as the defect size increases, they become more challenging to treat with currently available therapeutics and biomaterials. This investigation sought to devise a protocol for fabricating customized clinical scale and patient-specific, bioceramic scaffolds for reconstruction of large alveolar bone defects. METHODS Two types of calcium phosphate (CaP)-based bioceramic scaffolds (alginate/β-TCP and hydroxyapatite/α-TCP, hereafter referred to as hybrid CaP and Osteoink™, respectively) were designed, 3D printed, and their biocompatibility with alveolar bone marrow stem cells and mechanical properties were determined. Following scaffold optimization, a workflow was developed to use cone beam computed tomographic (CBCT) imaging to design and 3D print, defect-specific bioceramic scaffolds for clinical-scale bone defects. RESULTS Osteoink™ scaffolds had the highest compressive strength when compared to hybrid CaP with different infill orientation. In cell culture medium, hybrid CaP degradation resulted in decreased pH (6.3) and toxicity to stem cells; however, OsteoInk™ scaffolds maintained a stable pH (7.2) in culture and passed the ISO standard for cytotoxicity. Finally, a clinically feasible laboratory workflow was developed and evaluated using CBCT imaging to engineer customized and defect-specific CaP scaffolds using OsteoInk™. It was determined that printed scaffolds had a high degree of accuracy to fit the respective clinical defects for which they were designed (0.27 mm morphological deviation of printed scaffolds from digital design). SIGNIFICANCE From patient to patient, large alveolar bone defects are difficult to treat due to high variability in their complex morphologies and architecture. Our findings shows that Osteoink™ is a biocompatible material for 3D printing of clinically acceptable, patient-specific scaffolds with precision-fit for use in alveolar bone reconstructive procedures. Collectively, emerging digital technologies including CBCT imaging, 3D surgical planning, and (bio)printing can be integrated to address this unmet clinical challenge.
Collapse
Affiliation(s)
- Margaret Anderson
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Nileshkumar Dubey
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Faculty of Dentistry, National University of Singapore, Singapore
| | - Kath Bogie
- Case Western Reserve University, Cleveland, OH, USA
| | - Chen Cao
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Junying Li
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | | | - Gustavo Mendonça
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Frederic Kauffmann
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Darnell Kaigler
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
15
|
Zhang W, Bai J, Hang K, Xu J, Zhou C, Li L, Wang Z, Wang Y, Wang K, Xue D. Role of Lysosomal Acidification Dysfunction in Mesenchymal Stem Cell Senescence. Front Cell Dev Biol 2022; 10:817877. [PMID: 35198560 PMCID: PMC8858834 DOI: 10.3389/fcell.2022.817877] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/14/2022] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation has been widely used as a potential treatment for a variety of diseases. However, the contradiction between the low survival rate of transplanted cells and the beneficial therapeutic effects has affected its clinical use. Lysosomes as organelles at the center of cellular recycling and metabolic signaling, play essential roles in MSC homeostasis. In the first part of this review, we summarize the role of lysosomal acidification dysfunction in MSC senescence. In the second part, we summarize some of the potential strategies targeting lysosomal proteins to enhance the therapeutic effect of MSCs.
Collapse
Affiliation(s)
- Weijun Zhang
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinwu Bai
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kai Hang
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianxiang Xu
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chengwei Zhou
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lijun Li
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhongxiang Wang
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yibo Wang
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kanbin Wang
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Deting Xue
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Deting Xue,
| |
Collapse
|
16
|
Ge L, Huang Y, Ma Q, Wang Y, Yang R, Yang X, Chen Y, Miao Y, Zuo Y. Inhibition of endogenous protease activity and protection of histomorphical integrity during refrigerated storage of grass carp fillets by treatment with natural edible di‐ and tri‐carboxylic acids. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lihong Ge
- College of Life Science Sichuan Normal University Chengdu China
| | - Yuli Huang
- College of Life Science Sichuan Normal University Chengdu China
| | - Qian Ma
- College of Life Science Sichuan Normal University Chengdu China
| | - Yu Wang
- College of Life Science Sichuan Normal University Chengdu China
| | - Rui Yang
- College of Life Science Sichuan Normal University Chengdu China
| | - Xinyu Yang
- College of Life Science Sichuan Normal University Chengdu China
| | - Yan Chen
- College of Life Science Sichuan Normal University Chengdu China
| | - Yuzhi Miao
- College of Life Science Sichuan Normal University Chengdu China
| | - Yong Zuo
- College of Life Science Sichuan Normal University Chengdu China
| |
Collapse
|
17
|
Deng J, Ouyang P, Li W, Zhong L, Gu C, Shen L, Cao S, Yin L, Ren Z, Zuo Z, Deng J, Yan Q, Yu S. Curcumin Alleviates the Senescence of Canine Bone Marrow Mesenchymal Stem Cells during In Vitro Expansion by Activating the Autophagy Pathway. Int J Mol Sci 2021; 22:ijms222111356. [PMID: 34768788 PMCID: PMC8583405 DOI: 10.3390/ijms222111356] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/16/2021] [Accepted: 10/17/2021] [Indexed: 12/16/2022] Open
Abstract
Senescence in mesenchymal stem cells (MSCs) not only hinders the application of MSCs in regenerative medicine but is also closely correlated with biological aging and the development of degenerative diseases. In this study, we investigated the anti-aging effects of curcumin (Cur) on canine bone marrow-derived MSCs (cBMSCs), and further elucidated the potential mechanism of action based on the modulation of autophagy. cBMSCs were expanded in vitro with standard procedures to construct a cell model of premature senescence. Our evidence indicates that compared with the third passage of cBMSCs, many typical senescence-associated phenotypes were observed in the sixth passage of cBMSCs. Cur treatment can improve cBMSC survival and retard cBMSC senescence according to observations that Cur (1 μM) treatment can improve the colony-forming unit-fibroblasts (CFU-Fs) efficiency and upregulated the mRNA expression of pluripotent transcription factors (SOX-2 and Nanog), as well as inhibiting the senescence-associated beta-galactosidase (SA-β-gal) activities and mRNA expression of the senescence-related markers (p16 and p21) and pro-inflammatory molecules (tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)). Furthermore, Cur (0.1 μM~10 μM) was observed to increase autophagic activity, as identified by upregulation of microtubule-associated protein 1 light chain 3 (LC3), unc51-like autophagy-activating kinase-1 (ULK1), autophagy-related gene (Atg) 7 and Atg12, and the generation of type II of light chain 3 (LC3-II), thereby increasing autophagic vacuoles and acidic vesicular organelles, as well as causing a significant decrease in the p62 protein level. Moreover, the autophagy activator rapamycin (RAP) and Cur were found to partially ameliorate the senescent features of cBMSCs, while the autophagy inhibitor 3-methyladenine (3-MA) was shown to aggravate cBMSCs senescence and Cur treatment was able to restore the suppressed autophagy and counteract 3-MA-induced cBMSC senescence. Hence, our study highlights the important role of Cur-induced autophagy and its effects for ameliorating cBMSC senescence and provides new insight for delaying senescence and improving the therapeutic potential of MSCs.
Collapse
Affiliation(s)
- Jiaqiang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.D.); (P.O.); (W.L.); (L.Z.); (C.G.); (L.S.); (S.C.); (L.Y.); (Z.R.); (Z.Z.); (J.D.)
- College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.D.); (P.O.); (W.L.); (L.Z.); (C.G.); (L.S.); (S.C.); (L.Y.); (Z.R.); (Z.Z.); (J.D.)
| | - Weiyao Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.D.); (P.O.); (W.L.); (L.Z.); (C.G.); (L.S.); (S.C.); (L.Y.); (Z.R.); (Z.Z.); (J.D.)
| | - Lijun Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.D.); (P.O.); (W.L.); (L.Z.); (C.G.); (L.S.); (S.C.); (L.Y.); (Z.R.); (Z.Z.); (J.D.)
| | - Congwei Gu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.D.); (P.O.); (W.L.); (L.Z.); (C.G.); (L.S.); (S.C.); (L.Y.); (Z.R.); (Z.Z.); (J.D.)
- Laboratory Animal Centre, Southwest Medical University, Luzhou 646000, China
| | - Liuhong Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.D.); (P.O.); (W.L.); (L.Z.); (C.G.); (L.S.); (S.C.); (L.Y.); (Z.R.); (Z.Z.); (J.D.)
| | - Suizhong Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.D.); (P.O.); (W.L.); (L.Z.); (C.G.); (L.S.); (S.C.); (L.Y.); (Z.R.); (Z.Z.); (J.D.)
| | - Lizi Yin
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.D.); (P.O.); (W.L.); (L.Z.); (C.G.); (L.S.); (S.C.); (L.Y.); (Z.R.); (Z.Z.); (J.D.)
| | - Zhihua Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.D.); (P.O.); (W.L.); (L.Z.); (C.G.); (L.S.); (S.C.); (L.Y.); (Z.R.); (Z.Z.); (J.D.)
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.D.); (P.O.); (W.L.); (L.Z.); (C.G.); (L.S.); (S.C.); (L.Y.); (Z.R.); (Z.Z.); (J.D.)
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.D.); (P.O.); (W.L.); (L.Z.); (C.G.); (L.S.); (S.C.); (L.Y.); (Z.R.); (Z.Z.); (J.D.)
| | - Qigui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.D.); (P.O.); (W.L.); (L.Z.); (C.G.); (L.S.); (S.C.); (L.Y.); (Z.R.); (Z.Z.); (J.D.)
- Correspondence: (Q.Y.); (S.Y.); Tel.: +86-139-8160-8208 (Q.Y.); +86-189-8057-3629 (S.Y.)
| | - Shumin Yu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.D.); (P.O.); (W.L.); (L.Z.); (C.G.); (L.S.); (S.C.); (L.Y.); (Z.R.); (Z.Z.); (J.D.)
- Correspondence: (Q.Y.); (S.Y.); Tel.: +86-139-8160-8208 (Q.Y.); +86-189-8057-3629 (S.Y.)
| |
Collapse
|
18
|
Dong Z, Qiu T, Zhang J, Sha S, Han X, Kang J, Shi X, Sun X, Jiang L, Yang G, Yao X, Ma Y. Perfluorooctane sulfonate induces autophagy-dependent lysosomal membrane permeabilization by weakened interaction between tyrosinated alpha-tubulin and spinster 1. Food Chem Toxicol 2021; 157:112540. [PMID: 34500008 DOI: 10.1016/j.fct.2021.112540] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/15/2021] [Accepted: 09/05/2021] [Indexed: 10/20/2022]
Abstract
Perfluorooctane sulfonate (PFOS) is one kind of persistent organic pollutants. In previous study, we found that PFOS induced autophagy-dependent lysosomal membrane permeabilization (LMP) in hepatocytes, and siRNA against lysosomal permease spinster 1 (SPNS1) relieved PFOS-induced LMP. However, whether and how SPNS1 functioned as the link between autophagy and LMP was still not defined. In this study, we constructed a stable cell line expressing high levels of SPNS1. We found that SPNS1 interacted specifically with α-tubulin of tyrosinated isotype by pull-down assay. After treatment with PFOS, the level of tyrosinated α-tubulin was autophagy-dependently decreased. SPNS1-tyrosinated α-tubulin interaction was disrupted subsequently, which led to LMP eventually. We also found that stable high-expression of SPNS1 in hepatocytes accelerated lysosomal acidification, and deteriorated PFOS-induced LMP. This study pointed out that SPNS1-tyrosinated α-tubulin interaction mediated the cross-talk between autophagy and LMP induced by PFOS, shedding new light on the mechanism of PFOS hepatotoxicity.
Collapse
Affiliation(s)
- Zhanchen Dong
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, PR China.
| | - Tianming Qiu
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, PR China
| | - Jingyuan Zhang
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, PR China
| | - Shanshan Sha
- Department of Biochemistry and Molecular Biology, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, PR China
| | - Xiuyan Han
- Department of Biochemistry and Molecular Biology, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, PR China
| | - Jian Kang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, PR China
| | - Xiaoxia Shi
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, PR China
| | - Xiance Sun
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, PR China
| | - Liping Jiang
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, PR China
| | - Guang Yang
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, PR China
| | - Xiaofeng Yao
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, PR China.
| | - Yufang Ma
- Department of Biochemistry and Molecular Biology, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, PR China.
| |
Collapse
|
19
|
Volpi G, Rabezzana R. Imidazo[1,5- a]pyridine derivatives: useful, luminescent and versatile scaffolds for different applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj00322d] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the last few years, imidazo[1,5-a]pyridine nuclei and derivatives have attracted growing attention due to their unique chemical structure and versatility, optical behaviours, and biological properties.
Collapse
Affiliation(s)
- Giorgio Volpi
- Department of Chemistry
- University of Turin
- 7 - 10125 Turin
- Italy
| | | |
Collapse
|
20
|
Maeda H. Aging and Senescence of Dental Pulp and Hard Tissues of the Tooth. Front Cell Dev Biol 2020; 8:605996. [PMID: 33330507 PMCID: PMC7734349 DOI: 10.3389/fcell.2020.605996] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/04/2020] [Indexed: 01/05/2023] Open
Abstract
The ability to consume a meal using one's own teeth influences an individual's quality of life. In today's global aging society, studying the biological changes in aging teeth is important to address this issue. A tooth includes three hard tissues (enamel, dentin, and cementum) and a soft tissue (dental pulp). With advancing age, these tissues become senescent; each tissue exhibits a unique senescent pattern. This review discusses the structural alterations of hard tissues, as well as the molecular and physiological changes in dental pulp cells and dental pulp stem cells during human aging. The significance of senescence in these cells remains unclear. Thus, there is a need to define the regulatory mechanisms of aging and senescence in these cells to aid in preservation of dental health.
Collapse
Affiliation(s)
- Hidefumi Maeda
- Department of Endodontology and Operative Dentistry, Kyushu University, Fukuoka, Japan.,Department of Endodontology, Kyushu University Hospital, Fukuoka, Japan
| |
Collapse
|
21
|
Rastaldo R, Vitale E, Giachino C. Dual Role of Autophagy in Regulation of Mesenchymal Stem Cell Senescence. Front Cell Dev Biol 2020; 8:276. [PMID: 32391362 PMCID: PMC7193103 DOI: 10.3389/fcell.2020.00276] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/31/2020] [Indexed: 12/20/2022] Open
Abstract
During their development and overall life, mesenchymal stem cells (MSCs) encounter a plethora of internal and external stress signals and therefore, they need to put in action homeostatic changes in order to face these stresses. To this aim, similar to other mammalian cells, MSCs are endowed with two crucial biological responses, autophagy and senescence. Sharing of a number of stimuli like shrinkage of telomeres, oncogenic and oxidative stress, and DNA damage, suggest an intriguingly close relationship between autophagy and senescence. Autophagy is at first reported to suppress MSC senescence by clearing injured cytoplasmic organelles and impaired macromolecules, yet recent investigations also showed that autophagy can promote MSC senescence by inducing the production of senescence-associated secretory proteins (SASP). These apparently contrary contributions of autophagy may mirror an intricate image of autophagic regulation on MSC senescence. We here tackle the pro-senescence and anti-senescence roles of autophagy in MSCs while concentrating on some possible mechanistic explanations of such an intricate liaison. Clarifying the autophagy/senescence relationship in MSCs will help the development of more effective and safer therapeutic strategies.
Collapse
Affiliation(s)
- Raffaella Rastaldo
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Emanuela Vitale
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Claudia Giachino
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| |
Collapse
|
22
|
Khorraminejad-Shirazi M, Sani M, Talaei-Khozani T, Dorvash M, Mirzaei M, Faghihi MA, Monabati A, Attar A. AICAR and nicotinamide treatment synergistically augment the proliferation and attenuate senescence-associated changes in mesenchymal stromal cells. Stem Cell Res Ther 2020; 11:45. [PMID: 32014016 PMCID: PMC6998366 DOI: 10.1186/s13287-020-1565-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/05/2020] [Accepted: 01/19/2020] [Indexed: 12/11/2022] Open
Abstract
Background Mesenchymal stromal cell (MSC) stemness capacity diminishes over prolonged in vitro culture, which negatively affects their application in regenerative medicine. To slow down the senescence of MSCs, here, we have evaluated the in vitro effects of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an AMPK activator, and nicotinamide (NAM), an activator of sirtuin1 (SIRT1). Methods Human adipose-derived MSCs were cultured to passage (P) 5. Subsequently, the cells were grown in either normal medium alone (control group), the medium supplemented with AICAR (1 mM) and NAM (5 mM), or in the presence of both for 5 weeks to P10. Cell proliferation, differentiation capacity, level of apoptosis and autophagy, morphological changes, total cellular reactive oxygen species (ROS), and activity of mTORC1 and AMPK were compared among different treatment groups. Results MSCs treated with AICAR, NAM, or both displayed an increase in proliferation and osteogenic differentiation, which was augmented in the group receiving both. Treatment with AICAR or NAM led to decreased expression of β-galactosidase, reduced accumulation of dysfunctional lysosomes, and characteristic morphologic features of young MSCs. Furthermore, while NAM administration could significantly reduce the total cellular ROS in aged MSCs, AICAR treatment did not. Moreover, AICAR-treated cells possess a high proliferation capacity; however, they also show the highest level of cellular apoptosis. The observed effects of AICAR and NAM were in light of the attenuated mTORC1 activity and increased AMPK activity and autophagy. Conclusions Selective inhibition of mTORC1 by AICAR and NAM boosts autophagy, retains MSCs’ self-renewal and multi-lineage differentiation capacity, and postpones senescence-associated changes after prolonged in vitro culture. Additionally, co-administration of AICAR and NAM shows an additive or probably a synergistic effect on cellular senescence.
Collapse
Affiliation(s)
- Mohammadhossein Khorraminejad-Shirazi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.,Cell and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Sani
- Tissue Engineering Department, School of Advanced Medical Science and Technology, Shiraz University of Medical Science, Shiraz, Iran.,Tissue Engineering Lab, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Tissue Engineering Lab, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadreza Dorvash
- Cell and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Malihe Mirzaei
- Persian BayanGene Research and Training Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Faghihi
- Persian BayanGene Research and Training Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ahmad Monabati
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Armin Attar
- Department of Cardiovascular Medicine, Shiraz University of Medical Sciences, PO Box 71344-1864, Shiraz, Iran.
| |
Collapse
|
23
|
Dodig S, Čepelak I, Pavić I. Hallmarks of senescence and aging. Biochem Med (Zagreb) 2019; 29:030501. [PMID: 31379458 PMCID: PMC6610675 DOI: 10.11613/bm.2019.030501] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022] Open
Abstract
The complex process of biological aging, as an intrinsic feature of living beings, is the result of genetic and, to a greater extent, environmental factors and time. For many of the changes taking place in the body during aging, three factors are important: inflammation, immune aging and senescence (cellular aging, biological aging). Senescence is an irreversible form of long-term cell-cycle arrest, caused by excessive intracellular or extracellular stress or damage. The purpose of this cell-cycles arrest is to limit the proliferation of damaged cells, to eliminate accumulated harmful factors and to disable potential malignant cell transformation. As the biological age does not have to be in accordance with the chronological age, it is important to find specific hallmarks and biomarkers that could objectively determine the rate of age of a person. These biomarkers might be a valuable measure of physiological, i.e. biological age. Biomarkers should meet several criteria. For example, they have to predict the rate of aging, monitor a basic process that underlies the aging process, be able to be tested repeatedly without harming the person. In addition, biomarkers have to be indicators of biological processes, pathogenic processes or pharmacological responses to therapeutic intervention. It is considered that the telomere length is the weak biomarker (with poor predictive accuracy), and there is currently no reliable biomarker that meets all the necessary criteria.
Collapse
Affiliation(s)
- Slavica Dodig
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Ivana Čepelak
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Ivan Pavić
- Department of Pulmonology, Allergology and Immunology, Children’s Hospital Zagreb; School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
24
|
Son SW, Chau GC, Kim ST, Um SH. Vacuolar H +-ATPase Subunit V0C Regulates Aerobic Glycolysis of Esophageal Cancer Cells via PKM2 Signaling. Cells 2019; 8:E1137. [PMID: 31554233 PMCID: PMC6830105 DOI: 10.3390/cells8101137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 12/16/2022] Open
Abstract
The vacuolar H+-adenosine triphosphatase (ATPase) subunit V0C (ATP6V0C), a proton-conducting, pore-forming subunit of vacuolar ATPase, maintains pH homeostasis and induces organelle acidification. The intracellular and extracellular pH of cancer cells affects their growth; however, the role of ATP6V0C in highly invasive esophageal cancer cells (ECCs) remains unclear. In this study, we examined the role of ATP6V0C in glucose metabolism in ECCs. The ATP6V0C depletion attenuated ECC proliferation, invasion, and suppressed glucose metabolism, as indicated by reduced glucose uptake and decreased lactate and adenosine triphosphate (ATP) production in cells. Consistent with this, expression of glycolytic enzyme and the extracellular acidification rate (ECAR) were also decreased by ATP6V0C knockdown. Mechanistically, ATP6V0C interacted with pyruvate kinase isoform M2 (PKM2), a key regulator of glycolysis in ECCs. The ATP6V0C depletion reduced PKM2 phosphorylation at tyrosine residue 105 (Tyr105), leading to inhibition of nuclear translocation of PKM2. In addition, ATP6V0C was recruited at hypoxia response element (HRE) sites in the lactate dehydrogenase A (LDHA) gene for glycolysis. Thus, our data suggest that ATP6V0C enhances aerobic glycolysis and motility in ECCs.
Collapse
Affiliation(s)
- Sung Wook Son
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do 16419, Korea.
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University, Seoul 06351, Korea.
| | - Gia Cac Chau
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do 16419, Korea.
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University, Seoul 06351, Korea.
| | - Seong-Tae Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do 16419, Korea.
| | - Sung Hee Um
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do 16419, Korea.
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University, Seoul 06351, Korea.
- Biomedical Institute Convergence at Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea.
| |
Collapse
|
25
|
Fafián-Labora JA, Morente-López M, Arufe MC. Effect of aging on behaviour of mesenchymal stem cells. World J Stem Cells 2019; 11:337-346. [PMID: 31293716 PMCID: PMC6600848 DOI: 10.4252/wjsc.v11.i6.337] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/29/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023] Open
Abstract
Organs whose source is the mesoderm lineage contain a subpopulation of stem cells that are able to differentiate among mesodermal derivatives (chondrocytes, osteocytes, adipocytes). This subpopulation of adult stem cells, called "mesenchymal stem cells" or "mesenchymal stromal cells (MSCs)", contributes directly to the homeostatic maintenance of their organs; hence, their senescence could be very deleterious for human bodily functions. MSCs are easily isolated and amenable their expansion in vitro because of the research demanding to test them in many diverse clinical indications. All of these works are shown by the rapidly expanding literature that includes many in vivo animal models. We do not have an in-depth understanding of mechanisms that induce cellular senescence, and to further clarify the consequences of the senescence process in MSCs, some hints may be derived from the study of cellular behaviour in vivo and in vitro, autophagy, mitochondrial stress and exosomal activity. In this particular work, we decided to review these biological features in the literature on MSC senescence over the last three years.
Collapse
Affiliation(s)
- Juan Antonio Fafián-Labora
- Grupo de Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Ciencias Biomédicas y Medicina, Universidade da Coruña, A Coruña 15006, Spain
| | - Miriam Morente-López
- Grupo de Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Ciencias Biomédicas y Medicina, Universidade da Coruña, A Coruña 15006, Spain
| | - María C Arufe
- Grupo de Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Ciencias Biomédicas y Medicina, Universidade da Coruña, A Coruña 15006, Spain.
| |
Collapse
|